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A local operator formulation of non-Abelian gauge theories in the Landau gauge is presented and discussed.
The formalism involves the usual gauge fields A„, matter fields, unphysical ghost fields, and a further
multiplet of unphysical local scalar fields 5. The gauge-fixing term in the Lagrangian is I (8 L}, which
replaces the usual term (i/tt)(s A. )z characteristic of the generalized Lorentz gauges. The I field,
formally the limit of (1/a)a A for a~O, thus provides a local momentum operator which is canonically
conjugate to Ao, and generates the Landau-gauge relation a A = O as a field equation. Both operator and
functional methods are used to deduce the transversality conditions, Slavnov identities, and renorinalization-
group equations obeyed by the Green's functions. A functional formalism for vertex functions is presented,
and it is shown that these functions are well defined in spite of the fact that the AA propagator has no
inverse and the 88 propagator vanishes. The gauge-field vertex functions are shown to be the o,~O limits of
those in the Lorentz gauges.

I. INTRODUCTION

It is now widely believed that non-Abelian gauge
theories (NAGT's) provide the framework for a
possibly unified description of the strong, electro-
magnetic, and weak interactions. One distinctive
feature of gauge theories is the freedom to perform
calculations in various gauges, with all physical
results being gauge-invariant. The most impor-
tant are the Lorentz gauges, obtained by appending
the gauge-fixing term

——(s A)
1

2ot

to the classical Lagrangian. This results in a
bare gauge-field propagator

Although the Lagrangian itself appears to be singu-
lar for a. -0, the Green's functions are clearly
well-defined in that limit. Indeed, the Landau
gauge (rz =0) is particularly simple, corresponding
to a txansverse propagatox'. This feature survives
higher-order corrections and renormalization, so
that in the Landau gauge the effective gauge param-
eter n, in the sense of the renormalization group
(RG), remains zero. The RG analysis, normally
involving two coupling constants {the gauge cou-
pling, g, and rz) reduces to the much more tract-
able single-coupling case. Thus the Landau gauge
is extremely useful for the understanding of ultra-

violet (UV) and infrared (IR) asymptotic behavior.
On the other hand, the equations of motion to-

gether with the canonical equal-time commutators
(ETC's) provide an important complementary tool
to the computation of Green's functions via Feyn-
man graphs. Asymptotic freedom (AF) sufficient-
ly softens the short-distance singularities to per-
mit a study of certain aspects of the exact {rather
than the order-by-order) behavior of the theory
by this method. ' Indeed it has been shown that the
results so obtained agree with the more conven-
tional RG analysis. '

Symmetries arising from renormalization, such
as 8 invarianee, "ean be conveniently studied us-
ing the equations of motion. The low-energy the-
orems due to R invariance may contradict the ex-
istence of an IR fixed point and thus afford a proof
of quark confinement. However, this picture is
marred by the fact that the RG analysis is tractable
only in the Landau gauge, whereas the equations
of motion derived from the conventional Lagran-
gian do not formally have a well-defined n -0
limit.

It is the purpose of this paper to study the equa-
tions of motion and their consequences for NAGT's
in the Landau gauge. Here we follow the work of
Symanzik' in the Abelian case and make use of a
first-order Lagrangian, in which (1/cr)(B A) is
replaced by a new multiplet of scalar fields B. Un-
like the Abelian case, however, B is not a free
field, and yet it effectively drops out from the
problem, as intuitively it must. The 8 field pro-
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vides a local momentum operator canonically con-
jugate to X,. Its presence will be seen to be cru-
cial in obtaining a Lorentz-invariant theory and in
defining one-particle-irreducible (IPI) vertex
functi ons.

The generating-functional formalism for Green's
functions and the Feynman rules used in this paper
are not new. The primary new results are the
local-field-equation formalism and the generating-
functional formalism for 1PI vertex functions. In
previous treatments, local field equations and ver-
tex functions were not discussed. For example,
in Ref. 6, one of the first papers to discuss the
Feynman rules, the local B field is, unlike ours,
a free field and the field equations involve another
B field which is a nonlocal function of B. The
other important early treatments" and the more
recent discussions of renormalization' "also did
not consider local field equations or define vertex
functions for the Landau gauge.

We present the first-order formalism in detail
in Sec. II. We exhibit there the Lagrangian, field
equations, commutation relations, gauge trans-
formations, and Slavnov" transformations. In
Sec. III we deduce properties of the Green's func-
tions. The Feynman rules, transversality condi-
tions, consequences of Slavnov invariance, and re-
norrnalization-group equations are discussed. The
functional formalism for Green's functions is
given in Sec. IV. The generating functional is
shown to be equivalent to that of Ref. 6. Some
further properties of the Green's functions are
also deduced. In Sec. V we present a functional
formalism for vertex functions. It is shown that,
because of the coupling to the B fields, the vertex
functions are well-defined in spite of the fact that
the AA propagator has no inverse and the BB
propagator vanishes. The gauge-field vertex func-
tions are shown to be the n -0 limits of those in
the Lorentz gauges and the vertex functions in-
volving at least one B field, except for I'(AB), are
shown to vanish. We conclude in Sec. VI with a
summary of our results.

g, =-a„C, &"6, , (2 8)

= i/y„D" g,
where C„L, are ghost fields, g is the fermion
field multiplet, and

(2.4)

gob~)I ++facbgc)I
ab 7

D"= 1-sga'" T',
(2 8)

(2 8)

T' being the fermion representation matrices.
For u w0, (2.1) is equivalent to the first-order

Lagrangian

2 =--'4 ~ (a" A' —a'A" +@X"x g")

+ —,'Cq, 4""—B aA+ —,'oB'+go+2~, (2.7)

where 4~„, A„, and B are regarded as indepen-
dent dynamical variables. This can be easily seen
by functional methods (see Sec. IV) or simply by
noting that (2.1) and (2.7) lead to identical equa-
tions of motion.

The first-order Lagrangian (2.7) has the ad-
vantage that one can formally take the n -0 limit,
wherein

-'4 (a"A' —a"X" +@A" x A")

+ —,'4„„4""—B aA+Zo+2~ . (2.8)

Equation (2.8) is the basis of the Landau gauge
formalism to be studied in this paper. It will be
used to deduce the equations of motion, commuta-
tion relations and to define, as functional inte-
grals, Green's functions and vertex functions.
Useful properties of these functions will be de-
duced and the functions will be seen to be the
a -0 limits of the corresponding Lorentz gauge
functions defined from (2.7}.

Variation of 5„,, X„, and Bin (2.8), respective-
ly, leads to the following equations of motion:

6„,= a„X„—a„X„+gA„xA„,
S"4&, + a, B =g(a, p, x 0, —$y, T(),

(2.9)

(2.10)

f' 'a'b' defined by the structure constants f ' '.
The ghost and fermion parts of the Lagrangian are

II. FIRST-ORDER FORMALISM
8 A=O. (2.11)

The quantization of NAGT's in the Lorentz
gauges is usually discussed in terms of the sec-
ond-order Lagrangian' "

Equation (2.10} can also be written in the form

a" (a„X„—a„X„)+ a B = -K „

where

(2.12)

2, = ——,'4„„~4"' ——(a ~ A)'+ Z~+ Z~ . (2.1) K, =gja" (X& x g) + X"x Ps&„—a„p x p + py Tlji].

Here X„are the gauge fields, and the field strength
6„„is defined by

4„„=a„g —a„X„+gA„xA„, (2.2)

where the cross product axb has components

(2.13)

Thus K„(or rather K, + a, B) is in the conventional
sense the source nf the gauge field. The gauge-
invariant divergence of (2.10) gives another equa-
tion of interest:
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CIB = g (s"B x A„+ s„C,xm" C,), (2.14) satisfies

showing that B is not a free field. Since the right-
hand side of (2.14) is a group-theoretic cross pro-
duct, it is clear that in the Abelian case B would
be a free field. ' The B field plays a more interest-
ing role in the non-Abelian case.

The momenta conjugate to A„are

(2.15)

and obey the canonical ETC

[J ', (x), J,(y)]5(x, -y, ) =if"Z,'( x)5'(x -y) .
(2.22)

This conserved current is of course not renormal-
ized, so that (2.22) implies that 3„has dimension
3 in any scale-invariant limit, in particular at an
IR fixed point, if such a fixed point should exist.
Note that the conserved Noether current 3„ is
fundamentally distinct from the (nonconserved)
source current K„defined in Eq. (2.13). Equation
(2.12}gives

[A'„(x), ll'"(y)]5(x, -y,) =i5"5„"5'(x-y) .
(2.16)

au K~ QB (2.23)

Evaluating (2.15) we find

rr' =—
Oj

II =-B,
so that (2.16) gives

[A;(x), G'„(y)]5(x, -y, ) = i5'"5,g5'(x-y),

[A;(x), B'(y)]5(x, -y, ) = 0,
[A;(x), G'„(y)]5(x,-y, ) =0,

(2.17)

(2.18a)

(2.18b)

(2.18c)

[AQ(x), B~(y)]5(xo-yo) = -i5' 5 (x-y), (2.18d)

which can be evaluated from Eq. (2.14). All this
is in contrast to the situation in Abelian gauge the-
ories, where B=O, and J„and K„are essentially
equal and differ from 8„Bonly by a conserved cur-
rent with zero charge. "

As in the Lorentz (o. g0) gauges, the Lagrangian
(2.8) is not invariant to the local non-Abelian gauge
transformations which leave the classical Lagran-
gian

invariant. " It is instead invariant to the "Slavnov"
transf ormation

[B,B'(x), B~(y)]5(x,-y, ) =0 . (2.19)

Another ETC of interest is [s,B, B], which can
be obtained by commuting the zeroth component
of Eq. (2.10) with B. This gives

X~ A~+ (dQ~ C)

Z ——'g(gZ xQ

V, -L, +~B,
e —kgQJ7'

(2.24a)

(2.24b)

(2.24c}

(2.24d)

gB =Bx~,
5&=Vx(g,

6g =ice Tg,

(2.20)

where co is a constant c-number vector. The cor-
responding Noether currents

The ghost and fermion equations of motion and the
ETC's are the same as in the second-order for-
malism and will not be recorded. See, for ex-
ample, Ref. 12.

The Lagrangian (2.8) is invariant under the
global gauge transformations

5A& = X& x (0

Wu Pu

X"=z "X"
R ~

C=z "'0 (2.25)

introduced by Becchi, Rouet, and Stora." Some of
the consequences of this will be discussed in the
following sections. The more complete Lorentz
gauge treatments (given formally in Ref. 12 and
rigorously in Ref. 11) can be readily generalized
to the Landau gauge with the replacement of
(lt'n)& X by B.

The renormalized version of the equations of
motion and the ETC's can be obtained with the
substitution"

Z„=4~„xt"+ B xX„+Py„Tg+ S„L,xQ,

+ P, xz)„C, (2.21)
1g= Z3/2gR )

3

are therefore conserved:

9"3„=0 .
From the canonical ETC's (.":..18), we find that 3,

where the subscript A denotes renormalized quan-
tities. At this stage, an independent renormal-
ization constant Z~ has to be introduced. Since B
plays the role of (l(o.)(S X) and in the usual
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(a D. 0) formalism n and (}„arerelated by a = Z,n „,
we expect Z~=Z, '. This will be proven in the
next section. The renormalized forms of the
global gauge transformations and the (more subtle)
Slavnov transformation are simply obtained from
the Lorentz gauge treatment given in Ref. 12 and
will not be discussed here in detail.

The renormalized gauge-field equation has the
form

III. GREEN'S FUNCTIONS

0 (k)"= f d'*e "*(T[B'(D)A„'t*)]) (3.1)

It follows from (2.11) and (2.18d) that

We start with the B-A propagator, defined by"

~d]u+ suBdk=K» 0 (2.26)
kuEab(k) 6ab (3 2)

just as in the Lorentz gauge (see Ref. 12), where

(2.27)

or

Ed[)(k)— (3 3)

and just as in the Abelian case, where the fields
and currents are gauge-group scalars. The re-
normalized ETC

Since the only equation of motion used is s X = 0,
which is true to all orders in g, Eq. (3.3) for E'„'
is exact. Now the renormalized B-A propagator

lyso(x) &s(y))~(x. -yo) =«.(x-y)~"
is the same as the unrenormalized one (2.18d) and
is therefore finite in perturbation theory i:n all
gauges (Lorentz or Landau) for all gauge groups
(Abelian or non-Abelian). However, in the Abelian
models, one also has

B'„'„(k)=fd' e "'(T[B'(D)A'„( )])

is evidently

E» (k) = (Z Z,)' 'E"(k)

(3.4)

J„u = generating current, (2.29) (3.5)
which is not valid in the non-Abelian models, as
already noted in the unrenormalized theories.

Let us consider a scale-invariant limit of the
above models (e.g. , a fixed point of the renormal-
ization group). In the Abelian models, where both

K» = J» and B„B„generate the renormalized
gauge transformations, one has

dimK» =dimau B~ = dim J» = 3 (Abelian),

(2.30)

where "dim" is the scale-invariance dimension.
In the non-Abelian models, one has only

B(k} f d'ee"''(T[B'(*)B(0)]) (3 6)

If we calculate k'D"(k), there will be a T-product
contribution involving (T[B'(x)B~(0)]), which van-
sihes to lowest order in g. The ETC contributions
also vanish since B commutes both with itself and
its own time derivative. So to lowest order in g

and must of course be finite. Thus the choice Z~
= Z3 is seen to be appropriate. As discusseP in
the last section, this is expected.

Next we consider the B-Bpropagator, defined by

dim J» = 3 (non-Abelian) . (2.31)
k D[""(k)= 0, (3.7)

Also, in all models, (2.28) implies that

dime»+ dimB» = 3 (always), (2.32)
i.e.e, D[']"(k) is concentrated at k'=0. Since 6(k')
has the wrong asymptotic properties for a propa-
gator, we see that D"'"(k)~ 6'(k), i.e. ,

and in the Lorentz gauges, one can conclude from
(2.27) that D'""(x)= constant . (3.8)

dimBs = dimX~u+ 1 (Lorentz gauges), (2.33)

so that

dime» ——1, dimBsu-— 2 (Lorentz gauges) .

We shall see later that this state of affairs per-
sists to all orders and that the constant actually
vanishes.

The gauge field propagator is defined by

(2.34)

We are not able to derive (2.34) in the Landau
gauge.

0'(k)= fd'*e"*(T[A ()A,(0}])'„*'„
As usual we consider

(3.9)
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))o= fd '" (*' )t) .)ow) ), x')o)l&)+@*,)()~~) ), w.')o)])+(7')aA;)*)w:(o)l&) .
0

(3.io)

The ETC's can be evaluated from (2.18}. The
first ETC is zero, while the second is nonzero
only for spacelike p, , v, i.e. ,

d'xe" "6(x, 8 '„x, A,' 0

To evaluate the T product, we use (2.12) and (2.11)
to obtain

(3.12}

= '(-g) o+gO ogoo) ~ (3.11) and find

d'xe' '" T ClA'„ x A', 0 = d'xe"'" 8„ T B' x A„' 0 -g„,6(x, B' x, A„' 0 + T K„(xA„' 0

=i ",' 5"—ig„,g„,5' + d'xe'~ "(T[K„(x)A„(0)])
~ 0 v ab (3.13)

where we have used (3.3} for the B Apropagato-r
and the fact that B has a nonzero ETC only with
the zeroth component of A. Combining (3.11) and
(3.],3), we find that the g»g„o terms cancel, and
we ha.ve

~ y k)1 kv 1 g$
)I v g)1v

+ —, d'xe'"'" T K„'(x A„(Q, 3.14

.g(o) k k 1
& v )'v (3.15)

where the last term is of order g, so the first two
terms represent the bare propagator.

It is interesting to see how the B field enters to
ensure Lorentz invariance. The result (3.15) for
the bare propagator is of course identical with the
a -0 limit of the bare propagator obtained in the
usual second-order formulation. Since the bare
vertices implied by (2.1) and (2,.8) are obviously
identical, this shows that all Green's functions
without external B lines are to all orders identical
with those obtained in the second-order formula, -
tion. This proves what has been expected all
along, namely that (2.8) defines the n -0 limit of
(2 1).

The Feynman rules to be used in constructing
the perturbation-theory expansion for the (unre-
normalized" ) Green's functions"

~ (n, s, r, m) (
o o ('Vl& ' ' ) 'le )Pl. ) ' ' ' i "1) ' ' ' i t' ' ')}1 n

= Fourier transform of (T[A ~ ~ A g
~ ~

))&))I. ~ ))tC, ~ ~ C,C, ~ ~ ~ C,B. ~ B]) (3.16)

where there are s factors each of g and tt', r fac-
tors each of C, and C, and m factors of B, can be
read off from the Gell-Mann-Low expansion using
a,s the interaction Lagrangian L, the terms pro-
portional to g and g' in (2.8) and using Wick's the-
orem with the propagators (3.3), (3.8), (3.15), to-
gether with the usual fermion and ghost propagator.
Note that the B field does not occur in Ll, its ef-
fect having been exactly accounted for in the eval-
uation of (3.3), (3.8), and (3.15). In particular,
the Green's functions G,":".'~ with no external B
lines are to be evaluated exactly as in the Lorentz
gauges except that the tra, nsverse bare gauge-
field propagator (3.15) is to be used. Coupling to
B fields never enters this evaluation and the re-
sulting Green's functions are clearly the e 0

limits of the Lorentz gauge Green's functions. It
then follows from the transversality of the Landau
gauge field propagator (3.15) that all of these
Green's functions are transverse:

When B fields are present (m&0), the Green's
functions (3.16) are no longer transverse in the
gauge-field momenta because of the presence of
disconnected A-B propagators (3.3) which are not
transverse. It is therefore convenient to define
the amplitudes G(A .A, B. B, fermions,
ghosts) as those corresponding to all the diagrams
for the full Green's functions G(A A, B ~ B,
fermions, ghosts) except those with disconnected
A-B propagators G(AB). The analytical definition
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xs are transverse:

G(A'''A, B B, . . .}

=G(A A B B )

+QG(AB)6, G(AB)6~G(A 'A, B B, . . .),
(3.18)

the sum being over all possible such factorizations
(including permutations). The 6-function factors
here express the equality of the A and B momenta
in each G(A„B)=E (k), k=P„+Ps. It then follows
from the definition of the C amplitudes that they

Note that (3.17) is a special case of (3.19) since
0 = G for m=0. Note also that the Green's func-
tions (3.18) are the n -0 limits of the Lorentz-
gauge Green's functions G(A. -A, n '8 A, . . .}.

The transversality conditions (3.17}and (3.19)
can be deduced directly from the representation
(3.16). For m = 0, (3.19) follows immediately from
S A =0 and the field ETC's. For general m, (3.16)
gives

a. ~(n, s, r, m)q('Gn'. '.'~. ~ . ~ (qi~ ~ ~ ~ &qni ~ ~ ~ i-» ~ ~ ~
~ m)I i n

m

+ y bg(&-I s r m-I)(q;,) ~, . :.„,. »,.+, . . . ~„(q» . , q~, iq~.», q„; . ;k». . . , k, ,k+„.. . , k ) (3.20)j =1

using (2.11) and (2.18d), whereas (3.18) gives

LHS(3.20}= RHS(3.20) + q,. 0 —terms, (3.21}

A„=Z, ' 'A, )„=Z2 ' 'q) C„=Z, C

(3.26)

using (3.2). It therefore follows (inductively) that
(3.19) is valid.

Some further exact results can be deduced from
the invariance of the vacuum under the Slavnov
transformation (2.24). For example, the va, nishing
of the variation of G(C, .C,) under (2.24c) plus
ghost number conservation leads immediately to
the vanishing of all Green's functions of B fields
alone:

are finite when expressed in terms of the re-
normalized parameters

gs=(Z, ' '(Zi)gi ns=Z, 'o', (3.27)

and the renormalization-point mass p, . For ex-
ample, the renormalized gauge-field Green's func-
tions are

Gs (As ' 'ARtARr +Bi i )

G(B B)=0 i

in particular

(3.22}
=(Z,")-"G(A" A; g, n) . (3.28)

The arbitrariness of the choice of p, is expressed
by the renormalization-group equation"

G(B'B') =D"(k) =0, (3.23)

as we mentioned previously. More generally, con-
sideration of the invariance of the Green's func-
tions G~"' i(A ~ ~ AC, ~ ~ C,) = 0 for m & 0 under
(2.24a) and (2.24c) using also ghost number con-
servation leads to the identities

where

P(gn~ as) =4
C}jj,

C} 8 8—+P +5 ~ny Gz" =0,
C}P, C}gg 8&~

(3.29}

G(A' ABC ' ' SC B ''BC ' ' 'C )'j. 1 2 2

(m-fj
=0, m&0 (3.24)

g, e

y(gs, ~~) = ku —»Z3
g, 0

(3.30)

where there are n —i factors of A, i factors of
m —i factors of B, and i factors of C,. For

n=0, this gives back (3.22) and for n=m=1, this
gives

with the partial derivatives evaluated at fixed g,
a and fixed cutoff. The relation Q.„=Z, 'n gives
the important identity

G(A„B) = -G(X)„C,C,} . (3.25}
6(AR +R) +By(gR R) (3.31)

The renormalizations of the Green's functions
considered above proceeds in the usual manner. ' "
Reca, ll first that in the Lorentz (n a0) gauges, the
Green's functions of the renormalized fields

In the Landau gauge, there is one less param-
eter (n =@~=0) but one more field (B) to be re-
nor mali zed:

(3.32)
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It is immediate that the Landau-gauge renormal-
ized Green's functions and renormalization-group
equations are the o)-0 limits of those, (3.28)-
(3.30}, in the Lorentz gauges, e.g. ,

Green's functions, etc. The results are often con-
siderably simpler than in the Lorentz gauges. We
refer to Ref. 4 for a detailed discussion of these
points.

(3.33) IV. FUNCTIONAL FORMALISM

Gs (A~' ' 'As, Bs' ' Bse g'st g)

=(Z,' ') "(Z, ' ')™G(A A, B ~ B;g),
(3.34)

which satisfy

8 9
p, —+P +(pg —m)y G ' =0 .(n, m) (3.35)

Note, however, that no new functions are involved
here.

In the asymptotically free models, one can ex-
actly" calculate the ultraviolet behavior of the

Equation (3.31) has been used here to conclude that

5(gs, 0) =0, a result which leads to an enormous
simplification in the analysis of the renormaliza-
tion-group equations. On the other hand, in the
Landau gauge one must contend with the mixed
Green's functions

Functional integration gives in principle a closed
solution to the field equations in quantum field
theory. The relevant mathematics is, however,
so undeveloped that the generating functional inte-
gral for a given theory is at best a formal repre-
sentation of the exact solution. Functional integral
techniques, however, have proved to be valuable
tools in the development of NAGT's, especially in
connection with the investigation of symmetries of
the theory. "' " In spite of the rather formal na-
ture of functional manipulations, our attitude is
that many combinational problems can be investi-
gated with much reduced effort with this formal-
ism, and the proofs are often more transparent.
In this section we study Landau-gauge NAGT in the
framework of functional formalism.

In the first-order formulation, NAGT's in the
Lorentz gauges are described in terms of the gen-
erating functional

'VP= d „dB d „„exp i d x —-'
}1,' " A" —a'A" +g "x A" + —' q„' ""—B 8 +-'(yB'

(4 1)

where A„, G~„, and B are independent dynamical
variables, and the dots indicate corresponding
entities for ghost and fermion fields. This formu-
lation can be shown to be equivalent to the sec-
ond-order one. For example, the terms involving
8 in (4.1) are

All the B dependence in the path integral defining
the generating functional can be collected into

dB e~4 1,1-(const)x exp i dx ——(s X)', (4.3)
2Q

=-B BX+ —B'
B 2

n: 1 i' 1= —B ——(s X} ——(s X}' .
2 Q J 2(M

(4.2)

which just produces the gauge-fixing term in the
second-order Lagrangian.

In the n -0 limit, (4.1) becomes the generating
functional corresponding to the Lagrangian (2.8}:

d dB d ~ ~ ~ exp i d'x ——' ~ (8"A' —~" "+g "& " +-'G„""—B' &'

(4.4)

Here the B dependence can again be integrated out to give
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so that (4.4) becomes the same generating functional as that used as a starting point for the discussion of
the Landau gauge in Ref. 6, where [Eq. (2.39) of Ref. 6]

d 58 ~ Aexp i dxC+J„"+trlnO 'S 8
Le

(4.6)

g(0) — 1 F (S]tg v Sv Alt) d
1 Ie, Fl v

Pv 4 Pv

—B (t] A)+ J„A"+ Js B+ (4.7)

The generating functional, defined as usual, can
be simplified by carrying out the [dP„,] integra-
tions to give

In Ref 6, the explicit form trio(CI tS 8) was used
instead of the more usual ghosts. The trace ex-
pression is of course what is obtained by carrying
out the [dL, ][dL,] integration in our expression.

We now proceed to investigate the Green's func-
tions in this first-order formalism with functional
methods. We first consider the Lagrangian in
zeroth order (in g):

We next make the change of variables

X„(x}-X„+s,—J~(x),

which induces the following changes in (4.9):

-B (s X)--B (s X) —J, B,

J„X"-J„A"+ J„—Js(x) .

The extra term in (4.11}cancels the original
source term to give

2' =(B—independent terms) -B (S X)

(4.10)

(4.11)

(4.12)

d „dB ~ ~ exp i d'xC' (4.8) +J ~ —JB (4.13)

where

,'(sv A-„——B„Xv)'—B (s A)

+J BA) + J BB+ ~ ~ ~

B (4 9)

The transformation (4.10) is surely measure-pre-
serving, and so'N is unchanged with 2-8'. The
[dB] integration is, however, now trivial, and we
obtain

d „~~ 5(B ~ exp i d'x (B —independent + J„~ —J~
ate

(4.14)

(A„B}'"- is" (4.16)

The B field enters into W only in the form of a
phase factor J„~(s"/ )J8, and so the generating
functional of connected Green's functions is given
by

Z = 1rfN

=]B—'ededeede tte e) t jd'*J„e'CJ 'J
(4.18)

The only connected Green's function to lowest or-
der involving B is therefore

This has already been derived to all orders in
Sec. III [Eq. (3.3)]. In particular, in lowest order
(BB),vanishes:

(BB)';]=0 . (4.17)

This has also already been derived to all orders
from Slavnov invariance.

The same result can be deduced by using the
Slavnov invariance in the functional context. We
consider% where the [dG„„]dependence has been
integrated out:

d „dB d, d, exp i d'x--,'(8"A" —8" "+g "xA ' —B 8 —a„

The invariance

(4.18)~ J„X~ J B ~ J 'C, + J 'C,]I.
of the Lagrangian in (4.18}under (2.24) implies the following Ward-Takahashi identity:

{
1

C) Cg Cy j B
(4.19)
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By taking 5 /5' {z)ala(y), and then jetting all J's
vanish, we easily see that

0= =(B(x)B(y)},.

Similarly, by taking 8"„(5'/5$c (z)5$„(y)), we ob-
tain

.Q(y) D, (y)53,,(z)

(4.20)

O= d'x, r(x) -s"u
&

+3, (x) ~,{x)

(4.23)
and hence (4.21) gives

5 Z' 5Z (z)57(y)
(4.24)

This is precisely Eq. (3.2). Equation {4.24) is the
equivalent of the usual statement on the nonre-
normalization of the longitudinal part of the gauge-
field propagator in the Lorentz gauges.

Taking functional derivatives with respect to S,
J~, and J~ gives the Slavnov" identity for the2'
transverse part of the three-point vertex. If we

consider the longitudinal part, me find

Q2
~ e. ~ ( ) ~ (

)}W=0. (4.21)

By considering the transformation

~,(x) —Z, (x).r(x) (4.22}

(which generates the field equation for C,), we get

ization-group equation (3.35) in functional form.
It follows, for example, from the explicit repre-
sentation (4.4) that

9 8
v
—+P +r
Bp, Bg&

d x Jq -J~—
xZ(Z;gz, p) =0 .

V. VERTEX FUNCTIONS

If one were to try to calculate the gauge-field
vertex functions by amputating (AA), propagators
in the usual way in a gauge theory in the Landau

gauge, one would immediately be faced with the
difficulty that the transverse (AA), propagator,
being a projector, does not have an inverse. In
fact there is an arbitrary longitudinal ambiguity
that can be added to the vertex function without

changing the Green's functions at all. A related
difficulty is encountered in the extraction of ver-
tex functions from Green's functions involving 8,
since (BB),=0. The resolution of these problems
is the same: since ( BA,&w 0, a B can propagate
into an 4, and so we must consider a propagator
matrix involving A and B entries. This matrix
will be seen to have an inverse and therefore lead
to unique vertex functions.

The propagator matrix has the form

(AA&, (BA&,

(AB), (BB&,=O

More explicitly, the (AA), sector is given by the
4 x 4 matrix

6

P 52, (x) 52, (x} 5'$, (y)

g
3

~ DZ tz)53„tx)57 4)}
Using (4.23} again, we readily obtain

(4.25)

yP pj's(AA)!'= (g'" —,dealt) )

the (AB), sector is a row vector

(AB) "=-j'/u'

and (BA), is a column vector

(5.2)

0= 5 x-z
5Js{y)

t)
3

" 5$,(y)5$„(x)53,(y)
(4.26)

0= 9"[(S„e,(x)e, (y)B(z)),

«.( )B(y)B( )&,]. (4.2'I)

When one tries to pull the 8„ through the T pro-
duct, one encounters the equal-time commutator
5(x' —z')[Q„C,(x), B(z)], which is seen to vanish
only after some calculation.

As a final illustration of the usefulness of the
functional formalism, let us write the renormal-

This derivation of (4.26) is simpler than the di-
rect approach, which would start with"

(BA&," = 1"/u'.
G" is thus a. 5 &5 matrix, with B acting as a fifth
component of A". (The internal symmetry is ir-
relevant here and hence suppressed. )

The 4x4 matrix (AA),"", being a projector, has
no inverse, and indeed has a zero determinant.
The problem associated with the nonexistence of
(AA), ' in the Landau gauge is automaticajjy re-
solved by the need for the presence of the B field
in the Landau gauge. The coupled propagator ma-
trix (5.1) is invertible even though (AA&, is not.
Indeed, it has as determinant

dett""~ =d(k')/0' .
The vertex functions can be most simply defined

by functional methods. The generating functional
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I'(S} of proper vertices is the Legendre transform We therefore find

I'=Z- J S,

5Z

(5.6)

(5. I}

(5.8) and

( " k' dtk')

I'„„(k)= k„,

(5.14)

(5.15)

where J=]J) and S=(s,) denote 5 vectors with i
running over A„and B. Functional differentiation
of the completeness relation

6r, (x)*'

)
=6, ,6'(x-y} (5.9)

then gives the relation between the connected
Green's functions

~ ~ ~

n ve/«
1

and the vertex functions

z(z)
I g=o

(5.10)

' '«n Q$.
1

For example,

r(s)
S =0

(5.11)

d(k'} '( g ""—k k "lk') —k
(5.13)

5 Z O'I'

ar„.(y)6r, (z) 6S„(z)6S,(x)

gives the expected result that the two-point vertex
function is the (five-dimensional) inverse of the
two-point Green's function. The 5x5 vertex func-
tion matrix is thus

I (2) —[G(2) ]-k

r„(k}=0. (5.16}

r") (BA„)G„(A" ~ ) = 0, (5.18)

which vanish because the first factor is longitu-
dinal [Eq. (5.15)] and the second (being connected}
is transverse [Eq. (3.19)].

In the Lorentz gauges with a w 0, the gauge-field
vertex functions I' ~ can be defined from the
Green's functions G simply by an amputation
procedure since (AA), is no longer purely trans-
verse. We now show that our formalism gives the
same vertex functions as the usual Lorentz-gauge
formalism upon taking the limit n -0. Since I'
vanishes for any nonzero number of B's, it suf-
fices to prove the equivalence for I „.. . „with any
number of A' s.

We therefore consider the n-point vertex func-
tions obtained by our procedure:

The three-point vertex I' ' is similarly obtained:

r&'. & = r '~r '~G '. r '~ (5.17)nim nj ml l jk ki r

with I' ' given by (5.13}. The higher vertex func-
tions can now be obtained in the usual manner.

One immediate consequence of the above formal-
ism is the vanishing of all vertex functions I'(B. )
with at least one B field except for I'(AB) [Eq.
(5.15)]. This is because any such vertex function
can be expressed as a sum of products involving
the factors

I'„.. .„=G„.. . „ I'„„~~ ~ r„„+(G„...„sr» ~ ~ r» ra„+permutations)
V2

+ ~ ~ ~ +G, . . . ,r„"r,„u,
(5.19)

where the G's here are all understood to be connected. Now the usual procedure for n t 0 uses the inverse
propagator

)'i ~"'(k) =
(d

' — d '(k')+ —k'k'
A

which is the inverse of

v
kd") '(k) = (d""— d(k')a' a4

(5.20)

(5 21)

We need the superscript (o.) to denote quantities in gauges with n a 0. We previously showed that the form-
alism with the auxiliary field B is equivalent to the n -0 limit of the Lorentz gauge theory. Hence it is
the same d(k') that appears in G„, and G(~„) (although we need not make use of this fact). Thus the Lorentz
gauge procedure gives
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T (o) ~(n) T (c-) ~( n)~A ~ ''A)I A ~ ~ ~ A U, A A ~ ~ ~ tr, A A"n 1 Vyg Vl '
Vy J

'
Vy J

(n) ( ~) ~ . . (a)+G„.. .„r,„".r, „„
V

n v& ' v1 n n

(5.22)

where tr and I denote the transverse and longitudinal parts of r~,&. The structures of (5.19} and (5.22)
are in one-to-one correspondence with each other. Obviously, I'„~v=1"„„and so for our equivalence
proof it suffices to show that multiplication by I', „„is equivalent to B-field amputation when n - 0.

We consider first

(5.23)

The second amputation gives

1

n 1

—~'A1
k, 2k,"i+equal-time commutators. (5.24)

9 8
p —+ p —(n —m)y r„'" '=0.

8 p, Bg~
(5.26)

More simply, the functional form (4.28) together
with the Legendre-transform relations (5.6)—(5.8)
imply the equivalent statement

a a
+

9/J, Bg~

—y "'»~ —~s r~(s;Zsu)=0.

(5.27}

VI. CONCLUSION

In the previous sections, various aspects of the
Landau gauge formulation of NAGT's were dis-
cussed and compared with the conventional Lor-
entz gauge formulations. It was seen in particular
how potential difficulties associated with the van-
ishing of the gauge parameter (so that (1/n)s A is

These equal-time commutators are, however,
easily seen to arise just from the disconnected
parts of G'„' . . .~, and so disappear when the

Vgl Vy
connected pa.rt is used. In (5.24), the ETC is
from the disconnected contribution

(A„~ ~ A„&&A, A„&, (5.25)

and thus we find equivalence term by term between
(5.19) and (5.22) in the limit n -0.

To conclude our study of vertex functions, we
exhibit the renormalization-group equations satis-
fied by the renormalized vertices I'~. It follows
from (3.35) and the structural relations (5.13),
(5.17), etc. , that these equations read

ill-defined in the field equations) and the trans-
versality of the gauge field Green's functions (so
that vertex functions cannot be defined by amputa-
tion) were overcome by the introduction of the B
field.

In the Lagrangian formalism [e.g. , Eq. (2.8) J, the
Landau gauge involves one less parameter (n = 0)
but one additional field B. There is also the new

field equation B.A= 0, which is responsible for
much of the simplicity of the Landau gauge. The
B field provides a canonical momentum conjugate
to A„but satisfies a field equation (2,14) which is
not independent of the other field equations. The
B field is of course not "physical, ""just as 8 A
in the Lorentz gauges, and it has unusual proper-
ties, such as a vanishing propagator (3.23). Also,
its presence in Green's functions leads to dis-
connected nontransverse parts proportional to the
A-B propagator (3.3), as illustrated in Eq. (3.18).

For Green's functions not containing B fields,
the B field can be completely ignored provided the
gauge-field propagator is taken to be the trans-
verse expression (3.15). This exactly incorporates
the effect of the A-B coupling and the perturbation
theory (in g) expansion is about the bare theory
which includes this coupling. We thus obtain the
expect'ed Feynman rules for these Green's func-
tions and find that they are transverse in the vec-
tor indices and are the n -0 limits of the Lorentz-
gauge Green's functions.

Renormalization proceeds as usual, according
to (3.26), (3.27), and (3.32). The renormalization-
group equations (3.33) are much simpler than those
(3.29) in the Lorentz gauges. This is basically be-
cause the Landau-gauge Green's functions depend
on only one coupling constant g„ instead of the two
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(gs and a„) which are present in the Lorentz
gauges. Correspondingly, the solutions to the re-
normalization group equations involve only one
"effective" coupling constant g(g) instead of the
two [g(g, a), a(g, a)] which enter in the Lorentz
gauges. This leads to an enormous simplification
in the analysis of the consequences of renormal-
ization invariance. We refer to Ref. 4 for more
details and some illustrations of this.

Because (T(A„A,)) is transverse, gauge-field
vertex functions cannot be defined in the usual
amputational manner. Once the coupling to the B
field is taken into account, however, unique ver-
tex functions can be defined and employed in the
usual way, e.g. , for renormalization and renormal

ization group purposes. In the gauge-field sub-
sector, the vertex functions were seen to be the

0 limits of the Lorentz-gauge vertex functions.
We have thus shown how all of the field-theoretic

formalism used in the study of NAGT's in the Lor-
entz gauges can, mutatis mutandis, also be used
in the Landau gauge. This provides a field-the-
oretical basis for the simplicity, both foundational
and computational, of the Landau gauge.

Note added in Proof La.ndau gauge formalisms
for non-Abelian gauge theories have also been dis-
cussed by N. Nakanishi [Phys. Rev. D 5, 1324
(1972)] and W. Kummer [ Acta Physica Austriaca,
Suppl. XV, 423(1976)]. We thank these authors for
informing us of their work.
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