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The PDECC (partial differential equations with respect to coupling constants) formalism is adapted to
derive two, physically equivalent, S matrices for calculating the power spectrum of stimulated radiation
semiclassically, and the power spectrum of Cerenkov radiation either semiclassically or quantum
mechanically (to the lowest order in the perturbation theory). The stimulated radiation resulting from the
interaction betw:en electrons and an incident electromagnetic field (a laser, for example) could have

frequencies significantly upshifted from those of the incident electromagnetic field. This suggests a possible

practical way of generating radiation at higher frequencies than currently available from lasers, as well as
submillimeter radiation from microwaves.

I. INTRODUCTION

Recently there has been a renewed interest in

electromagnetic processes in a refractive medi-
um. This can be attributed at least partially to
the fact that the existence of the Cerenkov effect
enriches the usual electromagnetic processes al-
ready existing in a vacuum. For example, in

addition to the normal (or vacuumlike) electron-
photon scattering, one also expects an anoma1ous,
in the terminology of Frank' (or Cerenkov-effect
mediated), electron-photon scattering, which in

the limit of vanishing matter density disappears
much in the same way as the Cerenkov effect it-
self. In fact, Schneider and Spitzer' believe that
the Cerenkov effect mill mediate the generation
of intense radiation, frequency upshifted, mith

respect to an incident coherent electromagnetic
wave which is colliding head-on with an electron
beam. This process they call SESR (stimulated
electromagnetic shock radiation). '

In this article we arrive at two equivalent S ma-
trices from the physical point of view for treating
semiclassical and quantum (to the lowest order in
e) radiation processes in a medium, using the
PDECC (partial differential equations with respect
to coupling constants) formalism. ~ The resultant
8 matrices allow us to establish a bridge between
the recently proposed source-theory approach'
and more conventional approaches for the treat-
ment of the radiation in a medium. The unitarity
of the S matrix plays a vital role in establishing
this correspondence, which me finally verify in
calculating the quantum Cerenkov effect to the
lomest order in e. On the semiclassical level, on
the other hand, we analyze the possibility of the
generation of frequency-upshifted radiation mith

respect to an incident coherent electromagnetic
wave which is colliding head-on with an electron
beam, as originally proposed by Schneider and

Spitzer. " In this connection we establish that the
actual process can be split into two "branches, "
a vacuum branch and a Cerenkov branch. Of
course, in the limit of a vanishing matter density,
a vacuum branch is the only one that survives.
For each of these two branches, we derive expres-
sions for the frequencies of outgoing radiation, as
well as the corresponding power spectra.

The SESR of Schneider and Spitzer" should
correspond to our Cerenkov branch solution of the
electron-beam-coherent- electromagnetic-wave
collision, except that their calculated frequency
of outgoing radiation does not agree with ours.
This discrepancy we attribute to the fact that they
deduce the frequency from the nonasymptotic scat-
tered electric field, while our frequency corres-
ponds to the asymptotically free radiation field.

In Sec. II the differential equations with respect
to a coupling constant for the 8 matrix and the
interacting fields (corresponding to electrons and
the radiation in a medium) are given. ' The solu-
tion for the S matrix is given in a form suitable
for calculating the amplitudes with any number of
photons in either initial or final state.

Section III is devoted to establishing the connec-
tion between Schwinger's definition of power spec-
trum of emitted radiation with the more usual
definitions. Here the unitarity of the S matrix is
fully employed, and the result is that semiclassi-
cally Schminger's definition is equivalent to the
usual definitions, while quantum mechanically,
however, it is equivalent only up to the lowest
order in the perturbation theory.

The actual calculations of power spectra are
given in Sec. IV. On the quantum level (Sec. IV A)
we treat the Cerenkov effect itself, while on the
semiclassical level (Sec. IV. B) the interaction
between an electron beam and an external electro-
magnetic field is treated.

Section V is devoted to discussion and conclud-
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ing remarks.
In Appendix A some details of the quantization

of a free electromagnetic field in a moving medium
are given. This appendix also contains a brief
discussion of relevant singular functions needed in
the text.

A brief derivation of the change in the electron's
trajectory due to the interaction with an external
electromagnetic field (a laser) is given in Appendix
B.

Appendix C is devoted to derivation by means
of the PDECC formalism of the S matrix, which,
while formally different, nevertheless physically
is equivalent to the S matrix derived in the text.

In addition to using the rationalized Heaviside
system of units, we also set A =@=1throughout
the text. For convenience we also assume an in-
finite medium of unit magnetic permeability ( p,

=1), so that the index of refraction n and the real
dielectric constant ~ are related as n' = ~.

II. THES MATRIX

It has been shown on various occasions that the
differential equations with respect to coupling
constants for the S matrix, interacting fields,
and even *'out" fields can be quite useful. "' For
some models of quantum field theory, they enabled
one to reduce the S matrix to the closed normal
form in free-field "in" operators from which then
the S-matrix elements can be read off quite

straightforwardly.
Although we are dealing here with the electro-

magnetic processes in a medium, the differential
equations for the S matrix and the interacting fields
are assumed to be the same as in a vacuum ':

—S(X) = S(A) d'x 2;„,(x),], d

2;„,(x) = J'„(x)A"(x) .

Relations (1) through (5) are now the basis of the
quantum theory of radiation in a medium. A semi-
classical theory of radiation is one where 4" is a
classical (nonquantized) quantity. This theory
can be easily obtained as a special case from the
quantum theory of radiation.

Now in relations (1) through (3), T will act on
both the fermion (g;„)and photon (A,"„)free-field
operators. Consequently we write'

where 7.'& and T„acton g,„'sand 4,"„'s,respec-
tively. Denoting with S' the S matrix in which only
the time ordering of A,".„'sis carried out, we have

S= TgS'.

Furthermore, introducing a new interacting field
A„'(x)by relation

S'A„'(x)= T„S'A„(x),
we get

SA„{x)= TSA'„"{x)= Tq T„S'A'„"(x) = TqS'A„'(x) .

However, the similarly defined g'(x) turns out
to be equal to P;„(x),

S'g'(x) = T„S'g;„(x)=S'y,„(x),
thus giving

Sg(x) = T~S'g;„(x).
It is not difficult to see now that for S', A„', and

g' = $;„,the following set of differential equations
hold.

—S(X}A„(x)= d'yS(X)TA~(x)Z, „,(y}, (2}
1 d

d
—S'(A)A„'(x)= d'yS'(x)T„A„'(x)g„~(y),

(12)

where ~, the dimensionless coupling constant, is
varied between 0 and 1. T is the time-ordering
operator, A" (x) is the quantized electromagnetic
potential corresponding to the radiation in a medi-
um, and $(x) is the quantized field operator cor-
responding to the electrons (or some other charged
particles, if so desired). Since we introduced the
dimensionless A., the electromagnetic current is
now defined as (with e the usual electromagnetic
coupling constant)

I"(x) = ey(x)y" y(x),

with which 2;„,is given as

2;„',(x) =2'~"(x)A„'(x), (13)

and the fact that 4;„is assumed to be independent
of A, was assumed. The last equation in (12) im-
plies that fermion field f;„(x)can be formally
treated in (7) to (12) as an anticommuting e-num-
ber field. Consequently, in (12) J'„"(x)is formally
a 4-number current, and we can integrate these
equations at once (see Refs. 6 and 9 where similar
situations of a pion field coupled to the &-number
source are discussed):
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A'"(»}=A,"„(x)+Xfd'yD~+P(x —y)J','"(y),

S'(I) =; xp 'Ifd'*A',"(*)d;„(*)

(14)
used.

Finally, utilizing the relationship of D„",to
D(„", and D(p, ' and taking into account that D'„,'(»
—y) = —D(p', (y —») = —D,'„'(y—») (see Appendix A),
in expressions (16) and (18) we can write

x exp i — d'x d'y J„'"(»)Ddr'(x —y}J,'" (y)

(15)
where D~" and DF' are given in Appendix A. In
view of (7), the total S matrix is given as

I

S(A) = T&.exp iA fd'»A'„"(»)J,"„(»):

2
(

xexp i — d'xd yJ', ~ D~~ x-yJ y
I

(16)

The first term in (16) contributes to external pho-
ton lines, while the second term contributes to
the internal photon lines because the normal
ordering (::)applies only to A'„"fields.

III. POWER SPECTRUM OF EMITTED RADIATION

In discussing the power spectrum it will prove
useful to use the identity (see Appendix A)

D"' =0 +-'i D"F (I)

Let us suppose that in (16}the current is a c-
number quantity (now, of course, T& drops out).
Utilizing (IV) we see that the part of the S matrix
containing D"' becomes an irrelevant phase fac-
tor, and it can be left out. This suggests defining
a new S(A) matrix, when J" is also a q-number
current, as

I

S(I)=pt: xp If d'*A ( )d,,( }

A.
2

x exp ——
2

d'» d'y J." (»)D" (» —y}J "
(y)

(18)
and, as seen in Appendix C, it is also unitary.

It is quite clear that S matrices (16) and (18) are
generally different. However, for the processes
which we wish to consider in this article, they
are equivalent. Namely, in Feynman diagrammatic
language, the quantum Cerenkov effect to lowest
order in perturbation theory corresponds to a
simple electron-photon vertex. Unitary S matrices
(16) and (18) clearly should give the same result,
since the terms of the order of X2 do not contribute
to it. As far as the possibility of generating sub-
millimeter waves is concerned, we intend to ana-
lyze it on the semiclassical level, i.e., by using
a, suitable c-number current J "(»), which simply
means that the S matrix (18) (without T~) will be

l d'» d'y J,"„(»)D' (x y)J-'(y)

=2i d'x d'yJ. " x D'„', ~-y J„'y, 19

a relationship that will be very useful in practical
calculations.

A. Power spectrum when J"(x) is a classical current

When J"(») is a classical current, we define
the "excitation" amplitude of a. medium to be [see
relation (16)]

= exp —A' dt I'(t) (21)

which in turn defines the power spectrum P(~, t)
by

I"(I)=f d (22)

We wish to point out that throughout this paper I
is actually independent of t and that f dt I'(t) is
written in place of 2)(6(0)I'. The 5 function at the
origin, of course, always drops out in calcula-
tions. Consequently, P(u&, t) is also t independent.

Now I'(t) can also be defined from a production
amplitude of one photon with momentum k and
polarization a as follows [with d(p(k) defined in

Appendix Aj:

dt I"(t) = g f dc(k) I&k, (»fs(~) lo&l', (»)

where we find

dtI'(t)=tf d' d Ipt;I( —Sld (*id"(I}.
(24)

&0 js(1}fo&
I

iP
=exp i — d'» d'y J „(»)D~P"(» —y)J, (y)

(20)

It is quite clear that

f&ols(~) lo& I= l&ois(z) lo& I.
Excitation amplitude (20) is exactly the same as
what Schwinger et al. ' call the vacuum persistence
amplitude in the language of source theory. Thus
following Schwinger et af. , ' the decay rate I'(t)
is defined through the excitation probability

I &o Is(x) f
o& f

' =
I &o I s(x) f o& f'
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Since J" is a, &-number quantity, the emission
of photons of any momenta and polarizations will
occur in a statistically independent way (see Ref.
9, where the pion production in high-energy col-
lisions with a similar S matrix is discussed).
Thus, probability W for emission of any kind
of m photons is simply the Poisson distribution
function

(~&tete-& tte)

W
m.

where (m&, the average multiplicity of emitted
photons, is

(25)

(26)

From here we learn that definition (21) for the
decay rate I'(t) is always valid no matter what
the strength of the interaction. However, we have
to be aware of the fact that our semiclassical
theory of radiation, described by the above forma-
lism, will be valid only to the extent that the
emitted radiation does not alter appreciably the
source of the radiation (one is ignoring the recoil
suffered by the electrons in the course of emission
of photons).

B. Power spectrum when J"(x) is a q-number current

which in turn again defines the power spectrum
P(@pe t

y
A.) as

(28)

The usual definition of I'(t), however, utilizes
a production amplitude of one photon in a process
e-e+y, with which F(t; &) can be defined as
[«(P) = d'PIF(p) F(p) =(p'+~')'"]

Although, with J"(x) as a ty-number current,
we shall discuss specifically only the Cerenkov
radiation, nevertheless, we wish to see to which
extent the power spectrum via the transition ampli-
tude and the power spectrum defined in the manner
of Schwinger et al. ' coincide.

To arrive at the definition of the power spectrum
in the spirit of Schwinger et al. , we start with the
"elastic" electron-to-electron amplitude,
(P', s' ~S(X) ~Pp s), where P, s and P', s' are the mo-
menta and polarizations of the electrons in initial
and final states, respectively. Now, in analogy
to (21}, the decay rate I'(t; A) in the manner of
Schwinger et al.' is defined as

E l(p', 'Is(x)lp, l*=(K I(p', 'Ip, )I')
4 S

x exp — dt I'(t; X) t (2'l)

Z&p, lp, )f dtr(t;x)

der P')der k)

xp ~(p', s', k, a~s(x) —1(p, s&('. (29)
S,g, tX

What we wish to see now is to what extent relation
(27) is consistent with (29). First of all, the
unitarity of the S matrix implies

[S (A) —I] + [S(A) —I] + [S t(A) —1][S(A)—1]= 0 .

(30)

Now according to (27),

(p, s ([S'(~) —1]+[S(~)—1])p, s&

=(p, Ip, ) jexp —f der'(t; x) —( I, (sl)

while according to (29),

(p, s [S'(X) —1][S(~)—1] i p, s&

=(P, s iP, s&fdt I'(t; t()+( ), (32)

where the terms denoted as (
. ) have inter-

mediate states with at least three particles in-
cluding processes such as e —e+2y etc. Clearly,
(31}and (32) are generally going to be consistent
with (30) only to lowest order in perturbation
theory, since the terms denoted as ( ) are at
least of O(Ad). This then means that definitions
for I (t; X) in the s'pirit of Schwinger et al. ' [re-
lation (27)] and the more usual definition (29) are
the same only to lowest order in perturbation
theory.

To lowest order in perturbation theory it is ir-
relevant whether S matrices (16) or (18) are used,
since only the ma, ss-shell part of the photon propa-
gator, D„'„contributes. In this sense, we could
say that the Cerenkov effect (to lowest order in
perturbation theory) is an on-mass-shell effect.
The theory, however, which reproduces the S
matrix (18) regardless of perturbation theory
considerations is described briefly in Appendix
C.

IV. APPLICATIONS

With the theory thus far developed, we find it
suitable to describe the "quantum" Cerenkov ef-
fect [with J'(x) as a (I-number current] and the
stimulated photon emission [with J"(x) as a c-
number current]. As argued in the preceding
section either of the S matrices (16) or (18) can
be used for calculations of these processes (pro-
viding that the quantum Cerenkov effect is of in-
terest to us to lowest order in perturbation the-
ory)
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A. The quantum theory of Cerenkov radiation (n' —1)&d

nv &1+ (37)

—6&4)( p p k)

x u( p ', s ') y 'u( p, s)g, (k, a) . (33)

Taking into account (see Appendix A)

Q q, (k p c&)e„(k,n.) = ~,„(k)

and evaluating the appropriated traces of products
of y matrices, we get from (29)

1'= fd'kk, .(k "k,k,))k„,(k)P'P' (P k))
«E p

x 5(k' 2P k}, (34)

where n = e'/4v and the 5&, ) function and q'" are de-
fined in Appendix A. Taking the refractive medium
with the index of refraction n to be at rest and de-
noting k' with &e (&d &0), we have (see also Appendix

A)
&)'"k „k„=k'+ (1 —n')&d',

'kP

In deriving the power spectrum of Cerenkov
radiation to lowest order in perturbation theory,
we could start with I' either from (27) which we

defined in the manner of Schwinger et al. ' or from
(29) which is a more usual definition. We will find,
however, relation (29) to be more practical for
calculations of the power spectrum since it allows
us to utilize the trace properties of various prod-
ucts of Dirac y matrices.

The S-matrix element entering into (29) is
(where we take X=1, now}

(P',s', k, &r
I

S - I
I p, s}

~n(~) -11 «1
E (39)

is well satisfied. Consequently, the quantum cor-
rections in the s&luare brackets in (38) are negli-
gible, reducing (38) to

1
P( )= k (1- n v

(40)

which is simply the semiclassical expression for
'kP'

the power spectrum of Cerenkov radiation due to
the classical current

So far we have not said much about n. In fact, it
is easiest to assume throughout the derivations
that n corresponds to an isotropic medium and that
it is independent of &. At the end one may then
specify how n depends on 8 and ~, and then try to
evaluate the integral in (36). If n is independent
of 8 (isotropic medium), (36) reduces to

P( )= I1 —,, 1 ( —1)—1 2 (d

n'v' E

(1 —n') (o'
( )4 E

where we still may assume n to depend on ~ (the
case of dispersion).

Our result for P(v) is exactly the same as the
one derived by Sokolov. " Schwinger et al. ,

' how-
ever, invoke approximation (&)~E() «1, so their
result does not have the last term in the square
brackets of (38). In all known applications of
Cerenkov radiation, however, one finds that

q ~„Pt)"+P k = p(1 —cos'8)+— J(x, t) = ev5(x —vt),

J'(x, t}= p(x, t) = e5(x —vt) .
(41)

where 8 is the angle between momenta of the in-
cident electron and the radiated photon. With

this, (34) reduces to

I = vn d& d cos8 1 —cos'8 +
(n'-1)(o'~

u&0
2V2E2

(n' —1)(dx 6 cos8 ——1+
nv L 2E (35)

where v is the velocity of incident electron. From
(35) the power spectrum is

P(&d) = ve&(kpf d cos8 (1 —cos'8)+
(n' —1)(u'

Expression (40) would follow either from (21) or
(23) utilizing (41) and, of course, (22}.

Now on the semiclassical level we have derived
that the mean multiplicity of emitted photons [re-
lation (26)] is (m)= fdtI'(t). Since I' is indepen-
dent of t, (m} turns out to be infinite if the inte-
gral is evaluated over an infinite time interval.
However, the emission of photons lasts only while
an electron is passing through a dielectric medium,
which is, of course, finite. Thus, if a path trans-
versed by an electron with an average velocity v

is l, then the time T during which photons are
emitted is

cos8 ——1+ . 361 (n' —1)&d

nv 2E

From (35) or (36) we immediately read off the
usual Cerenkov threshold criterion with quantum
corrections:

T=tiV,

and instead of (26} we should write

l
(m} = —r.

v

(42)

(43)
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Of course, from a practical point of view we can
approximate V with the initial electron velocity v.
As to decay rate I', its finiteness is ensured by
inequality (37) as long as a medium is at least
weakly dispersive. Namely, condition (37) for a
dispersive medium (n= n(»)] will set an upper limit
to the frequencies that can be radiated. It is
worthwhile noting that (37}a,iso becomes an im-
plicit equation for the threshold frequency. '

To end this subsection, we note that on the
semiclassical level, relation (43) is very useful
in deriving the number of photons emitted by an
electron within a spectral region A., and X,. As-
suming v= v and that n does not change much be-
tween X, and X„from (43), (40), and (28) we get

V

l 1(n))„,= —vo( d(() 1—
l~ 2 'fl V

=2m@i ——— 1—

1 1= 2 mal ———sin'g,
X2

which agrees with the results from Ref. 11.

(44)

FIG. 1. Schematics of head-on electron-laser field
collision for stimulated radiation from Sec. IV B, Ve-
].ocity v of the incident electron and wave vector kp of
the sinusoidal laser field are antiparallel and chosen to
be along the & axis. The constant electric (Ep) and mag-
netic lHp) fields define the polarization of a laser field.
The momentum of radiated photon is denoted by k.

E(x, t) = E, sin((d, t —x k ),
H(x, t) = H, si ( nt (()x k,),
E, = &, y, H, =HO)(', k, = —~k, ~z,

where

I
ko

~

= no(()o

Ikp I

Hp Ep gpEp
Q7p

and n, means n((do).

(46)

(47)

B. Semiclassical theory of stimulated radiation

Here we wish to find the power spectrum of
stimulated radiation by an electron beam collid-
ing head-on with, say, an intense laser field in a
refractive medium, as schematically shown in Fig.

This specific problem, as already mentioned
in the Introduction, has been discussed on various
occasions by Schneider and Spitzer, ' while on a
more general level the stimulated radiation by
electrons scattered by photons in a refractive
medium has been already discussed by Frank. '

In this subsection we shall assume exclusively
that a medium is at rest.

Initially let the electron beam have a velocity v

along the z axis. Then, before it collides with a
laser field, its current density will be

J„)(x,t) = ev5(x —vt), v = zv . (45)

Now let the electron collide head-on with a laser
field described as

Now, owing to the laser-electron interaction,
current density (45} is changed into

J(x, t) = eV(t) 5 (x —R(t)),

R(t) = vt+ r(t), V(t) = R(t) = v+ r(t),
(48)

where r(t) is the change in the trajectory of the
electron due to the laser field. We shall work in
the approximation

I'(t)
I
=O(e),

so that a laser field can be taken at

R (t) =vt,

(49)

(50)

in the Lorentz force equation from which r(t) is
then evaluated. As shown in Appendix B, r(t) is
then formally given as [y,'= 1/(1 —v )]

eE,(1+ vn, )r (t) = ' + lim dt'Sn(t —t', p)
mPp ~~p

x si n(td'(1+ vn, }, (51)

(53a)

(53b)

where ~ (t; t() is a one dimensional retarded
Green's function, as defined in Appendix B. Dif-
ferentiating both sides of (51}with respect to t,
one gets ea.sily r(t)

Taking into account approximation (49), the cur-
rent J(x, t) from (48) can now be written as

J(x, t) = J (0)(x, t)+ J (,)(x, t)+ J (2)(x t),
where J(»(x, t) is given by (45) and

J (,)(x, t) = er(t) 5(x —vt),

J(»(x, t) = -ev[r(t) V(x)] 5(x —vt) .
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The current density J&» is the familiar source
of the Cerenkov radiation, while terms represented
by (53a) and (53b) are sources of stimulated radia-
tions. Ordinarily, for each of the terms in (52}
there is a corresponding Jd(x, f), which can be ob-
tained in principle from T ~ J+J'= 0. However,
since we take a medium to be at rest, J"s will
not be necessary in calculations of power spectra.

In what follows it will be convenient to have the
Fourier transforms of J«„J„)and J &». Utiliz-
ing (51) and the Fourier representation of X)R(t; i&.}
from Appendix B, we get (with i&. -0)
J('»(k, k ) = 2 &)e && '6(k —k v ), (54a)

2 Eg
J', „(k,i.' ) = — ' [5(k —k v+ &t& (1+ &»& ))

+pm (dp

+ 5(k' —k v &0,(1+ vn, ))],
(54b)

e'E 'u

y,»«t&o'(I+ vn, )

&& [5 (k' —k v+ (u,(I+ vn, ))

dtr(t)= k', f d'kd„( k)d.(k)t)",.;tk), (24')

where, as can be seen from Appendix A, for a
medium at rest

D (,") (k) = -2 &&fe ""(k}8,(k )5(t)'"k,k„)

(55)

with q"=g"—k
Clearly J(» and J&» are responsible for stimu-

lated radiation. Denoting with I, the decay rate
for stimulated radiation, we write

k'--0". The important thing to notice is that
while (54b) and (54c) are "kinematically" similar,
(54a) is different from both of them. This simply
means that while there might be cross contribu-
tion (coherence) between (54b) and (54c) to the
power spectrum, there cannot be such a thing
between (54a) and (54b) or (54c). Consequently,
(54a), (54b) and (54c) can be treated separately.

From (24) we can express the decay rate also as

6(& k ~ v —w&&(1+ &&no))]. (54c) (56)

One notices the inva, riance of relations (54) under where (denoting now k with &d, &t&&0),

l df I'",
,',&=, d kd(d J&&,&(-k, —(d)(g" —k'k')Jd&, &(k, &k&) 6(n&d —iki), &'=1, 2,

(2 v)' ( ) (5V)

(56)

(59)

relation (22} is then generalized into

where we may assume that n=n(w), i.e. , that we have dispersion. At this point we wish to define the Q-
dependent power spectrum P((d, &())). Choosing

k= ~k ~(xcos&t) sin8+ y sin8 sing+ z cos8},

(60}

(61)P, (&t&, &t') = P, )( &kP}&t&+ P ( )(d2Q«&)+ P «2)(&t&d, P) .

Taking into account that I"s are actually time independent [ fdt I' = 2&&6(0)I'], from (5'I), (58), and (60) we

get after some manipulations ((d, », & 0)

and the P dependent power spectrum for the stimulated radiation, as suggested by (56), can also be written
as

2 2

2m' ' d cos8(1 —sin'8 sin'4)) 5 cos8 ———(u, (1+vn, )
nv nvv

u), (I+ vn, )+g cosg ——+
nv nvco

(62)
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P, &»(~, g)= » ', , dcos8n sin 8sin p 6 cos8 ———. 4 . , 1 (o,(1+vn, )
2m'y, 'ar, ' 1+vn, ' nv nve

1 ~o(1+ vno)+5 cos8 ——+
nv nvco

1 (o,(1+vn, )P, &»,(&o, Q}= »,' d cos8n sin'8 cos8 sin'Q 6 «»8 ———s(1,» t 2 2 3(1+v nv nv(d

—5 cos8- —+
1 &u (1+vn )

nv nvm

(63)

(64)

If one assumes that n is a function of frequency only (an isotropic medium), then relation (62) through
(64) can be integrated in principle. The presence of 6 functions indicates that the stimulated radiation will
occur at fixed angle 8. However, in angle f the radiation will vary as indicated. P, (]) will have maxima
at /=0 and m i.e., in the direction of the Lorentz force acting on the electron. Although angle 8 is fixed,
it can vary as we vary n, co, co„etc.

As n is generally a function of ur, and as such can satisfy n 5 1, n= 1, Eqs. (62) through (64), although
integrable in principle, it must, nevertheless, be handled with care. Here we shall assume that n and v

are such that we can have nv &1 and nv &1, respectively. Consequently, we shall say that the power spec-
trum of stimulated emission belongs to the Cerenkov branch if nv&1 and that it belongs to the vacuum
branch if nv &1. It can be easily seen that both 6 functionS will contribute to the Cerenkov branch of the
power spectrum while only

1 (o,(1+vn, )5 cos8 ——+
nv nv(o

(66)

will contribute to the vacuum branch of the power spectrum. Consequently, integrating over 8 as indicated
in relations (62) through (64) and taking into account (61}, we get for the vacuum branch

m'y, '(o02v (o0 n'v' (d0 n'v' 1+vn, coo n v 1+ vno

(66}

Repeating the same thing for the Cerenkov branch, we get for each of the &-function contributions to the
power spectrum

1 &u, (1 +vn, )
& cos 8-——

nv nvm

&'E„2 &u sin'p, u ' 2(1 —v~n')

n+21, vn (67)

and

1 &u„(1+vn„)~ cos8- —+-
nv vnN

sin y ur 2 2(n v' 1)
s ( \ wI m2y 2~ 2v ~ g n2v2 ' ', ~ n v (1 +vn )0 0 0 0 0

n+ 1.vn
(68)

The superscripts + and —refer to the fact that
the 6 functions in (6'7) and (68) divide the Ceren-
kov branch into forward (+) and backward (—)
Cerenkov branches. The two branches meet at cos 8=1/nv . (69}

V

the angle 8 where the usual (spontaneous) Ceren-
kov radiation occurs:
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If n were not a function of ~ (no dispersion at all),
then at tl satisfying (69), we would get an infinite

Realistically, this will not happen because the
dispersion is always present, and even for weak
dispersions, (69) can be satisfied for finite ~'s.
Consequently, we conclude that at angle 0 satisfy-
ing (69) we should not have stimulated radiation,
as the & functions imply. As a consequence, we
do not expect to observe those frequencies
in the stimulated radiation for which Eq. (69}can
be satisfied (which may involve more than one
angle 6). With this in mind, we can relate the
"frequency upshift" (w/~, ) and cos8 as follows:

since now we get (note U« I)
1+vn,
1 —vn (74)

suggesting again a possibility of a rather large
frequency upshift.

It is quite clear that if one chooses uo at a
microwave frequency (~0=10'0 Hz), then it should
be quite easy to achieve experimentally at a
submillimeter frequency (~=10"Hz) either
through the Cerenkov branch (« ~1}or the vac-
uum branch («& 1).

1 +vn„ 1cos6 +-
v» cos~ —1 t2'v

(70a} V. DISCUSSION AND CONCLUSION

V'

for the forward Cerenkov branch, and

1+v» 1cos6 +—
1 —vn cos8' Plv

(70b)

for the backward Cerenkov branch. Of course,
from Eqs. (70a) and (70b) we can read off (~/~, )
only when + is independent of ~. When n =+(a),
which is usually the case, (70a) or (70b) are sim-
ply equations from which (~/~, }'s follow as solu-
tions. The question now is whether (70a) and
(70b) have any solutions. Specifically, can we
satisfy (70a) for &=0, when

1 yv»
vn-1 (71)

where again it must be emphasized that from. (72)
we read off ~/~o only when & is independent of

Otherwise (72) is an equation from which
ru/&uo is sought as a solution. We notice that re-
lation (72} is not associated with any restriction
on cos~. Consequently, we can vary ~ at will.
For 8=v/2, we get

(d—=1 +vn
(d Q t

0
(73}

that is, the frequency upshift is determined un-
ambiguously (the same thing is true for the back-

V'

ward Cerenkov branch, since 8=@/2 is clearly
allowed}. Case & =0 is also quite interesting,

As far as we can tell, we do not see any particu-
lar reason that (71) could not be satisfied, since
now cos8 & I/'» Uand «& 1 be'come the same con-
dition. Equation (71), of course, predicts a pos-
sibility of a rather large frequency upshift.

For vacuum branch («& 1), we get

(d 1 +v»,
1 —v+ cos(9

We have demonstrated the possibility of genera-
ting rather large frequency-upshifted radiations
through interaction of an electron beam with an
external electromagnetic field in a medium. This
frequency-upshif ted stimulated radiation appears
to go either through a vacuum branch («& 1) or
the forward and backward Cerenkov branches
(&» I). The stimulated electromagnetic shock
radiation (SESR) of Schneider and Spitzer' seems
to be most closely related to our stimulated radia-

V'

tion through the forward Cerenkov branch. In the
forward direction we have relation (71), while in

Ref. 2, one concludes that

(d 1 +V+„
(vmn2 1)

APPENDIX A

In this appendix we wish to give a collection of
formulas associated with a free electromagnetic
field in a refractive medium. The free electro-
magnetic field is defined in the usual way through
the potential A,„.(&), which satisfies the equation

q" "a„s„Ap,„(x)=0,
and the Lorentz condition

q""BqA„(x)=0,
where

(AI )

(A2)

Although this result disagrees with ours, it
nevertheless predicts the frequency upshift. The
discrepancy actually is easy to understand.
Namely, in Ref. 2 the frequency upshift (&u/&u, ) is
deduced from the nonasymptotic electric field,
while our results for (&u/u, ) correspond formally
to asymptotic electromagnetic fields of the radia-
tion. Let us point out that the results we give for
(~/~o) [relations (70a), (70b), and (72)] are con-
sistent with expressions for (&u/~, ) given by
Frank in his discussion of electron-photon scatter-
ing in a refractive medium. '
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q~" =g~ "+ (1 u2)u&u" (As)

is the metric tensor of a medium moving with a
four-velocity u" [in the rest frame of a medium
u" =(0, 1)]. The index of refraction n is assumed
to be independent of frequency . However, it
will be easy to generalize final results to + de-
pendent on .

The presence of a medium modifies the mass-
shell condition for the free photon momentum

from &' =0 into

e""(k)=g"+u "u" k,"k,
"

where unit vector ~," is given with the expression

a~=
&" +(k u)u~
[k'+ (& 'u }']'"

(A11)

(A12)

(A13)

One verifies also these relations:

One verifies the consistency of (A10) with (A2) by
noting that

k". e„„(k)=q" ~k pe„„(k)=0 .

u„a,q~" =0 . (A4) k~(-„., =(k&" 0) k u =0

Relation (A4) can be solved, giving k' (Ref, 12}

k', =—(u'(k u)(&' —1')

u&E (k) =u ze (k) =0

k" e „p(k)= k "e„„(k)=0,

(A14)

g [N2k2 (n2 1 )(k ~ u)2] «2j (A5)

N' =1+ (&' —1)(u')'.

qP Vk

Then we see that, in general,

& =Nmk4 (a2 I}u~(k'u),

(A6)

(A7)

These two energy solutions, &4 and & 4, are nei-
ther positive nor negative definite, respectively,
except for u =0 (a medium at rest}. However, let
us define another four-vector as

f (e =e"

Let us now denote

(A15)

where ~' is denoting the space components of a
photon unit vector in the rest frame of a medium.
In this appendix, in order to avoid confusion, an
index of a vector will be written in parentheses
whenever it is denoting the components in the rest
frame of a medium. For example, & " means
(0, 1). Also, if we have a tensor, then with re-
spect to a particular index, this tensor can be
evaluated in the rest frame of a medium.

One easily verifies

giving e" (k; n) =e~(k)( ), (A16)

k, ' —= + e (k) =N'k 4 —(n' —I)u4(k ~ u)

=y [N2k2 (s2 I)(k ~ u}2]&~2

, hP(k, ' k -') . (A8)

where as mentioned above, the "tensor" &~ ~ is
evaluated with respect to index n in the rest
frame of a medium. Taking into account (A14) and
choosing

u &'& =6,. (A17)

It is not difficult to verify now that, for example,
is indeed positive-definite. Writing A„(x)as a

sum of the positive- (A„i'}and negative- (A„i l)
frequency parts which are defined as

we get

e "(k 3) =0, e" (k 4) =0 (A18)

In view of (A15) we notice the important relation

A'"(')(x) = d5(k)a (k) s(u ~ x a cl
4 &3/2

A'„"i l (x}=A'„"i'l (x) d5(k) =

(A9)
Q e" (k; n)e "(k;n) =e""(k)

Expanding a" (k) as

(A19}

[a"(k), a (k')] = e""(k)3(k —k')

3(k k') =5"' (k k'}e (k) .
In (A10) &"" is defined as

(A10)

the quantization, valid in any reference frame with
respect to which a medium is moving a four-vel-
ocity &", is carried out as follows:

a&(k) = Q e" (k; n)a(k; n), (A2o)

we clearly have

[a(k; n), a (k'; n')] =5~~. 3(k —k'),

where a(k; n) and a (k; n') are the annihilation and

creation photon operators with polarization n and
n', respectively.



2150 JOSIP SOLN 18

In the rest frame of a medium, &"" clearly re-
duces to

e&'(k)i- —e ' &' (k)=g ' ' —k ' k ' (A22)U=p
(A31)

[e(k) —k'J [k4 ~e(k) J + so
a result used in the text (written without paren-
theses around the indices). Our quantization pro-
cedure selects explicitly the radiation gauge in the
rest frame of a medium (quantization frame}, since
for u =0, e"(k; n} =(& ' (k; n},0). Such a quantiza. -
tion procedure for the case of a vacuum can be
found, for example, in Ref. 13.

Now let us summarize singular functions. Con-
sistent with (A15), we have

[A'„""(x),A'"„t '(y)] = v D'„",(x y) = iD-'„„'(y-x)

(A23}

In the text we also had

D .(x) =l [D'.(x)+D"„.(x)l

Dp„(x)+Dq,*(x)],

Dq', (x) =i [Dt„+„(x)—D~q) (x}]

=i [D„„(x)—DP„(x)],

Dt„'„'(k)=2'»(k}5(rj~k k } .

(A32)

(A33)

with

Dt„'„'(k)=+ 2vi e»(k)6t» (qP'k k, )

(A24)

properties such as

Dq"„(x)= —Dtq„~( x)-
etc. can be easily verified.

APPENDIX B

5(~)(q""k„k„)= 8~(k4)&(q»krak ) . (A25}

In evaluating (A24) with (A25), one should notice
that [see (A7) and (A8)]

5(&l»k k„)= [5(k' —e(k)}y5(V+@(k))],
2e (k)

(A26)
dk =—,dk'.

The retarded, advanced, Feynman, and anti-
Feynman Green's functions are defined as usual:

Here we wish to derive briefly result (51) used
in Sec. IV B.

In order to determine r(t), a change in the elec-
tron trajectory due to the interaction with, say,
laser field (46), we start with the Lorentz force
equation

0

m
d t

['Y R (t)] = e[E (R (t), t ) +R (t) x H (R (t),t ) ],
e

r' =(1 —R'(t}} ' .
Writing

Df~(x) =+ ~.(t}D"'(x), (A27)
R(t) =R,(t) + r(t),
Ro(t) =v t, v =zv,

(B2}

with

Dp, p*(x) = e (t)D"",.(x) —S,(t)D.","- (x) (A28) where v is the velocity of an unperturbed electron,
we get to the lowest order in e[(y ( -O(e)]

D»(x) =Dt's„~(x)+Di„„~(x). (A29)
mr, [r, vZ(t)v+ r(t)]

In terms of Fourier integrals, the singular func-
tions (A27) and (A28} can be written as

=e[E(R,(t), t)+vxH(R (t)t)], r ' =(1 —v') '

(B3)

1 e" (k)e'~
(2v)' J q~'krak

C

d'k dk4D,"'
A' e'~, c =R,A. , F,F+

(A30)

In view of (B3}, we notice that

Z(t) =X(t) =0

and

y(t) = E (1+vn ) i s&unt(1+«o) .
0

(B4)

(B5)

where
In order to solve these equations, we introduce

"one-dimensional" retarded Green's function
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&„(&;ti) satisfying

The solution of (B6) can be cast in the form

from which one can easily show that

(B6)

be replaced with symmetrization operator &&

(acting on A'„"'s). In view of this, now by definition

(C2}

Going through the same exercise as we did with
the equations involving the S matrix [relations (6)
through (11)], we arrive now at

—, —$'(y) = S'(li)fdix Z.', (x),

~s(t; ~) = 8(f} —. —S'(+L'„(x)=fd'yS'(z)r„A'„(x)Z '', (x)-,

The solution of (B4) and (B5) is seen to be

x sin~, ~'(I+«,),

a result used in the text.

1 d, 1 d——0'(x)=- —0 (x)=0i d& i dA,

where

Z', (x) =J'" (x)A'"(x} .
Now since

r„A„'"(x}A'"„(&)=-,' [A'z (x)A',"(y) A'„"(y)A'"(x)]

(C4)

APPENDIX C = T~A'"„(x)A'", (y ) i e (C5)

Here we give a brief derivation by means of the
PDECC formalism of the unitary $ matrix [rela-
tion (18)], which can be used in place of the S ma-
trix [relation (16)] for calculations in this article.

The differential equations involving the S matrix
are similar to those involving the S matrix [rela-
tions (1}through (3)], except that instead of rela-
tion (2) now we have

we see that the solutions of (C3) can be obtained
formally by setting &-2 into the solutions of (12).
This replacement rule immediately gives

where (see Appendix A}

d
—, —$(X)A (x) = PyS p) —[A.„(x)J,(y)A "(y) D„" (x)~ e, g

= —D" "(x)

+J„(y)A'(y}A„(x)],
(Ci)

where, for the sake of clarity, we changed the
notation for the quantized electromagnetic poten-
tial from A „(x)to A „(x).Relation (Cl) immedi-
ately suggests that the T~ operator from Sec. II

was taken into account. Now it is not difficult to
see that the replacement of && with 7& immedi-
ately yields the S matrix (18) from the S matrix
(16}since

as can be easily seen from (A27) and (A32).
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