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The equations of hydrostatic equilibrium for the constituents of a spherical multicomponent fluid derived
earlier are interpreted along thermodynamic lines. An example of a 3-component neutron star of ideal gases
is worked out, with the internal charge density and electric field computed.

I. INTRODUCTION

In a previous paper' the general-relativistic
equations of hydrostatic equilibrium for a fluid
composed of different species of charged or neu-
tral particles were derived for the special case
of spherical symmetry. Each species has its own

equilibrium equation coupled, however, to those
of the other particles; the sum is the familiar
Tolman-Oppenheimer-Volkoff (TOV) equation'.
The new "species TOV" or STOV equations were
derived by making the asymptotic energy (or mass)
of the fluid an extremum with respect to variations
in the number densities of the individual species.
A general criterion for electrical neutrality of the
fluid was found.

In a second paper' the theory was applied to a
white dwarf star which is composed of two species
of particles, one positively charged, the other
negatively charged. This example of the theory
was greatly facilitated by the assumption that the
heavy nuclei formed a perfect Bose gas at zero
temperature, thus having zero partial pressure.
As a result, the complete set of equilibrium equa-
tions could be reduced to a single equation in one
unknown function, for which the solution was deter-
mined numerically.

The purpose of this note is twgfold: to interpret
the equations of the first paper on a thermo-
dynamic basis, and to show how the theory can be
applied to cases more general than that of the sec-
one paper. As an example of the latter we use a
neutron star conceived as a mixture of three per-
fect Fermi gases: neutrons, protons, and elec-
trons. The internal structure of a neutron star is
known to be far more complex than such a simple
model; but the procedure outlined here could also
be used with more sophisticated models provided
the local energy density could be given as a func-
tion of the number densities of the constituents
(i.e. , provided an equation of state is available).
As it is, we can obtain the various number den-
sities, internal electric field, etc. , as functions
of the radius.

p,. = a(p c')/an, (2.1)

The metric components involve gpo e' and g„„=e~.
If q,. is the charge on a particle of the ith species
then the STOV equations were found to be

d .
q,.Sr e

4mG
+p, zA. — re ~n p. .

C
(2.2)

where g(r) is the charge integral up to r. These
equations were derived essentially by treating the
energy integral at zero temperature (interpreted
as the mass at infinity) as a functional of the den-
sities ni, and minimizing the respect to indepen-
dent variations of the ni.

To cast the equations into thermodynamic form,
use Eqs. (2.2) and (2.3) of Ref. 1:

4vc 'Gre"(p c'+p)= (X'+ v') .
Then Eq. (2.2) above reduces to
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=q;r 'Se' '. (2.4)

We now use a local relation from thermodynamics'

U= TS pV+Qp (N(- (2.5)

where p is the pressure, V is the volume, U is the
internal energy, and N, is the number of particles
of type i. Divide this by V using

z U N S
p c'= — n. = ~ s= —.

V 7 i V & V

Then Eq. (2.5) above becomes

(2.6)

II. THE BASIC EQUATIONS FROM A THERMODYNAMIC

POINT OF VIEW

As in Refs. 1 and 3 n,- is the number density of
the ith species, p (n„n„.. . )isthelocalmassden-
sity, and p., is the chemical potential excluding
electrical effects:
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p c"p gp, n, =. -Ts. (2.7}

At zero temperature, which we are considering
here, the right-hand side is zero, which means
that Eq. (2.4) can be written as

dM,./dr = 0,
M,. =const, i =1,2, . . . ,

where

(2.8a}

(2.8b)

q, r 'g(r )-e~""&~'dr . (2.9a)

If the electrostatic potential y, (the zero compo-
nent of p, ) and the four-velocity u'= dx'/ds
[whence u'=exp(-v/2)] are introduced, then Eq.
(2.9a) takes on the simpler form

Af, = e"~'p, (r) +q,
= e'"[u;(r)+q;(q'. &') f . (2.9b)

o, M, =go. , u, ,
e' = const.

M, is the generalized chemical potential of the
~th species at T=O, taking into account electrical
and gravitational effects, and interactions between
species. The form in Eq. (2.9b) is familiar in the
literature for one-component systems. ' Equation
(2.8) then states that the generalized chemical poten-
tial of each species in a spherically symmetric sys-
tem in equilibrium at T = 0 is constant throughout the
fluid. ' This is the thermodynamic interpretation
of the first integral of the STOV equations.

Equation (2.8) is an extension of a result found
long ago by Klein. ' Klein found that g«'/'p, . is con-
stant throughout a fluid of any symmetry in ther-
mal eqvijibrium at any temperature. His argu-
menf, is.based. however, on systems of indepen-
dent (i.e. , noninteracting) components, and did not
take into account electrical effects.

Equation such as (2.8) are automatically con-
sistent with the eq~}ations of chemical equ hbrium.
Multiply Eq. (2. ') 4y constants o. ,- ant". ', s'.;m ver i.
If the n,. ' s are chosen such that

(2.10)

e '~'gn, M, =.gn, p,. =.0. (2.12)

This, the classical equation of chemical equilib-
rium, is then consistent with Eqs. (2.8).

That Eq. (2.12) should be valid in any case fol-
lows directly from thermodynamic r easoning.
We shall use Eq. (2.12) later in the paper.

It can be remarked that since Eq. (2.12) is a
restriction on the constants M, , chemical equilib-
rium plays the role of boundary conditions in solv-
ing the STGV equations. But more conditions than
these are needed for a complete solution.

In the remainder of the paper we consider a sys-
tem composed of electrons, protons, and neutrons.
Equation (2.10) says that ck ~)~~

= Q pM(, with Q „~„(left
arbitrary. %e can always choose a„„„,to be such
as to make the right-hand side of Eq. (2.11) zero
at some point r (it will be zero everywhere then).
Hut chemical equillbl lum will I equll e that the val-
ue that does tllls ls Q„c„f= -Ggg~ ~

III. SIMP J E MODEL CALCULATION FOR THE NEUTRON
STAR

Re consider here a simple model of a neutron
star consisting of three ideal Fermi gases in
equilibrium: the neutrons, protons, and electrons.
There are three STOV equations each of the form
of Eq. (4.1) of Ref. 1, or Eq. (2.2) above. Writing
out the metric component exp(-A. ) as 1 —2m(r)/r,
we obtain (primes represent r derivatives)

In this way the electrical effects are eliminated.
Equation (2.11) reduces to the ordinary equation of
chemical equilibrium for a reaction only if the
e,. 's are the stoichiometric coefficients for the
reaction, and the constant on the right in (2.11) is
zero. The stoichiometric coefficents are always
consistent with charge conservation Eq. (2.10), but
they are fixed by the reaction and cannot be ad-
justed to set the constant on the right in (2.11)
equal to zero Ho. wever, the M,. 's in Eq. (2.11) are
the constants of integration of Eq. (2.8) and»e so
far arbitrary. Thus the M,. 's may always be chosen
to make the constant on the right in (2.11) equal to
zero when the n, 's are the stoichiometric coef-
ficients:

r'(1 —2m/r)'~' 1 —2m/r "' r' 2 c'r'

m' = 4wGe ' r'[p + 8'/(8vc'r ')j,
&'=4vr'(1 —2m/r) "'(q, ~i, +q, n, ) .

(3.2)

(3.3)

where i may be "e," "p, " "n." To complete the
equations we need Eqs. (3.14) and (2.6) of Ref. 1:

Equations (3.2), (3.3), and the sum of (3.1) con-
stitute the Einstein-Maxwell equations for the
problem. The remaining independent equations of
(3.1) provide the new information from the STOV
equations.
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n„=g(n„n~),solution of (2.12), (3.4)

where g is some function.
The plan of solution is to solve the i =e and i =p

equations of (3.1) for m and h and then substitute
the results in Eqs. (3.2) and (3.3) to give us two
equations in the two unknowns n, and n~. The solu-
tion of the i = e,p equations of (3.1) for m and 8 is

b+ a'
m =

2 K+ a' (3.5)

Equations (3.1)-(3.3) are five equations in the
five unknowns n„n~„n„,m, and g. It is under-
stood that an equation of state will give us p as a
function of the number densities n&. Also, the p,
are obtained from Eq. (2.1). Thus the system of
equations appears determinate.

Rather than use all three Eqs. (3.1), we shall re-
place the i = n equation with the equation of chemi-
cal equilibrium, Eq. (2.12). This is simpler to use
since it has no gravitational or electrical functions
in it, and can be solved in principle for n„directly
as a function of n, and n~:

The equations are valid in fact for any 3-compo-
nent system with one component positively charged
and one component negatively charged.

The plan for solving these equations is to make
a perturbation expansion in terms of the charge
imbalance, that is, of (n, —nP/n, . The effects
turn out to be so small that even the computers
of today would have a hard time seeing them,
which is why we start by making such an expan-
sion.

Thus in a first iteration Eq. (3.11) is ignored,
and Eq. (3.10) is solved using n, =n&. With the
solution thus obtained the left-hand side of Eq.
(3.11) can be calculated, enabling us to solve for
the right-hand side of Eq. (3.11) which contains
the charge imbalance directly, q, n, +q~n~. At
this point one can check to see if the original
premise is verified, namely that x«1, where
x=(n, —n~)/n, and also that (n, —n~)'(cn, ', i.e. ,
x' «n, '/n, . In the calculations made, these in-
equalities were verified; x was of the order 10 ".

Without going into details, ' we write down here
the energy density for the three perfect gases,

1/2

8 = c'G-'"ra
K+ a' (3.6) p c'=m, c'A, '[f(s)+ e'f(eu)+ 8 'f(8t)], (3.14)

where the abbreviations a, 5, and K-all known
functions of n, and n~, once p is known and Eq.
(3.4) is accepted-are

I

2
9'f Pe 9'elf

c /pe~ —/~PE

(3. t)

(3 8)

5=8nGc 'r'(p„c'—p. ,n, —p~n~ —p, „n„). (3.9)

The constants a, 5, and K are dimensionless; a
and 5 are very much smaller than one.

Substitution of Eqs. (3.5) and (3.6) into Eqs.
(3.2) and (3.3) brings the basic equations to solve

d b+a', Kb
=+1+a

dx K+ a' K+ a' (3.10)

d» K-5
dx K+ a' (3.11)

j 8' Gc J' "0~c r

y, =8vG't'c 'ar'(q, n, +q~n~) .
(3.12)

(3.13)

It ean be seen by eliminating the general-rela-
tivistic effects that Eq. (3.10) corresponds to the
usual equilibrium equation, whereas Eq. (3.11)
would vanish if charge neutrality oeeurred. The
purpose of the above manipulations mas in fact to
obtain equations that had this significance.

In principle Eqs. (3.10) and (3.11) could be
solved numerically for any given equation of state.

/ t,m, ce = (m, /m )', 8=(m, /m„)',
and the variables are

s = (3n, X, '/8v)'t',

u = (3np x, '/8v)'t',

t = (3n„z,'/Bv)'t' .

(3.16)

(3.1 t)

The equation of chemical equilibrium (2.12) for the
free gases gives us t in terms of s and u:

8t = 8[(u+e ')'t'+ (s+ I)'t' ]' —1 . (3.18)

From here on the calculation consists of sub-
stituting these expressions into Eq. (3.10) identify-
ing negligibly small quantities (i.e. , setting n,
= n~, or s =u), and solving for s, then substituting
the results in Eq. (3.11) to compute the charge.
The boundary conditions at the origin are that
s{r=0) is arbitrary, and s'(r= 0) = 0. Thus the
solutions will have one free parameter, s(0), or
p (o).

IV. RESULTS OF THE CALCULATION

The results obtained for the 3-component neutron
star are displayed in five figures. Figures 1 and
2 refer to functions (total mass and radius of the

where f(s) is the function

f(s) = v((2s' '+ s' ')(s+1)' ' —ln[s' '+(s+1)' ']},
(3.'I 5)

and the constants are
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FIG. 1. Star mass as a function of central density.
Circles represent calculation without charge effects.

FIG. 3. Charge integral as a function of central den-
sity.

star) that are not expected to change much as a
result of adding the electrical or multicomponent
effects into account. These figures show the pres-
ent calculation (solid line) compared with the un-
charged model (circles). To within computational

24

1022

error these are the same. The two figures are in-
cluded to demonstrate the insensitivity of these
quantities. The same type of result occurred in the
while dwarf star. '

Figures 3, 4, and 5 refer to quantities that are
directly affected by charge: the total charge of the
star, the central charge density, and the electric
field. Figure 3 shows the tota, l charge as a func-
tion of central density. This also resembles the
corresponding function in the white dwarf star.
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FIG. 2. Star radius as a function of central density.

Circles represent calculation without charge effects.
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FIG. 4. Central charge density as a function of cen-
tral energy density.
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FIG. 5. Electric field as a function of radius for vari-
ous central densities. The dotted line is the boundary
radius for the smallest central density, thy dashed line
is the same for the largest central density.

The total charge of the white dwarf star is, how-

ever, uniformly about a factor 10 larger than that
of the neutron star. The maximum charge for the
neutron star is about 12 x 10"esu (about 50 C),
and is about 1.2 x 10" esu for the white dwarf.
This maximum is a very small charge consider-
ing the mass involved. The charge density,
n~ —n, , inside the star has been verified to be ex-
tremely small compared to the number density,
Pn;. This small charge density is what is needed

to malntaxn eqm. bbrium.
In an effort to get some feeling for the possible

charge effects on this model the charge density at
the origin was plotted as a function of the central
density in Fig. 4, and the electric field was plotted
in Fig. 5 as a function of radius for several cen-
tral densities. The central densities were ex-
tended to unphysically large values to see how the
equations behave asymptotically.

Figure 4 shows that the central charge density
increases directly with increasing central mass
density, and increases linearly with a slope of —,

'
beyond a central density of about 10"g/cm'.

Figure 5 shows the general behavior that the
electric field increases from the origin, reaches
a maximum somewhere close to but below the
radius, then falls off until the radius is reached.
Then it varies as 1/r' into free space. As the
central density gets larger the maximum of the
electric field moves toward the center of the star.

The lower density (physically reasonable) neu-
tron stars are characterized by the 4 x 10"g/cm'
central density plot in Fig. 5, the dotted line in-
dicating the radius of the star. The asymptotic
limit is approximated by the 2 x 10"g/cm' cen-
tral density plot in Fig. 5, the radius indicated by
the dashed line. In the latter case the field vari-
ation from its maximum out to the radius goes as

-( x/2)

It has been suggested" that electron-positron
pair production should occur for electric fields
greater than about 3 x 10"esu/cm'. Such fields
can in fact be reached very close to the origin in
the models calculated near the asymptotic limit,
"very close" meaning at distances of the order of
10 "cm from the origin. Thus the densities and
distances required take us out of the physcially
meaningful regions. Nevertheless, extrapolation
of the model to high central densities does suggest
that charge effects will be pronounced in regions
of high mass density.
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