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General expbcit expressions for the spectral intensity of the radiation emitted by a charge crossing the
interface between two dielectric media have been derived by a source-theoretical method: This direct
approach obviates the angular integrations. Below the Cerenkov threshold the results yield a compact
formula for the transition radiation spectrum which is valid for all velocities {& c) and in all spectral ranges
where dielectric functions can be defined. Above the Cerenkov threshold, new contributions appear in the
spectrum: These may be interpreted as interference terms between transition and Cerenkov radiation. The
nature of this interference and its experimental imphcations are considered in some detail.

I. INTRODUCTION

In many cases of practical interest there is no
possibility of confusing an interface effect such as
transition radiation with a volume effect such as
Cerenkov emission. However, it was emphasized
many years ago by Frank' that, for very-high-
energy particles, transition radiation is not local-
ized at the dielectric interface, but rather occurs
over a. "formation length" I,, which can assume
macroscopic values. Specifically for a medium
with index of refraction n, (&o), the formation length
corresponding to the emission of transition radia-
tion of wavelength g is given by'

4(d

[&,(~)P]' ~ '

where +=e'/(4vsc) = —', and p=v/c. The corre-
137

sponding number of transition-radiation photons
is given by [cf. (3.21a)]

(1.3)

and the corresponding emission, originating from
the dielectric formation zone l„will actually be
comprised of a mixture of Cerenkov and transition
radiation. " It is easy to check that this mixing
ean give rise to nontrivial interference effects:
The differential photon number spectrum for
Cerenkov radiation by a charge e traversing the
formation length /, is given by

(1.1a)
Q dQ)

~&t, - —5'g, {&,(&) ~ fi) (1.4)

2

1 km for E =100 GeV.mc' (l.lb)

In accelerator applications this relativistic en-
hancement often appears in conjunction with large
values of X {a1cm) corresponding to the emission
of microwaves. Under these circumstances tran-
sition radiation becomes so "delocalized" that it
merges into diffraction radiation. ' '

High energies also lead to problems in identify-
ing "pure" transition radiation on the dielectric
side of an interface. Under these conditions the
Cerenkov threshold criterion

n, {&u)v/c & 1 (1.2)

will be satisfied for some range of frequencies

where t) is the speed of the charge. In the special
case of an ultrarelativistic electron (E»mc') inci-
dent on a vacuum-dxelectnc surface, the forma-
tion length required for the radiation of an optical
photon may be enormous, e.g. , for 4- 10 ' cm and

n, = 1, (l.la) implies

and clearly whenever the parity

(ug) '- 8,„-0(1)

prevails for the auxiliary function p„weexpect
competition between the two radiation mechanisms.
The detailed calculations confirm the existence of
these interference effects and also lead to simple
closed-form expressions for the transition ampli-
tude p„.

Previous discussions of the interference between
Cerenkov and transition radiation have been ham-
pered by technical difficulties stemming from the
complicated space-time structure of the electro-
magnetic fields. For instance, if one treats these
processes by cia.ssical boundary- value methods
it is easy to identify transition radiation by ex-
pansion in terms of asymptotical. ly spherical
waves, and similarly the Cerenkov components
can be distinguished by their cylindrical sym-
metry; however, the residual field terms which
describe the interferenee effects are analytieaBy
intractable. ' Analogous problems appear if the

1S
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fields are represented by Fourier integrals: The
general quadratures are too complicated, and
simplifications have to be imposed with special
devices such as saddle-point approximations. '
These methods lead to elegant rederivations of
known results such as the high-energy behavior
of transition radiation, "but they do not appear
to be sufficiently flexible to handle interference
effects or allied phenomena such as subthreshold
Cerenkov radiation. "

In contrast, computations utilizing source theory
have already proven their value in describing
synergic radiation phenomena arising from a
combination of synchrotron and Cerenkov pro-
cesses. ' In the present paper we shorn that these
techniques can easily be extended to include tran-
sition radiation as mell as interference effects
between Cerenkov and transition radiation. Since
the angular integrals are bypassed in this approach
me obtain explicit results for the spectral intensi-
ties. As a further consequence, special cases cor-
responding to nonrelativistic and relativistic
limits, subthreshold and superthreshold Cerenkov
effects, and various dielectric interface combina-
tions can all be considered within a unified frame-
work. In analogy mith results obtained previously
for synchrotron-Cerenkov radiation, " the inter-
ference between Cerenkov and transition radiation
can be utilized in "separated function" counters
where the overall radiation rates and the energy
sensitive thresholds are controlled by distinct
combinations of dielectric functions.

The general source theory formulation of the
problem is given in Sec. II. The Cerenkov and
transition-radiation spectra are derived in Secs.
IIIA and IIIB. Various limiting cases of transi-
tion radiation are considered in Sec. III C. The
interference effects and their experimental im-
plications are discussed in Sec. IV.

II. GENERAL EXPRESSION OP CERENKOV-TRANSITION
RADIATION

A. General Formalism

It is convenient to begin by recalling some es-
sential elements of source theory. The quantity
of basic interest is the vacuum persistence am-
plitude" "

which corresponds to the probability amplitude that
during the action of an electromagnetic current, or
source 4", the vacuum remains undisturbed. The
action W which appears in (2.1}is given by

1
W=2, (dx)(dx') 4"(x)D.(x,x'),„2"(x'}, (2.2)

where D,(x,x'),„denotes the photon propagator
from x' to x. The vector potential A„(x}is de-
fined in terms of the response of the system to a
small perturbation of the sources, i.e.,

5W = —, (dx) 5Z'(x) A „(x); (2.3)

and this implies

A, (x) = (dx')D, (x,x'}„„4"(x') . (2.4)

Consequently the action (2.2), can be rewritten
in the form

W=, (dx)Z (x)A„(x}. (2.5)

"f(~) . (2.7}

As emphasized in the Introduction this approach
has the advantage of detouring the angular inte-
grations and allows us to compute the energy
spectrum directly from the imaginary part of the
relevant components of the action (2.5).

B. Calculations

The simplest idealization of the physical pro-
cesses leading to Cerenkov-transition radiation
corresponds to a charge e moving with constant
velocity v normal to the plane interface of two
semi- infinite homogeneous media characterized
by the scalar dielectric functions «, (&u), a =1,2.
%e shall neglect absorption and eo ipso all con-
ductive mechanisms involving allied effects such
as diffraction radiation; these assumptions also
imply" Ime, (~) =0. It is natural to choose a co-
ordinate system with the interface located at the
z =0 plane; the velocity of the charge is then paral-
lel to the z axis. Finally, if we ignore any spatial
structure of the source [see, however, Sec. IV
(4.10a) and (4.10b)], the current for a point charge
can be represented in the simple form"

Z"(r, f) = cop "&(x)5(y) 5(x- vf),

where

p'=(1, 0, 0, 8), p=v/c.

(2.8a)

(2.8b}

The explicit construction of the action (2.5) then

Finally, the vacuum persistence probability is
given by

I«,I0-)'I'=e» I-(2«»mW~ (2.6)

from which me infer that the total probability for
photon emission is simply (2/h)lmW. The energy
radiated per unit frequency interval, or intensity
spectrum I(cu), is then related to the action by
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depends on the solution of Maxwell's equations
with appropriate boundary conditions for the vec-
tor potential A„.In rationalized cgs units, the
macroscopic Maxwell equations for a material
medium are

V D(r, (g) = p(r, (g), (2.9a)

V x H(r, (0) = (1/c) J(r, ~) —(i(2)/c)D(r, (2)), (2.9b)

V B(r, ~) =0, (2.9c}

V x E(r, u)} = (i(o/c)B(r, (d}, (2.9d)

where we have introduced the temporal Fourier
transform

(2.10)

For simplicity (and practical relevance), we ignore
the magnetic permeabilities so that H=B. The
dielectric effects enter via the constitutive rela-
tions"

It is now convenient to incorporate the cylindrical
symmetry of the problem by carrying out Fourier
transforms with respect to the x andy coordina, tes,
i.e., the r, components:

A;(, e)=f
(

)', A;(e, k„*)ei'" . (2.(5)

If we combine this representation with (2.14a) and
utilize the corresponding form of the current
(2.8a) and (2.8b), we finally obtain the basic equa-
tion for the Fourier components of the vector po-
tential, viz. ,

CP (d

dz c2

a
Tt

P e (jCO/V)E
e „&.-1
v ~a

a=1, 2. (2.16)

It is then a straightforward matter to verify that

D(r, (d) = a(z 2 a)E(r) (2)), (2.11a)
e e,- 1A'(te k z)= 5"— ' 5')e'"'

v]a a
(2.17)

where, for the single interface case considered
here,

is a particular solution of (2.16). The new sym-
bols which enter here are defined by

ek((d) for z & 0,
E Zz (2)

a, (~) for z &0.
(2.11b) kz=k ~+k k, =(d/v (2.18K)

Equations (2.9c) and (2.9d) can, of course, be
identically satisfied by introducing the potentials
A and (f) (= A'):

2

f =k'- —c —i6c' a=1,2. (2.18b)

B(r, ~) = V x A(r, &g),

E(r, (d) = (i(d/c) A(r, (d ) —VP (r, ~}.
(2.12a)

(2.12b}

a =1,2, (2.14a)
where

J"= (cp, J), )Iu = (1 0)

and g"" denotes the metric tensor

&oo 1 &og 0 &yr

(2.14b)

(2.14c)

The gauge freedom then allows us to choose the
Lorentz gauge which satisfies the condition

V ~ A, (r, (g) —(i(g/c)z, ((g)g, (r) (g) =0, z 55 0,
(2.13)

where the indices a = 1, 2 correspond to the half-
spaces z& 0 or z & 0 in accordance with (2.11b).
Substituting (2.12a) and (2.12b) into (2.9a) and

(2.9b) and taking into account the guage constraint
(2.13) we obtain two equations for the vector po-
tentials A;(r, ~):

[V'+ ((u'/c') e,]A,"(r, ~)
1=- —[g""+[(e.—I)/e. ]n "q"}J„(r,~),

Since $, appears in the denominator of (2.17) it is
obvious that the dielectric light cone condition $,
=0 could be troublesome in subsequent integra, -
tions; however, the a,ddition of the complex in-
crement i6(6-0+ -} is required by the quantum-
mechanical formulation of the expressions" (2.1)
and (2.2).

The general solution of (2.16) can be written in
the form

A;((2)ek, )z) =a" —e 'kk'+A2)'(&zk»z), z &0

(2.19a)

A;(~)k»z) =b" —e'" ' Ak,"+( k»(dez) zz&0,

where

(2.19b)

[((da/c') z, —k,']'(", k,' & (~'/c') e, , (2.20a)
a

~

~i [kk' —((u'/c')e, ]'i', k, ' & ((2)'/c')&, . (2.20b)

The exponential factors e""~' which appear in the
inhomogeneous terms satisfy the physical condition
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(2.21a)

that the A," describe outgoing waves in time
(Ausstrahlungs Be-dingang"}, and are consistent
with the constraint that the A," remain finite in
the limits z -+~. The coefficients a" and b" are
functions of and k, '. Physically they corre-
spond to the Fourier components of the Rontgen
current which is induced at the dielectric inter-
face by the external current (2.8a)." These func-
tions are to be determined by the boundary con-
ditions that A" and D, are continuous across the
interfa, ce at z =0, as well as the Lorentz gauge
condition (2.13). One can easily check that the
continuity of E, and 8, a,t z = 0 does not yield any
further constraints.

From the Lorentz gauge condition, we obtain

k, a., —s,a, —(u)/c)e, ao=0

A, ((o,k„z)=a' —e "&'+Ao((u, k, , z), (2.27a, )

A~o(oo, k~, z) =a, —e '"~'+A', (~,k„z), (2.27b)

where a' and a, are given by (2.25a) and (2.26a},
z, by (2.20a) and (2.20b), and

e 1
Ao((o k z) = —e "+

1 (2.27c)

-1 1 «v 1 v
A = + —K, ——1+—K,

K1«g + Ka«1 $2 «P CO

(2.26b)
All of these results can be summarized by noting
that the basic expressions for the vector potential
(2.19a) and (2.19b) can be rewritten as follows:
(i) For z &0, e - e, (oo), we have

k, ~ b, + z,b, —(~/c)e, bo = 0, (2.21b) e 1
A'((u k z) =——e",'1 0

1
(2.27d)

where a' = (a', a), etc. The continuity of A," at the
interfa. ce z =0 then implies

a,, =bi, (2.22a)

a'+ (&,e, )
' = b'+ ($,e, ) ',

a, +p/], =b, +p/(, ;

(2.22b)

(2.22c)

and finally from the continuity of D„weinfer the
condition

e, [((u/c) a, + z,a'] —(k,/$, )(1 —P'~, )

= eo [(Rlc)b, —z,b ]—(k,/$, )(1 —P'e, ) . (2.23)

with $, defined in (2.18b).
(ii) Similarly for z)0, e-, (&o), we obtain

z) —bo ei oc+Aoo(& ~k~ iz (2.28a)

(2.28b)

e 1
Ao((u k z) = —e'~~' (2.28c)

A,'(u&, k, , z) =b, e'"o'+A—,'(~,k„z),
where b' and b, are given by (2.25b) and (2.26b),
z, by (2.20a) and (2.20b), and

Equations (2.21a), (2.21b), and (2.22a) may be
combined in the form

e 1
A'(ur k z)= ——e'~ '

p
2

(2.28d)

z,b, + v,a, = (oo/c) (b'E, —aors, ); (2.24)

and therefore we are left with four equations, i.e.,
(2.22b), (2.22c), (2.23), and (2.24), to determine
the four coefficients a, a„b,and 5,. Since the
basic expression for the action is proportional to
J"A, , (2.5), and in the present instance J" P'-
—(1,0, 0, P) [cf. (2.8b)], it is obvious that the per-
pendicular components a., and b, do not enter the
calculation (see below). The solutions for the
relevant coefficients then are

with $, defined in (2.18b).
The space-time representation of A" can then

be constructed by combining the Fourier trans-
forms (2.10) and (2.15):

A~(r, t) = -dz . (dk )lid~ I e$(k ~ r)qAu(~ k z)
2m (2vr)'

(2.29)

Finally, substituting (2.8a) and (2.29) into (2.5), we
obtain an explicit form for the action, viz. ,

a' =-s,A, , a, = ((o/c)a, A, , (2.25a)
W= — dtdxdydz 6(x}6(y)6(z —vt)P,

b'= z,&, , b, = (~/c)e, A, ,

where the A factors are given by

(2.25b) x ', —exp [ inst+i(k ~ r)-, ]A,"(~,k, ,z) .
(2.30)

and.

1 1 «v 1 v
A = 1 — K~

Kl«2 K2«1 - kl «1

(2.26a)

This can be more succinctly expressed as

e (d k, ) -d(oW= — ' — dze '~ p A ((i} k z) .
2v (2w)' 2v

(2.31';,
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III. EXPLICIT RESULTS

A. Cerenkov Radiation

It is characteristic of source theory that the
potentials A" enter in the action linearly when it
is expressed in the form (2.5). It is therefore
natural to split the action into two parts

W= W, (A ) + W, (A ) (3.1)

The spectral intensity of Cerenkov-transition
radiation can then be computed from the imaginary
part of W, by utilizing (2.7).

corresponding to the divi. sion of A" into homo-
geneous (A") and inhomogeneous (A") components.
For Cerenkov-transition radiation, this division
can be read off from (2.19a) and (2.19b) with A;
=a'(e/v)e '"~', etc. Since the homogeneous com-
ponents A" are independent of the R5ntgen cur-
rents at the dielectric interface, it is plausible
to associate them with Cerenkov emission. Indeed
me mill first demonstrate that the spectral inten-
sity derived from Wc(A „)coincides with the stan-
dard Cerenkov spectrum. Specifically from
(2.27a), (2.27b), (2.28a), (2.28b), (2.31), and
(2.32), we obtain

lim, ,', — «e '~P [-A', (u&, k„z)+PA'((d k s)]

+ dec' P(-A', (ra, k„zl+))A,'(ro, f„g)]).
0

(3 2)

In the second form, we have recognized that the
infinite thickness of the dielectric medium, as
reflected in the limits of the z integration, is an
idealization of the more realistic physical situa-
tion in which the dielectric medium ha, s finite
thickness, large compared to the wavelength of
the radiation. It is easy to check that this ex-
pression diverges linearly with L. This behavior
is consistent with the identification of ImR' with
the total energy dissipation —which of course is
infinite for an infinitely long Cerenkov radiator.
For a finite radiator with f. ~z ~+I.-, (3.2) be-
comes

2 J
fc((u) =

(() —a, ')() ), ,'* ——,())*r, —)))

+ (p' —a, '1() ().,' ——, [p'a, —))

(3.5)

where the 5 functions appear in virtue of

lim .
&

=P(1/x)+iw&(x).. x-s~

e' (d k, ) - d(0
2c' (2w )' „2v «5 '[I (P' ) ']-

The remaining integrations are trivial and lead
to the mell-known Cerenkov spectrum

+ 'd*(, '[)-())'a,)']),
(3.3)

where me have inserted the explicit forms of A,"
from (2.27c), (2.27d), (2.28c) and (2.28d). Taking
into account that &,(u) is an even function of w for
a nonabsorptive medium, "and making use of
(2.18b), we obtain

2]]'s', (2w)' k' —(a'/c') e, —]t 5

g2

):*—(w'/c*) a, —'& ) '

(3.4)
The corresponding spectrum can then easily be
identified by comparing (2.7) and (3.4):

8 L
1

+ I -P, „,]7[P'n, '((o) —1], (3.7a)4 tl, ~(0)

mhere me have reintroduced the indices of refrac-
tion

e, ((u) = n, '((d )
-=[1+&n, ((o)]',

and indicated the Cerenkov thresholds in both
media with the help of the Heaviside function

+1, x&0,
1(x) = —,

' [1+sgn(x)] =
~
t, o, g &0.

For later reference it is also convenient to note
that the photon number spectrum is given by [cf.
(1.3))
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Z'L, 1
df)tc((u) = o. 1 —,, )7 [p'n, '((d) —1] 8((o) =

-a' ~ Pa, —b'+ Pb,
K1+ kg K2 —kg

+ 1 —,, g P'n, '& —& + ((o- -(c) (3.12b)

d(h(d )

mc' (3.8)
Substituting (2.25a) through (2.26b), and rationalizing
the denominators, we obtain a sum of quadratures
which can be grouped as follows:

where Ze denotes the total charge and the energy
and length scales are fixed by &,mc'= (I/mc)mc'.

B. Transition Radiation

There are a wide variety of experimental con-
ditions corresponding either to low charge veloci-
ties P« I, and/or indices of refraction near unity,
i.e., tenuous media or dispersion in the x-ray
portion of the spectrum [&n((d) S 0], where the
inequalities

@((d) = g, (~)+ 8,((d),

where

(d dk
@,((c) = —.

p c 0 t)(Kge2 + K2t~)

kg (e2/eq) —K)K2(1 —p e))

—k KK(1 —)lf))

(3.13a)

(3.13b)

P'n, '((d) & 1, a = 1, 2

are satisfied and the Cerenkov terms (3.7a) vanish
identically. Under these circumstances we are
justified in characterizing the contributions of the

A

inhomogeneous action term, ImW(A„), as ' pure"
transition radiation. Formally this quantity is given
by an expression analogous to (3.2) except that now
A" is replaced by A" everywhere; the specific
forms of the inhomogeneous terms can then be
read off froni (2.27a), (2.27b), (2 28a), and (2.28b).
The resulting action describing pure transition
radiation is

(3.9)

co
dz e "" '")"(-a'+pa, )

2& -L

(3.10)

In this case one can verify that the z integrations
are una. mbiguous [cf. (2.18b) and the Appendix] and
lead to'"

and

(d ~ dkg
8, (u)) = —,P'c

() $,(x)~, + &,z, )

),',*(&,/a, ) —,.() —))*r,)) () )),)

It is easy to check that8, can be obtained from 8,
by the interchange ay c2 moreover, both terms
are invariant under the "velocity reversal" P- -P.
These symmetries are slightly stronger than re-
quired by the obvious physical condition that the
total energy dissipation in transition radiation
remain invariant under the dual interchange cg

P ——P. 'These features of course do not clash
with the asymmetry of the angular distribution of
the radiation which appears at relativistic energies.

Although the quadratures indicated in (3.13b)
and (3.13c) are elementary, there are a great
variety of special cases. %ithout loss of gen-
erality, all the interesting points of the remain-
ing computation can be illustrated by choosing

,e&„zadnspecializing (3.9) to
- d(() (d k, ) —a'+ Pa, b'+ Pb, —
„2v (2z)' x, +k, x, —kg

1 —p'e, ((d) &1 —p'e, (~)&0. (3.14)

(3.11)

As before, the spectral intensity can be deter-
mined by comparing (2.7) and (3.11): It is con-
venient to write this in the form

Since we are only interested in the real parts of
(3.13b) and (3.13c), and since x, and x, can both
become imaginary for sufficiently large values of
k~', we begin by decomposing the region of inte-
gration into three contiguous segments

2

f„(~)=4, Re& ((u),

where [cf. (2.18a)]

(3.12a)
(3.15a)

which are defined in terms of the following in-
equalities:



region I:

0 «0,' «((d'/c') &, ,

region II:

region III:

((o2/c2)e2 «0, '- ~.

(3.15b)

(3.15c)

(3.15d)

region I:

region II:

f/C(-IK2 =y X2

region III:

fx, /x,
f
=y.

(3.16a)

(3.16b)

(3.16c)

In each region it is convenient to readjust the
variable of 1ntegratlon by a distinct transforDla-
tion [cf. (2.20a) and (2.20b)]:

After some elementary rearrangement, the inte-
grals (3.13b) and (3.13c) can then be reduced to
the form

p2
2 e21 a(a + 5) +x(l + ac)

Rel, (d) =P' dx (a' —x)(h+ x)(l+ cx)

«2* "„«*,"*, «* «((+«)+(o-«')/««(( ~ ««)+(«-«'))
2 1 —V' (a' -y')(1+ cy') 1+cy' '

5 +y'

«(«-«)-«(«+«) «(«' —«) —«(«'+)))
Re& (d =P' 'dx 1-x (5 +)x( a-2)x1+cx + 5+x

a (a + 6) + (1+ ac)y
1-y' (a 2y')(5+y') 1+cy' (3.17b)

One can easily verify that the y integrals stem from region I and the g integrals from region II. The con-
tributions from region IH drop out because our initial, restrictions (3.14) force them to be purely imagi-
nary. The new auxiliary quantities that appear in (3.1 ia) and (3.1'Ib) represent the following combinations
of parameters:

e2„=z,(&o) —&, ((u)& 0, a=e, (u))/e2((d), I/=-1+ P2e„, c=-(1+P2e„).
The remaining quadr atures are elementary and lead to the folio&ring results:

6 ( )
p ele2 [p (e1+e2) ]g ( ) e -1/2 (e 1 P2)i«(e )

X,X2 &, +a~ '~

2[ P2(z, + «2) —1] 2(l + P2e21)[P2(e, + e2) —1]

2(1 p'e, + p'e-, e,)&, )
2(1-P'~, +p'e, e, )& (' ' ~3«2y ~1 + 2 2

P f21X1

(3.16)

(3.19)

X =Q +6~ —p 6 Q=~ (3.20a)

(3.20b)

&+P~ '"
k: (e )=—ln —' —

—,—, , a=1, 2,2 0 2P ] Pg ~f

(1 P2e )1/2 (1 P2(«)1/2+ pe 1/2
22(e„e2)= P" ---ln

( P, "),/,

(3.20c)

A similar expression can be derived for Re82((o)
and one can check g p08geJ'go'Fg that this 18 equiva-
lent to recalculating Re8, (u&) with the interchange

These symmetries are, of course, con-

sistent vrith the invariance properties exhibited
by (3.13b) and (3.13c) et seq.

The final. result for the intensity spectrum of
pure transition radiation then is
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(3.21a)

where"

6't ((d, P; e(, e2) = F ((d, P; f(, C2) + E((d, P; C2, Cg)

and

(3.21b)

( p ) (/2 P C(e2 [P (C~+t2) —'l]~
( )

1 —p &, 2&,p ~ ( )

+ 2
' [(2 —p'&, )g(&,)+ (2 —p'&, )g3((.'„q,)] .2(1 —P'e, )

(3.21c)

As indicated previously this result is constrained
solely by the subthreshold Cerenkov conditions
(3.9) and (3.14). In fact, (3.14) is not an essential
restriction since (3.21a}-(3.21c) can easily be
modified to allow for the replacement 62~6 EI)

P2«1. (3.22)

Under these circumstances (3.2la)-(3.21c}can be
simplified to yield a compact expression for the
differential photon number spectrum, i.e.,

C. Discussion

1. /Vonrelaiivistic Limit

Q
dN „—= —(pz)'E, (a„e,)—, (3.23a.)

It is interesting to consider transition radiation
in the limit

where Ze denotes the charge of the radiating ob-
ject and'

a ~ c * ' ( i ~ e (
"*— '"((e +~)'" ~ ( ( + )]"*)

(3.23b)

This approximation can also be obtained directly
from (3.17a) and (3.17b) by inserting the expansions
corresponding to (3.22).

In the special case of nonrelativistic electrons,
Z-1, and for crude numerical. orientation, it is
convenient to assume &, » q„and d(d/((/ - 1; these
estimates imply F, - m, ((((), or

2n 2 dCO P2
dN - —n ((d)P' —- photons/electron.tr 3& 2 100

(3.24)

F'xperimentally this corresponds to the radiation
first observed by Lilienfeld in 1919.""With
present techniques intensities adequate for beam
monitoring applications can be obtained for elec-
tron energies as low as 10-500 eV and currents
in the range 10-50 p.A." The feasibility of these
measurements of course hinges on the fact that
transition radiation tends to predominate over
optical (Coulomb) bremsstrahlung in thin foils. ' ~'

The analogy between transition radiation and
bremsstrahlung suggests that the intensities are
favorably enhanced for highly charged objects
(Z» 1), and indeed this follows by inspection of
(3.23a). For instance at the Bevalac one can cur-

rently obtain beams of fuily stripped Fe (Z= 26)
nuclei with p2- -', . So if we stretch (3.22) just for
numerical orientation, the optical phf. ; n ', ield
per nucleus is expected to be of the order of

—(pZ)'-6. (3.26)

dN„-F,(a„a,)—- O(1) . (3.26)

Since the formation length criterion (l.la) indi-
cates that very thin (s0.1 mil) Mylar sheets
ought to be adequate radiators, and beam inten-
sities of 10' Fe nuclei per pulse at the rate of
20 pulses per minute are available, there should
be no practical difficulty in checking the validity
of (3.23a) and (3.23b) and the exact formulas
(3.21a)-(3.2lc). Conditions are, of course, even
more favorable for fully stripped uranium beams:
In this case optical transition radia, tion should
yield about 10 photons per nucleus per interface.

In this connection it is amusing to recall that
Alvarez's interpretation" of the "monopole" event'
of 1975 invoked a cosmic-ray object with Z=78
and P -0.66; one can easily verify that the transi-
tion radiation in this case is scaled by
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Since there is agreement that this event occurred
below the Cerenkov threshold (3.9), the "pure"
transition radiation estimate (3.23a) and (3.23b)
ought to be applicable. Depending on the precise
values of (3.23b) for the interfaces bounding the
"fast film" (cf. Fig. 1 of Ref. 28), some optical
photon signals might have been recorded.

In principle the spectrum of transition radiation
can extend far above the optical range. Even a
"slow" nucleus such as „Feat P ~ -,' has an energy
of circa 10 GeV that could be radiated away. How-

ever, the specific nature of the radiation has to
be considered on a case-by-case basis depending
on the structure of the composite functions

F,(e,(ur), z2(&o)). Of course in the UV and soft x-
ray regions of the spectrum absorptive corrections
are important and our results would have to be
modified. " At still higher photon energies (x-ray
region), we have the general estimate [cf. (3.7b)]

~((o) —= 1+ 2an(&u) & 1, (3.27)

where the quantity

&u~(eV) = 28.82( pZ/A)' ' (3.28b)

denotes the conventional plasma frequency: The
paran'etc. .., characterizing the medium then are
the density p(g/cm'), the atomic charge Z, and
atomic number A. In particular for a dielectric-
vacuum interf ace the high-f requency limit of
(3.23a) is

(3.29a)

The total number of high-frequency transition
photons per (nonrelativistic) charge is therefore
negligibly small, i.,e.,

N„(~&.054Z')- 3 x 10 '(ppZ/AZ')'. (3.29b)

Z. Relativistic Domain

These trends are drastically altered under
relativistic conditions. However, the approach
of v to c has to be restricted by the inequalities
[cf. (3.9) and (3.14)]

2hn, (m) & 1 —p2 0, An2((o) —hn, (&u)& 0 (3.30)

to insure that our results still correspond to

and the corresponding limit of F, can be computed
in a model-independent way. Specifically for pho-
ton energies exceeding the characteristic binding
or resonance energies of material media, the in-
dices of refraction are essentially determined by
the coherent Compton amplitude. " This implies

2nn(v) = -~~'/&u', for &u(keV) & 0.054Z',

(3.28a)

"pure" transition radiation without any admixture
of Cerenkov components. It is then easy to show
that our general expressions (3.21a)-(3.21c) re-
duce to

Q dc'
dNt, = —Z—F2(p;e„~2)—, (3.31a)

where [cf. (3.27)]

1 —P' —2nn, (~)
1 —P' —2nn, (&u)

(3.3 lb)

If we specialize still further to a dielectric-vacuum
interface with n. n, given by (3.28a) and (3.28b), we
obtain the w ell-known Garibian limit"

2 (d 2

F2- 1+2 — ln 1+ — —2,
COO (d

(3.32a)

&u(keV)F, (p;e„~,)» 5 x 10-'1" (3.33)

which must be satisfied in order that the transition
radiation may dominate over Coulomb bremsstrah-
lung. One can easily check from (3.31b) and
(3.22a) that this implies severe constraints for
the detection of transition radiation from high-en-
ergy particles.

where u, denotes the "boosted" plasma frequency"

(3.32b)

The corresponding total number of "hard" transi-
tion-radiation photons emitted per charge (Ze)
per interface then is

2
N (~& 0.054Z') 10 '(Zing)' f1= »1tr 3.7Ag

(3.32c)

and in contrast to (3.29b) this exhibits a logarith-
mic increase at ultrarelativistic energies. " An-
other obvious distinc tion arise s from the y p com-
bination in (3.32c): This implies that there is an
intensity trade-off between high energies and
"weak" discontinuities across the dielectric inter-
face 6y f2 One practical consequence is that
multiply-layered transition-radiation detectors
tend to saturate at high energies, "i.e., the spec-
trum given by (3.31b) has an energy independent
limit when P -1. Another experimental limit is
imposed by the competition with high-energy
Coulomb bremsstrahlung. Under conditions cor-
responding to (3.30), there is a nontrivial lower
bound on the thickness of the transition radiators
which is scaled by the formation length (l.la).
This minimum length in turn leads to the criterion
[cf. (3 30)P2
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IV. CERENKOV-TRANSITION RADIATION

We have already seen that the general expres-
'V

sion for the action describing Cerenkov-transition
radiation can be decomposed into two parts [cf.
(3.1)]

W= Wc(A )+ Wr(A ) .

The details of the double-pole evaluation are also
relegated to the Appendix; cf. (A10).

With this formal machinery in hand it is then a
straightforward matter to recalculate the basic
integrals (2.13b) and (2.13c) without the sub-Ceren-
kov restrictions (3.9). There are two cases to
consider. The simplest case corresponds to

In the case when P'(e, —e,) & 1 and e, & e, . (4.3)

P2n, 2(&o) ( 1, a=1, 2, Wr- W„, (4.1a) Under these circumstances the total spectral in-
tensity of the radiation is given by

the only nonvanishing contribution arises from the
second term, and experimentally this corresponds
to "pure" transition radiation. However, in the
converse instance

Pn (&a))&1 for either or both a=1, 2; (4.1b}

dz e-i ~z-x 2)c f(e b + fb)-2 (4 2)

V'

the identification of W~ with "pure" Cerenkov
radiation has only a formal significance. Under
these conditions W~ does not vanish identically-
in fact, it may interfere destructively with W~-
and experimentally we are justified in speaking

V'

of "pure" Cerenkov radiation only to the extent
that the W~ contributions can be suppressed rela-
tive to W~ by the use of radiators which are much

longer than a formation length [cf. (1.5)]. These
idealizations do not apply to very thin foils and
foam radiators —both of which have been con-
sidered as practical candidates for monitoring
heavy-ion beams and detecting high-Z components
in cosmic rays. "

In extending the calculation of W~ to cases where
the Cerenkov threshold conditions (4.lb) are satis-
fied, we encounter a number of technicalities.
Suppose for instance that only one of the inequali-
ties, e.g. , P'e, & 1, is satisfied. Then one can
easily check that the denominator $, in (3.13b) and

(3.13c) passes through a zero in the region of in-
tegration, and this implies that there are both
single and double poles present in (3.12b). These
singularities must be evaluated by prescriptions
consistent with the boundary conditions. We note
first that the "dielectric light cone" condition ($2
= 0) originates with the particula. r solution (2.17).
Tracing this singularity forward to (3.7a) shows
that it gives rise to the Cerenkov spectrum. The
corresponding pole that occurs in the coefficients
a, b~ [cf. (2.25a) and (2.25b)] may therefore be
evaluated according to the prescription given in
(2.18b). The other pole is associated with the de-
nominator v, —k, in (3.11), and this in turn origi-
nates from the z integral in (3.10}. In the Appendix
we show that the appropriate mathematical device
for dealing with this case is simply

1(~)= Ic(~)+I'r" (~),
'V

where Ic(~) coincides with the usual Cerenkov
spectrum (3.7a), and I'z" is obtained from the
previous I„,(3.21a), by employing the absolute
values of the arguments of all the logarithms in
(3.20b) to (3.20d). This simple generalization is
adequate since we are only interested in the real
part of 8, (3.13a), and the additional imaginary
term associated with the pole is irrelevant.

The other case, which is more interesting in
practical applications, arises if the parameter b

introduced in (3.18) becomes positive. Again as-
suming &2& &„one can show that when

(4.4)

b = P'(e, —e, ) —1 & 0, (4 5)

further contributions arise from region III,
(3.15d). Specifically if we trace through the cal-
culations leading to the auxiliary function 4„de-
fined in (3.20d), we find that 2,(e„e,) still has
precisely the functional form given in (3.20d) with
the interchange e, —e„but the object I',(e„e,)
is now given by a different expression, viz. ,

(e, /e2) X/2 X/2

dx E2 —E.~ b

b+ g2

=P [P2(e —e ) —1]

(4.8)

[P ( , — ,) — ] (P, 1)(2 P. ) (4.7)

where X is given by (3.20a).
At this point it i: c,convenient to introduce a new

auxiliary function

Another new feature associated with (4.5) is that
the Cerenkov threshold now occurs in region II of
the integrations [cf. (3.18b)], where ~, becomes
purely imaginary. The basic quadrature (3.19)
therefore acquires additional contributions arising
from the 5 functions of (A9) and (A10), viz. ,
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p~ 1/2+ {1 p2~ )1/2

p
1/2 (1 P2 )1/2 (4.8)

~2 2.5) E1

~l

tl /

where &, —e., = &», and we fix the convention that
when 1 —p2&»&0 [cf. (4.5}]the radicals are
changed to (1 —P2a»)'/2- t(P2a» —1)'/', and the
principal branch of the logarithm is used for
evaluation. It is then easy to check that the func-
tional asymmetry between Z2(e„g2) and Z2(a„c2}
(4.6), as well as the new pole contributions (4.7)
can both be concisely represented by 2,"'. Specifi-
cally the total spectral intensity of Cerenkov-tran-
sition radiation above the threshold (4.5) is given
by

0.5-

0.05—

l

l

l

/

/

/

/j

I(v) =Ic(Id)+IIr2I(v), (4.

where Ic(01) still corresponds to the Cerenkov
spectrum, (3.7a} and IIr ' is derived from I„,
(3.21a), by (1) I'eplac111g Z2(E2, &2) by Z2 (&, g2),
for both a, t/= 1, 2 and 2, 1 and (ii) employing ab-
solute values for the arguments of the remaining
logarithms, e.g. , (3.20c).
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0.3 0,5 0.7 0.9 1.0

FIG. 2. Data display extending the q2 range of Fig. l.
Values of c-16 are practicable in Ge for certain trans-
parency windows in the infrared.
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FIG. 1. Characteristics of the Cerenkov-transition
amplitude E(cu) = (~/Aclt) I &, cf. (4.4) and (4.9). The
variation of I: is displayed as a function of p for a num-
ber of illustrative cases. The curve segments bounded

by small circles represent negative values of I'(cu).

These special cases, e.g. , (4.4) and (4.9), give
a good indication of the general features of Ceren-
kov- transition radiation. The essential distinction
vis-a-vis synetgze radiation processes such as
synchrotron-Cerenkov radiation' and Coulomb
bremsstrahlung in condensed media' is that the
Cerenkov spectrum Ic(Id) always preserves its
identity in a mathematical sense even though, as
we have emphasized earlier, its experimental
isolation from 1„(&u)may only be feasible in very
long radiators. For this reason it is convenient
to speak of an "interference" rather than a syn-
ergism between Cerenkov and transition r adiation:
In a strict sense matters are, of course, more
complicated since "pure" transition radiation,
i.e., the I„(~)of (3.21a), is modified to IIr", (4.4),
or Ir", (4.9), depending on the values of P and the
interf ace parameters.

These relations can be clarified by considering
a few numerical examples. For instance in Figs.
1 and 2, we show E(Id) [= (I//hn)Ir] as a function of
P for &, =1 and several values of g. Figure 3
exhibits the variation of E(Id) as a function of e2
for fixed values of P and q. These graphs confirm
that there is a slight logarithmic singularity at
the Cerenkov threshold due to the structure of
Z2 (3.20c). Another feature which can be read
off these graphs is that E(Id) decreases sharply
and becomes negative just above the Cerenkov
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where p„denotes the static form factor

(4.10a)

p, = drp(~r~)e '" ' (4.10b)

0.5—

0,2—

0,1—

=0,8
6=1

p, = Z(kr, ) '~'J», (kr,),3 (2v)'
(4.11)

and the wave number is linked to the frequency
and index of refraction by

k= ((u/c) n(~).

For instance a uniformly charged sphere of radius
r, corresponds to the form factor

0,05—

0,02—

001 ' I

1.1 1,3 1.5 17 19
I I

21 23 2S

FIG. 3. Variation of the Cerenkov-transition ampli-
tude as a function of q2 for fixed p and q&.

threshold. In this sense (4.9) can exhibit a de-
structive interference between the interface and

volume effects. Qf course, our calculations are
constrained by a lower bound set by the formation
length [cf. (l.la) and the Appendix], and this in-
sures that the total spectral intensity f(v) remains
non-negative.

A detailed survey of the experimental possibili-
ties raised by the present results merits a sepa-
rate discussion. After all, there are a variety of

length dependent effects which can modify the
"standard" spectrum (4.9) and lead to the possi-
bility of constructing high-energy particle detec-
tors. There are also exotic but scientifically
sound possibilities for exploiting atomic or nu-

clear resonances to obtain indices of refraction
with sharply defined thresholds in the x-ray re-
gion. ' ' ' Among all these options it would ap-
pear that applications which are linked with co-
herent radiation processes offer the greatest
promise. This coherence was already implicit
in the derivation of (3.23a) since we tacitly as-
sumed that the Z charges were localized within
a bunch (="nucleus" ) of radius r, such that c/ur

'V» ro for all relevant frequencies in the Cerenkov-
transition spectrum. Our (nonquantum mechani-
cal) treatment of Cerenkov-transition radiation
can easily be generalized to include emission
from extended charge structures by. modifying

(3.8}, (3.23a}, etc. with the replacement"

where J», is the Bessel function of —,
' order. In

the point-charge limit kxo 0 we recover the
previous cases p~- Z; however, in the high fre-
quency limit kr, -~, the form factor damps the
emission according to p, -(kr, ) 'coskr, .

We have already indicated that in accelerators
the coherence associated with charge bunching is
manifested in beam loading losses: For instance
if the 20-GeV accelerator at SLAC is operated
with -109 electrons/bunch, approximately 40 MeV
per electron is dissipated in diffraction radiation
during the traversal of circa 86000 iris sections. '
One can easily check thai this corresponds to a
loss of &10' rf photons per electron per iris sec-
tion; and this enormous enhancement over the
nominal orders of magnitude implied by (3.21a) is
clearly due to the collective bunching effects, i.e.,
Z'-10". It is problematical whether there are
areas of application in which this coherent en-
hancement is beneficial rather than detrimental,
but one can speculate that collective Cerenkov-
transition radiation might play a role in coupling
electron or ion energies into target pellets in
fusion schemes. An approximate criterion for
the threshold of coherent radiation can easily be
inferred from (4.11), i.e.,

p-&/3 ( y (4.12)
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In the "Proto 2" e -beam fusion experiment at
Sandia, 1.5-MeV electrons will converge on a
millimeter-diameter fuel pellet: The electron den-
sities in the vicinity of the pellet surface will be
10"cm '. The coherence criterion (4.12) then
indicates charge bunching enhancements of the
order of Z,«'& 10 for Cerenkov-transition radia-
tion in the micron wavelength region of the spec-
trum.
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APPENDIX: SINGULAR INTEGRALS

One of the key difficulties in carrying out the
angular integrations over the differential transi-
tion radiation spectrum is the appearance of
singularities associated with the Cerenkov cone,
as well as the critical and Brewster-Malus angles
at the dielectric interface. " Although the source
theory formulation permits us to detour these
angular integrals, some technical difficulties
originating from singularities remain in the cal-
culation. However, it is easy to resolve these
problems if we relax the idealization of radiators
of infinite extent and consider the radiation occur-
ring over a finite length L. For definiteness we
will consider the case when the dielectric &2 is
above the Cerenkov threshold, i.e., p'e2& 1,
while Ey lies below, P'E.y~ 1 Then if L is large
in the sense kL»1, the only source of difficulty
arises from values of k, in the vicinity of the
zero of $„i.e.,

dp ' -,w) (y~~
a()1

u up u up+ $6

(A6)

which exhibits the double-pole structure latent in
(3.11). The object N is defined by

N = (ur/c)& '~'L =L/&, (A7)

where X denotes the reduced wavelength of the
Cerenkov-transition radiation in the medium. If
we now introduce the formation length constraint
[cf. (l.la)i

L » L —N » 1; (A8)

we can evaluate (A6) by standard means. Specifi-
cally

where f(u) and g(u) represent analytic functions of
u in the neighborhood of u, . The z integral pre-
sents no difficulty, and leads to the expression

CO CO

$, =0; k, '= —,(Pa, —1)& —,a, . (A1) f (1 i(g-u )8) f( )

u —u 0

Qf course, this occurs in a region of k, ' values
for which v2 is real. In the vicinity of this region
it is convenient to introduce an auxiliary variable
u defined in terms of and

k '=(&u'/c')& (1 —u')

so that

(A2)
(1 f(u ~)N) g(u)

(u —u, )(u —u, +i6)

and

~, = ( I
~ I/c) a,'i'u

$2 = (Qp /c )Ez(P E~ + u)

(A3a)
dug (u) 2g (u, ) —i''(u)l
(u uo) l5 + ~0

(A10)

X (p 'E, ' '-u-1'6), 6-0+.
V'

Cerenkov radiation occurs when $2=0, or

P lq 1/2
0 2

(A3b)

(A4)

0

and this implies that up corresponds to the cosine
of the Cerenkov angle. Now the term in (3.11) that
gives rise to the pole (~, —k,) ' after the z integra
tion actually has the form

Equation (A9) corresponds to the standard prin-
cipal-value prescription (3.6), and (A10) repre-
sents the generalization applicable to a double
pole. In particular, the idealization (A8) leads
to the identification

dze '+& "'"=i(K, —k, +i6), 6-0+ (All)

and this confirms that the denominators $, in
(3.13b) and (3.13c) have the structure indicated
in (2.18b).
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