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Short-distance behavior of the Bethe-Salpeter amphtntie
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A simple relation between the Bethe-Salpeter amplitude at the origin and a certain renormalization
constant is established. A homogeneous Bethe-Salpeter equation is shown to have a continuous spectrum
when the amplitude diverges at the origin. A prescription to extract the bound states from the continuous
spectrum is proposed for the asymptotically free theory.

I. INTRODUCTION

The short-distance behavior of the Bethe-Sal-
peter (BS) amplitude is interesting for several
reasons: In nonrelativis tie quantum mechanics,
the wave function at the origin is intimately con-
nected with observable quantities such as the pion
decay constant or the vector-meson coupling to
the photon. The behavior of the BS amplitude at
the origin plays a crucial role in the study of the
asymptotic behavior of the form factors or scat-
tering amplitudes; for example, one of the basic
assumptions of the Brodsky-Farrar quark counting
rule is the finiteness of the BS amplitude at the
origin. '

Many authors' have discussed the short-distance
behavior of the BS amplitude, either by solving
the BS equation in the ladder approximation or by
making an operator-product expansion and a re-
normalization-group argument. Explicit calcula-
tions based on these approaches sometimes lead
to the divergence of the BS amplitudes at the ori-
gin. Qn the other hand, Nishij ima, Sato, and
Ezawa' (NSE) have proved the finiteness of the BS
amplitude at the origin on quite general grounds.
In some cases, therefore, there are contradictions
between the results of explicit calculations and the
NSE theorem. Although the NSE theorem is surely
true when the theory is superrenormalizable, it
seems to require modification by taking renor-
malization effects into consideration when the
theory is renormalizable.

In this paper, we obtain a general theorem on
the BS amplitude at the origin. The theorem re-
conciles the contradiction between the explicit
calculations and the NSE theorem. Our essential
assumption is the renormalizability of the theory,
so that our new theorem is not valid if the theory
is nonrenormalizable. We also discuss the con-
tinuous spectrum of the homogeneous BS equation
which appears when the BS amplitude diverges at
the origin.

In the next section, the renormalization of com-
posite operators is briefly reviewed. In Sec. ID

the general theorem on the BS amplitude is de-
rived. Section IV is devoted to the discussion of
the continuous spectrum of the homogeneous BS
equation. In Sec. V a generalization of the NSE
theorem is discussed, after a. short review of its
derivation.

II. RENORMALIZATION OF COMPOSITE OPERATORS

In this section, we shall recapitulate the re-
normalization of composite operators,

8(x) -=i(x) 04(x), (2.l)

Os(x) = Zg '8(x} (2.2)

can be made finite by a suitable choice of the re-
normalization constant Z~. In perturbation theory,
Z~ ' has logarithmic divergences as the cutoff A

tends to infinity.
The proper vertex I' is defined by

S(p)I (p p )S(p )

&'ye'" " ' "(0
~

T [@(x)+(y)8(0)]~0),

(2.3)

where S(p} denotes the fermion propagator. The
renormalization constant Z» for the proper vertex
is introduced by

f'(p, p') =z„-'r' (p, p'), (2.4)

where the renormalized vertex I'
„

is defined by a
similar equation to Eq. (2.3}for renormalized
quantities. Substitution of S(p) = Z,Sz(p),

where 8 denotes some numerical matrix acting on
spinor indices or internal-symmetry indices. The
canonical dimension of 8(x) is 3. We assume that
our theory is renormalizable, and that there is no
other operator having the same quantum number
as 0(x) Mith dimensionality less than or equal to 3.
On these assumptions, the composite operator
8(x) is known' to be multiP/tcatively renormal-
izable; in other words, any matrix element of the
renormalized operator defined by
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4'(x)= Z, ' 'q„(x), Eqs. (2.2) and (2.4) into Eq (.2.3)
leads to a relation between Ze and Z»,

matrix element. We also note that in momentum
space Eq. (3.4) reads

f&i 18 2 (2.5}
~ Tr [8X&&(&t;P}]= -Z&&&

d4q
(3.6)

If e(x) is conserved, there is no renormalization
for e(x), by virtue of the Ward-Takahashi identity

» 2

If there are other operators which have the same
quantum numbers as O(x) and dimensionality less
than or equal to 3, we would need additive renor-
malizations. As an example, let us introduce an
elementary boson &/&(x) carrying the same quantum
number as e(x) in our theory. For simplicity, we
assume 8(x) is scalar or pseudoscalar. Since
&&&(x) has dimension 1, Eq. (2.2} is no longer valid.
Instead we have

O(x)=Z 0 (x)+a4& (x)+b(0+M 2)«& (x). (2.6)

In perturbation theory, adiverges quadratically
and b logarithmically.

On the basis of Eq. (3.4), we can conclude that
the BS amplitude Tr[8Xs(x;P)] is finite at the
origin, as long as the xenormalization constant
Z, ~

' of the vertex I' is finite.
When Z» vanishes, the above derivation of Eq.

(3.4) is no longer valid, since Eq. (3.2) is mean-
ingless. Nevertheless, we can give a heuristic
interpretation to Eq. (3.4) by introducing a cutoff

In the cutoff theory, the BS amplitude at x
smaller than A ' is meaningless. Therefore, the
limit x-0 in Eq. (3.4} should be interpreted as
x-A '. Correspondingly, Z, e

' in Eq. (3.4) should
be regarded as the renormalization constant
Z, e '(A) in the cutoff theory, that is, Eq. (3.4) can
be interpreted as follows:

III. SHORT-DISTANCE BEHAVIOR OF THE BS AMPLITUDE

lim Tr[8X„(x;P)]= -Z,~ '(A)c„ (3.7)

In order to derive the relation between a re-
normalization constant and the short-distance be-
havior of the BS amplitude, we will imagine all
the renormalization constants are finite. Let us
first recall the definition of the unrenormalized
composite operator (2.1):

when Z,~=lim Z&~(A) =0. In the cutoff theory, the
. A

renormalization constant Z,e(A) satisfies a ho-
mogeneous C allan-Symanzik' equation,

9 8
m&& + p(g&&) 8

+ y&&(g&&)
—2ye(g&&)

emR eg„

lim T 4'(x ——,
'

$) 8&l (x+ -,' $) = O(x),
(mp

(3.1)

Eq. (3.2) gives

(2„p X&&(&i;P)e (3.3)

where the limit (-0 is understood to be taken
from a spacelike direction. It should be noted that
a similar relation as Eq. (3.1) does not hold for
the renormalized quantities. By substituting Eq.
(2.2) and &1&(x) = Z, ' 'q&„(x) into Eq. (3.1), we get a
corresponding relation for the renormalized
quantities,

lim T@e(x—,' $) f%e(x+ —,
'

g—)= Z, ~ '8„(x), (3.2)
g» p

where use has been made of Eq. (2.5). After use
of the definition of the renormalized BS amplitude
for a bound state iP),

Xe(x;P) =—(0
i
Tq&„(,'x)q&„(=,'x) iP)-

when Z, e is expressed in terms of g~, m~, and A.
If our theory satisfies either asymptotic freedom
or broken scale invariance, Eq. (3.7) can be
solved asymptotically and gives the following
results:

(a) If p(g„)=-ag„'+ with a)0, then

Z -&
(A) cc (lnA2) -&»~-&&&&& /~ (3.9)

where y~(g„)= b~„'+ and y~(ge) = b~g„'+~ ~ ~

This relation together with Eq. (3.6) gives

Tr [8Xs(x;P)]~ ln —~
x+p x' (3.1o)

(b) If P(gs) has a fixed point such that P(g„)= 0
and P' (g )( 0, then

Z -&(A) &z (A2) &2w+&&& &m&&&r &&/2
18

lim Tr[8Xn(x;P)] = -Z„'c
x» 0

where

(3.4)
this implies

Tr[8Xs(x;P)] ~ (1&/x') &'"~&~ '~&& " ' . (3.12)
xoo p

c, =(Oie, (0) iP) (3.5)

is a finite constant by definition. Note that the
equal-time commutator which appears when we
interchange 4 „and4„doesnot contribute to the T4&&(x —2 $) 8@&&(x+ 2 t') = Z(t')e&&(x)+ (3.13)

Even when Z» vanishes, a correct treatment of
Eq. (3.2) is given by a Wilson' operator-product
exp ans ion,
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where an irrelevant vacuum expectation value has
been subtracted. From Eqs. (3.3) and (3.13), we
f ind

Tr[8gs(x;P)] ~ -Z(x)cs+ ~

x~0
(3.14)

By comparing Eqs. (3.7) and (3.14), we obtain a
heuristic interpretation of a Wilson coefficient
function Z(x),

lim Z(x)=Z„'(A). (3.15)

Equation (3.14) together with the renormalization-
group argument applied to Z($) reproduces our
previous results (3.10) and (3.12) in those two
special cases.

Some comments should be added:
(1) If there is a gauge field A„(x)in our theory,

special care should be exercised to define com-
posite operators. ' In order to ensure the gauge
invariance, we must insert exp(i J „",,'P, A„dx")
between 4'(x ——,'$) and 4(x+-,'$) in Eq. (3.1). We
are, however, assuming that there is no other
operator which has the same quantum numbers as
8(x) and dimensionality less than or equal to 3, so
that the contribution of the line integral vanishes
in the limit of $ -0 for these 6(x). For example,
consider the quark model with colored gauge
fields. The assumption forces us to choose such
8(x) as a flavor nonsinglet. Since we cannot make
local flavor nonsinglet operators out of A (x), the
line integral does not contribute in Eq. (3.1}for
these 8(x). Our main result, Eqs. (3.4) or (3.7),
cannot be applied to the flavor-singlet 8.

(2) In nonrelativistic quantum mechanics, the
wave function at the origin is considered to be an
observable quantity; it represents the pion decay
constant or the coupling of a vector meson with a.

photon. On the other hand, the BS amplitude at
the origin does not contain this information, be-
cause of renormalization effects. Therefore, the
divergence of the BS amplitude does not imply any
divergence of physical quantities. The pion decay
constant or the vector-meson coupling with a pho-
ton is expressed in terms of cs -=(0 ~6~(0) ~P),
which is finite.

(3) If there is an elementary boson field cps(x)
in our theory, Eq. (3.4) or (3.7) is no longer valid.
In this ca.se, Eq. (2.6) yields

lim Tr[8y~(x;P)) = -Z„'(A)cs
x-~ '

Z, -'(A) [a(A)+ (Af„' Ms2)b(A)]

seems to be more divergent in this case than be-
fore.

(4) Several years ago, Brodsky and Farrar'
proposed their power counting law for the scatter-
ing amplitudes. One of their basic assumptions is
the finiteness of the BS amplitude at the origin,
namely,

As a result of Eq. (3.6), this condition is satisfied
unless Z» vanishes.

(5) Equation (3.7) has an analogy in the Kalldn-
Lehmann sum rule for the renormalized propaga. -
tor

lim Tr[P'Ss(P)] = 4iZ

which is interpreted as

lim Tr[P'Ss(P)] =4iZ, '(A)

when Z, = lim Z, (A} vanishes.
A ~ 'o

IV. CONTINUOUS SPECTRUM

OF THE HOMOGENEOUS BS EQUATION

4'(q;P) = S(P)r'(P, P')S(P-'),

where

(4.2)

P =q+ ~ P, P'=q —2 P .

The inhomogeneous BS equation satisfied by the
unrenormalized vertex 4 (q;P) reads

S '(q+ ,' P) e'(q;P)s '(q —,'—P)—

The vanishing of Z» causes a certain difficulty
in understanding the solution of a homogeneous BS
equation. The homogeneous BS equation for a
bound state with mass M~ reads

S '(q+ -'P)ys(q;P)s '(q —P)—
d4q'

2,}.I,(q, q', P)X,(q', P), (4.1)

where Is(q, q', P) denotes the renormalized two-
particle irreducible BS kernel. Equation (4.1) is
expected to have solutions for discrete values of
P', which gives the mass M~' of bound states.
When Z» vanishes, however, this is not the case;
the homogeneous BS equation has solutions for any
P'

~ In order to see this, let us study the nonam-
putated vertex function

x (0 i@ (0) iP), (3.16) d~q'
=8+,I (q, q', P)4'(q', P) . (4.3)

where M~ denotes the mass of y„andM~ the mass
of the bound state ~P). Since a(A) diverges quad-
ratically in perturbation theory, the BS amplitude

Af ter renormalization,

e'(q;P) = Z,Zge R'(q;P)
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and

f(q, q'») =Z. 'I (q q'»).
Equation (4.3) can be rewritten as

Sa '(q+ zP)4a(q;P)Sa '(q —zP)

d4q'=Z„e+ ), f„(q,q', P)e'„(q',P). (4.4}

Since the vertex function should exist for any P',
Eq. (4.4) must have solutions for any P' except for
P'=Ma'. When Z» vanishes, Eq. (4.4) reduces to
the homogeneous BS equation. Therefore, it can
be concluded that the homogeneous BS equation
must have a continuous spectrum corresponding
to the renormalized vertex cohen Z» vanishes. If
we combine this with the result of the preceding
section, it turns out that the homogeneous BS
equation possesses a continuous spectrum uhen
the BS amplitude diverges at the origin.

When Zyg vanishes, some ad hoc boundary condi-
tion is required to extract the discrete spectrum
from the continuous spectrum; otherwise, we can-
not get the energy levels of bound states by solving
the BS equation. It is known"' that the required
boundary condition is given by the normalization
condition in the ladder approximation. The most
general form of the normalization condition" can
be written as

4 T Xz q;P Sz"' q+ 2P Xz q;P

x S, '(q ——.'P)] = —M, '(~)

(4 5)

('m & Ieo'(('(')) f d ~' (0(TB(x)e(0) la)

11'(P) . (4.7)

Since II (P} has a quadratic divergence, additive
renormalizations are also required to renormalize
it,

II (P) =Z 2[A+ BP'+ II„(P)], (4.8)

where Ii~a(P) represents the finite part In. pertur-
bation theory, A diverges quadratically and B
logarithmically. From Eqs. (4.7), (4.8), and Ce

=Z» Z2 4g we find

lim, Tr[84~a($;P)] = —Z» '(A)[A(A) + P'B(A)

+ II„(P)]. (4.9)

In a. free-field theory, A(A) ~A', Z„,and B(A)
are constants, so that Ca(x, P) behaves like 1/x'
at short distances. If we confine our discussion to
an asymptotically free theory, this 1/x' behavior
is modified, at most by some powers of ln(l/x')
in the exact theory. Therefore, in momentum
space, Cea(q;P) behaves as q ', up to a logarithmic
factor, when q —~. Since Sa '(q) -g, up to a log-
arithmic factor, when q- ~, the normalization
integral Eq. (4.5) for the vertex function 4)~a(q;P)
diverges quadratically in the untraviolet region.
On the other hand, it converges for the BS ampli-
tude which behaves as ya(q P) -q», up to a log-
arithmic factor, as is seen from Eq. (3.10). Con-
sequently, in an asymptotically free theory, see

can reject the continuous spectrum of the homo

geneous BS equation by requiring the finiteness
of the normalization integral In more gen.eral
theories, the validity of the above result is not
clear.

where X is an artificially introduced parameter
multiplying Ia in Eq. (4.1). We will discuss below
the restriction demanded by the finiteness of the
normalization integral (4.5).

In order to see whether or not the finiteness of
Eq. (4.5) rejects the continuous spectrum repre-
senting the renormalized vertex, we have to know
the short-distance behavior of the vertex function.
Let us introduce the Fourier transform of qp~(q;P)
with respect to q:

d4
C'(t P)-=q e '"e'( P-)

(2v)4

d xe

x (0 ~T(i((x+ —'$)%(x ——'$)8(0) ~0).

(4.6)

On applying Eq. (3.1) to Eq. (4.6), we have

TT'(x ,' f) 8qt(x+ —,
' $)——

-. &0 i Te( —,'~) ee(-,' ~) iP}

8(x)
(018(0) IP} ' (5.1)

where use has been made of the definition (3.1).
Using Eqs. (2.2) and (3.5}, we can express q), (x)
in terms of the renormalized quantities,

V. EXTENSION OF THE NSE THEOREM

In general, any field operator q), (x) can be
chosen as an interpolating field for a bound state
~P), as long as it has a nonvanishing matrix ele-
ment (O~q), (x) ~P). Although each choice of q), (x)
gives a different off-shell extrapolation, all of
them lead to the identical S matrix. As a special
example, Haag, Nishijima, and Zimmermann"
(HNZ} have proposed to construct an interpolating
field q),(x) by
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(p, (x) = c„'B„(x). (5.2)

Thus, in the HNZ construction, the interpolating
field dp, (x) coincides with the renormalized com-

posite operator B„(x}except for the finite multi-
plicative constant c~ '.

Now, we are ready to discuss the NSE' theorem.
They have studied a Green's function defined by

(2 ) 2 (2 —2' —p)2(e p)—: d'2 f d'2 d ee'' " "(M 'e, )(D~(T(D„(e)ee ( )22( )]~2), (5 3)

where 2q =p+p'. Substituting E(l. (5.2) into Eq.
(5.3) and comparing the definition of 4s(q;P) with

Eq. (5.3), we have

9(q+) = c„'(Ms'-P')4~~(q;P) . (5.4)

=- (Ms' P')cs 'Z„—e

The Green's function 9(q;P) is supposed to de-
scribe the off-shell coupling of the bound state
with its constituent particles, so it must exist for
any P From E.qs. (4.4) and (5.4), we see that
9(q;P) satisfies

S '(q+ —P)9(q;P)S (q —'P)—

malizability at least in the asymptotically free
theory.

In conclusion, the NSE theorem is valid when the

theory is superrenormalizable since Z» ' is always
finite in this case. In the renormalizable theory,
however, it should be replaced by the more gen-
eral results given in Eqs. (3.7) and (3.16).

It is worthwhile noting that the interpolating
field constructed by the HNZ method coincides
with the elementary boson field (p(x) introduced in

the Lagrangian when the theory is "symptotically
free. This fact, first noted by Nishijima, " can
be seen from E(ls. (2.6) and (5.1), which lead to

d 9'
+

( }d Is(q, q';P)9(q', P) . (5.5)
Z~Bs(x)+ a9)s(x)+ b(0+Ms')q)s(x)

Z, (0 [Bs(0)IP)+ a(0 Iq)s(0) IP)
(5 6)

Nishijima, Sato, and Ezawa noted that Eq. (5.5)
reduces to a homogeneous equation when the BS
amplitude diverges at the origin, i.e., when Z»
vanishes. If we assume Fredholm's alternative is
valid, the homogeneous equation has solutions
only for discrete values of P' Since 9(q;P.) must
exist for any P, they concluded that the BS ampli-
tude cannot diverge at the origin. Thus their
basic assumption is the validity of Fredholm's
alternative. As we know from the discussion in

the preceding section, Fredholm's alternative is
not valid when Z, e vanishes; that is, the same
homogeneous equation (5.5) describes the contin-
uous spectrum corresponding to 9(q;P) for P'
4M~' as well as the discrete spectrum correspond-
ing to 9(q;P) at P' =Ms' when Z,~ vanishes. Fur-
thermore, these discrete spectra are extracted
from the continuous spectrum by requiring nor-

(5.7)(p, (x) =q)s(x),

since (p„(x}is normalized by (0~(ps(0) ~P)= 1. We

may see the naturalness of the HNZ construction
in this simple result. In more general theories,
however, the validity of Eq. (5.7) is not clear be-
cause of anomalous dimensions.
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In an asymptotically free theory, Z, or b has log-
arithmic dependence on A, whereas a has A' de-
pendence modified by logarithmic factors. There-
fore, taking the limit A-, we obtain
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