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Search for parity violation in deep-inelastic scattering of polarized electrons
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%'e report on recent asymmetry measurements for inelastic scattering of longitudinally polarized electrons
from an unpolarized deuterium target at 19.4 GeV. Using the SLAC 20-GeV/c and 8-GeV/c spectrometers,

the helicity-dependent cross-section asymmetries were measured at Q values of 1.2 and 4.2 (GeV/c)2, and

were found to be less than 2 X 10 ' and 7 g 10 ', respectively.

The motivation for searching for parity-violating
effects in electromagnetic interactions has come
primarily from interest in the ideas which unify
the weak and electromagnetic forces. The experi-
mental discovery of neutral-current events in
neutrino experiments intensified the interest in

gauge theories and their consequences, including
the possibility of parity-violating effects in the
electromagnetic interactions. In the case of in-
elastic electron scattering, parity violation can
show up as a helicity dependence of the differen-
tial cross section for a longitudinally polarized
beam of electrons scattering from an unpolarized
target. "' %e report here on an experiment
undertaken to improve limits for parity-violating
terms in inelastic scattering of longitudinally
polarized electrons from an unpolarized deuterium
target at an incident energy of 19.4 GeV using two
spectrometers set at the kinematic points given
in Table I.

The helicity-dependent cross section may be
written

dg = doo(1+

APNEA}

)

in which ) (= +1) is the helicity of the incident elec-
tron beam, do, is the differential cross section
for an unpolarized beam, I', is the magnitude of
the polarization, and A. is the asymmetry

All theoretical models agree that A. is proportional
to Q', the four-momentum transfer squared in the
scattering, but predictions" 6 of the size of A vary

widelybut are generally in the range of ~A
~

= (10 '
to 10 ')x[g' {GeV/c)']. Previous experiments
have reported the following limits one 3t the 95 jp

confidence level for elastic e-P and deep-inelastic
e-nucleon' and p, -nucleon' scattering: ~A. ~

& 3
&&10 ' for elastic e-p scattering at Q'=0. 765
(Gev/c)', (W~ &3~10-' for deep-inelastic e-nucle-
on scattering for Q' between 1 and 4 (GeV/c),
and I A I

+ 1.0+ 1o '~[@' (GeV/c)'1 for deep-inelas-
tic muon-nucleon scattering for Q' between 1 and
10 {GeV/c)'. Our present experiment emphasizes
the careful study of systematic errors and is con-
sidered as the first step toward a still higher
sensitivity measurement of A. at the level pre-
dicted by modern gauge theories.

Polarized electrons were provided by the Yale-
SLAC polarized-electron source (PEGGY), ' which

is based on photoionization of a polarized Li'
atomic beam by a pulsed uv light source. ' Typi-
cal operation yielded 1.2~ 109 electrons per pulse.
Longitudinally polarized electrons were accel-
erated in the linear accelerator with negligible
depolarization, as confirmed by earlier tests. "
The electron polarization P, was measured fre-
quently during the experiment by Mott scattering
at the output of PEGGY, and at the beginning and

end of the experiment by electron-electron (Mgl-
ler) scattering at high energy. For Manlier scat-
tering a thin magnetized Supermendur foil was
placed in the beam and elastically scattered elec-
trons with one half the beam energy, correspon-
ding to symmetric 90 scattering in the e-e c.m. -
system frame, were detected in the 20-GeV/c
spectrometer. PEGGY was operated in a mode to
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TABLE I. Kinematic points.

20-GeV/c spectrometer 8-GeV/c spectrometer

Laboratory angle (deg)
Scattered energy E' (GeV)
Q [(GeV/c) j
Missing mass W (GeV)
v=EO —E' (GeV)
&u = 2Mv/Q
x= 1/~
g = v/Ep

3.5
16.5
1.2
2.3
2.9
4 5
0.22
0.15

13.3
4.0
4.2
5.1

15.4
6.9
0.15
0.79

increase available beam intensity which, due to
a two-step photoionization process, reduced the
polarization to P, =45+ 6%." The helicity of the
PEGGY beam is determined by the direction of a
static magnetic field of about 200 G in the photo-
ionization region, and this field direction could
be reversed in a period of a few seconds.

The target was a 30-cm-long cell of liquid deu-
terium. The liquid deuterium target was chosen
over one of liquid hydrogen primarily because of
increased yields of electrons. The 8- and 20-
GeV/c spectrometers were used in a manner
similar to previous inelastic electron experiments
at SLAC."

Experimental sensitivity to parity-violating ef-
fects depends on many parameters including kine-
matical variables, the electroproduction cross-
section values, and spectrometer acceptance. If
we define sensitivity to be the ratio A/~, take
A to be linear in Q', and calculate ~ from
counting statistics, we find that higher Q' points
yield lower sensitivity. Having chosen kinemati-
cal points at low Q' to enhance the statistical ac-
curacy, we must then control and measure small
systematic effects arising from drifts in the beam
parameters, as well as from changes in beam
parameters that may be associated with reversal

of the polarization. Unobserved systematic chan-
ges can mask or create apparent parity-violating
effects. Beam parameters on which the yield of
scattered electrons depends were monitored, in-
cluding beam position on target, angle of beam on

target, beam current, and beam energy. The
instrumentation of the beam line is shown sche-
matically in Fig. 1.

Beam positions were measured using noninter-
cepting resonant microwave cavities which were
installed at two points along the beam before the
target, positioned such that cavity nodes fall on
the beam axis. For small displacements of the
beam off the axis, signals were induced in an
amount proportional to the product of the beam
current times its transverse displacement. "
Beam currents were separately measured, so
that the displacements could be calculated. The
positions, averaged over the 1.5- p. sec duration of the
beam pulse, were measured at two points in the hori-
zontal and two points in the vertical direction. Sensi-
tivity, limited only by electronic noise, was
good to a few microns displacement. Drifts in
position and angle were sensed by a computer, and
steering corrections were applied automatically
by adjusting currents in the beam-line magnets.
With automatic computer steering in use, syste-
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FIG. 1. Beam-line instrumentation, shown schematically (not to scale), installed to monitor and control beam posi-
tion, angle, intensity, and energy changes that may be associated with polarization reversals. Spectrometers are not
shown. Computer steered position and angle of beam on target with separate horizontal and vertical adjustments on
beam-magnet currents.
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A =gQ /iVI (4)

Then if we add (linearly) the systematic errors to
the statistical errors and form the weighted aver-
age of our two data points, we obtain

g = (-3.9 z 8.4) x 10 ' .

%6 note that R conventlonRl V-tweak lnteractlon
interfering with the electromagnetic interaction

and consider this uncertainty as our systematic
error. The asymmetries we obtain, with statisti-
cal (1 standard devLatlon) and systematic errors
resp6ctlvely~ Rre

Q'= l.2 (GeV/c)': 2 =(-8.2+4.4g9.3)x 10 ',
(3)

Q'=4. 2 (GeV/c)'. p = (0.44+ 6.9y 0.42}x10 '.
%6 assume thRt the asymmetry will hRve R form
linear in Q2. Kith M the nucleon mass we take

leads to a prediction g = -2 & 10 ' and the %ein-
berg-Salam SU(2) x U(l} unified gauge theory pre-
dicts g=-(3 to 9)x10 ' for sin'8~=0. 33 to 0.20,
Q'= l.2 (GeV/c)', andy=0. 15. Both of these are
smaller than our present errors.

Another experl. ment with R much more Intense
polarized electron source" based on photoemission
from Ga-As and with much improved control of
systematic errors is in progress..Vote added in Proof. Results from this more
sensitive experiment have recently been published

by C. Y. Prescott et a/. , Phys. Lett. 778, 347
(19V8).
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