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Renormalization gronp and slope parameter
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The renormalization-group method has been used to give the asymptotic behavior of the physical fixed-

angle scattering amplitude in P' field theory. This method when coupled with a rigorous inequality and
additional assumptions leads to a new lower bound on the slope parameter. A new lower bound on the total
cross section is also obtained.

o„,(s) ~ C s '&l'-l(lns)' (2)

for at least one sequence of s-~ under the as-
sumption of the crossing-even property of the
scattering amplitude. Here C refers only to a
certain positive constant and should not be taken
as the same value. He also used the rigorous
inequality of Bessis' and Singh4

ImF(s, I) t s
E(, 0) 16 ', ' „,)- (3)

It has been proved that the renormalization-
group method can be effectively used in studying
the high-energy behavior of semileptonic pro-
cesses. This method gives' the asymptotic be-
havio'r in energy of the fixed-angle elastic-scat-
tering amplitude in Q4 field theory:

F(s, 6) - s '&~'"lh(6), 6~ 0, s

where s is the c.m. energy squared, 6I is the c.m.
scattering angle, and y(g ) is the anomalous di-
mension of the field Q at the ultraviolet fixed point
g=g . On the ba.sis of Eq. (I) and two assumptions
with respect to the convergence of the integrals in
cos6, Khuri' obtained the following upper bound
on the total cross section:

and the Jin-Martin lower bound'

o... (s}&Cs ' (4)

where

R' (d/dt ) ImF(s, t ) I, ,
8 ImF(s, 0)

(8)

This bound holds in f, &t&4mo'. Here t, is the
value such that R( t,)'~'/v 2 -is the minimum of

&,(R(-t)' '/v 2), i.e. , R(-t )' '/v 2 =3.83 and

2m, is the threshold energy. So we obtain

for at least one sequence of s-~ under the as-
sumption of the crossing-even property of the am-
plitude. In this paper we obtain the new lower
bound of the slope parameter. Also, we can im-
prove the condition "for at least one sequence of
s- ~" of the bound (2) as "for any sequence of
s ~", because it is unnecessary to use inequali-
ties (3) and (4).

Now let us derive a new lower bound on the
slope parameter. We know' the lower bound on
the imaginary part of the scattering amplitude is

ImF(s, f )
ImF(s, 0)

-J,(R(-t)' 'N2 ) as s-
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=CaR 'c„,(s).

Here p is a certain constant such that 0& p&l, and a is bounded as 0&g & (3.83)' and aR '& sp/2. From
Eq. (1) we have

r
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IF(s, 6) Id cos6= ~ ' ""'
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I (6) I d cos6+ C s '~~-&

1-P 1 P

(8)
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It was noted by Khuri' that the assumption of the
admissibility of interchanging the large-s limit
with the integration over d(cos&) was necessary
in the estimate (8). Hence in the case
lim, sB +0, we get the lower bound on the slope
parameter

B~ Ca„,(s) sW& & as s -~, (9)

because in our case we can take h(s) as constant.
If the integral of

~
h(6) ( in (8) is infinite, then we

get C = 0 in (9) and so our bound is trivial. If this
integral is finite, we have a positive constant
C in (9). This bound (9) is the main result of our
research. For scalar particles in a positive-met-
ric theory, z~~ 0 follows from the Kallen-Leh-
mann representation of the two-point function.

Also, we know that the upper bound on the slope
parameter is

B(s) ~ C(lns)' as s-~.
This is easily obtained by the cutting of the par-
tial waves up to L &Cv sins. This cutting is also

because we can take a as CsB. It is noted that our
upper bound (11) holds even if sB -0 as s-~.

Lastly let us derive the lower bound on the total
cross section. From Eq. (1) we have

=s '~' ' dcoso h 6

=Cs '&~' ) ' as ~- (12)

This is a new lower bound on the total cross sec-
tion in comparison with the Jin-Martin lower
bound, "when y(g„) & —,.

used in order to derive the Froissart bound. '
Then we get the upper bound (2) "for any sequence
of s~

In the case lim, „sB+~ and B&0, we obtain
the bound

o„,(s) ~ C s ' '&i '"I as s -~,
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