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The renormalization-group method has been used to give the asymptotic behavior of the physical fixed-
angle scattering amplitude in ¢* field theory. This method when coupled with a rigorous inequality and
additional assumptions leads to a new lower bound on the slope parameter. A new lower bound on the total

cross section is also obtained.

It has been proved that the renormalization-
group method can be effectively used in studying
the high-energy behavior of semileptonic pro-
cesses. This method gives' the asymptotic be-
havior in energy of the fixed-angle elastic-scat-
tering amplitude in ¢* field theory:
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where s is the c.m. energy squared, 6 is the c.m.
scattering angle, and y(gm) is the anomalous di-
mension of the field ¢ at the ultraviolet fixed point
g=g_- On the basis of Eq. (1) and two assumptions
with respect to the convergence of the integrals in
cos6, Khuri? obtained the following upper bound
on the total cross section:
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for at least one sequence of s -« under the as-
sumption of the crossing-even property of the
scattering amplitude. Here C refers only to a
certain positive constant and should not be taken
as the same value. He also used the rigorous
inequality of Bessis® and Singh*
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and the Jin-Martin lower bound®

Ot (8)=Cs™° )
for at least one sequence of s -~ under the as-
sumption of the crossing-even property of the am-
plitude. In this paper we obtain the new lower
bound of the slope parameter. Also, we can im-
prove the condition “ for at least one sequence of
s =" of the bound (2) as “for any sequence of
s =" because it is unnecessary to use inequali-
ties (3) and (4).

Now let us derive a new lower bound on the

slope parameter. We know® the lower bound on
the imaginary part of the scattering amplitude is
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This bound holds in ¢, <t<4m.2. Here ¢, is the
value such that R(~t,)'/2/V2 is the minimum of
J(R(-1)/2/N2), i.e., R(~t)'/?/V2 =3.83; and
2my, is the threshold energy. So we obtain
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Here p is a certain constant such that 0<p<1, anda is bounded as 0<a < (3.83)% and aR™2< sp/2. From

Eq. (1) we have
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It was noted by Khuri® that the assumption of the
admissibility of interchanging the large-s limit
with the integration over d(cos6) was necessary
in the estimate (8). Hence in the case
lim,_,.sB#0, we get the lower bound on the slope
parameter

B=Coy,,(s)s21fx) as s=o, (9)

because in our case we can take k(s) as constant.
If the integral of | £(6)| in (8) is infinite, then we
get C=0in (9) and so our bound is trivial. If this
integral is finite, we have a positive constant
C in (9). This bound (9) is the main result of our
research. For scalar particles in a positive-met-
ric theory, y¢= 0 follows from the Killén-Leh-
mann representation of the two-point function.
Also, we know that the upper bound on the slope
parameter is

B(s)< C(lns)? as s=, (10)

This is easily obtained” by the cutting of the par-
tial waves up to L < CvV slns. This cutting is also

used in order to derive the Froissart bound.®
Then we get the upper bound (2) “for any sequence
of s —”,

In the case lim,_,.s B#« and B#0, we obtain
the bound

O (8) S Cs™1727(e) a5 5o, (11)

because we can take a as CsB. 1t is noted that our
upper bound (11) holds even if sB -0 as s -,

Lastly let us derive the lower bound on the total
cross section. From Eq. (1) we have
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This is a new lower bound on the total cross sec-
tion in comparison with the Jin-Martin lower
bound,>*° when ¥(g.) <=.
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