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It is shown that in spite of the modifications introduced by Wilson and Polyakov, the gauge theory on a
lattice in the Abelian case in the limit of zero lattice spacing has the same renormalized S matrix as
quantum electrodynamics, to all orders in the renormalized coupling constant. Apparently nonrenormalizable
vertices contained in the lattice Lagrangian contribute to mass, wave-function, and coupling-constant
renormalizations, but do not contribute to the “finite parts” as a result of being multiplied by additional
powers of lattice spacing. It is crucial for this renormalizability that the lattice theory respects local gauge
symmetry and discrete symmetries and has the correct “classical continuum limit.” The fact that in a
renormalizable field theory divergences are contained in the first few terms of the Taylor series expansion of
the Green’s functions about the external momenta, and that these divergences are mild, play an important
role in our proof. Umklapp processes characteristic of the lattice regularization do not have any observable
consequences in the continuum limit. Thus Wilson’s lattice action is well suited for nonperturbative

considerations of gauge theories.

I. INTRODUCTION

The gauge theory on a lattice, first formulated
by Wilson and Polyakov,' has been exhaustively
studied®*™ in order to discover tractable methods
of calculation for the color-gluon model, espec-
ially the hadron spectrum. The theory has a
natural ultraviolet cutoff, the inverse lattice spac-
ing. It can serve as a starting point for renormal-
ization-group calculations®®® of quantum chromo -
dynamics. In fact, even preliminary considera-
tions such as an expansion in the inverse bare
coupling constant have provided valuable insights
into quantum chromodynamics. Quark confine-
ment occurs for any nonzero lattice spacing, to
any finite order in the inverse bare coupling cons-
tant. It can be seen how it is possible for asymp-
totic freedom and quark confinement to coexist.?
Hamiltonian perturbation theory in conjunction
with Padé summation techniques gives* quite good
fits to the hadron spectrum. Crude renormaliza-
tion-group calculations® also indicate significant
possibilities.

The cutoff is not covariant. Also, the action is
not just a straightforward discretization (i.e., re-
placement of continuous space-time by a lattice
and derivatives by differences) of the continuum
action. For example, in the Abelian case the
following changes have been made?:

(1) There are ¥iy- multiphoton vertices with an
arbitrarily large number of photons to maintain
local gauge invariance.

(2) The gauge-field part of the action is suitably
modified to have the ad hoc requirement of period-
icity (the period is 27/ea in the Abelian case').
This apparently technical requirement makes the
strong- coupling expansion possible.

(3) The conventional y, of the fermion vertex is
replaced by (1+95). This modification seems
necessary, as otherwise electrons with momenta
m/a would have very low energies and behave like
a new species of particles® in low-energy experi-
ments.

In spite of these modifications, when certain
parameters are held fixed and the limit of zero
lattice spacing is taken, we recover’ the continuum
action if we further assume that the lattice degrees
of freedom pass over to smoothly varying fields.
This is the classical continuum limit in contrast to
the quantum (or the “statistical”) continuum limit
defined by Wilson.® This means that the classical
theory of these lattice actions has the correct
continuum limit. In classical theory, we are in-

terested in initial configurations that have a smooth
continuum limit. Then, because the action has a

correct continuum limit in the above sense, so do
the Euler-Lagrange equations, and hence the field
configuration at any later instant will have a con-
tinuum limit corresponding to time evolution of the
initial configuration in the continuum theory.

The continuum limit of the corresponding quan-
tum theory is more delicate. If we use the lattice
action to define the path integral for the continuum
theory as with the time-slicing definition of Feyn-
man,!' we see that the fluctuations of the order of
inverse lattice spacing (in case of Bose fields) con-
tribute significantly® to the quantum amplitudes
(Appendix A). Is it possible to choose the depen-
dence of the parameters in the lattice action on
the lattice spacing such that in the limit of zero
lattice spacing we recover the consequences of
the continuum theory?

We propose to check this in the Abelian case
within the canons of renormalized perturbation
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theory. The multiphoton vertices give divergent
contributions even when a -0, but their effects

can be absorbed in the renormalization of the
parameters of the lattice action and do not have any
observable consequences.

Roth!? has considered the continuum limit of U(1)
and SU(N) lattice gauge theories in 1+ 1 dimen-
sions. His method is to sum the strong-coupling
expansion. The continuum theory is made a po-
tential theory by choosing the Coulomb gauge and
is made discrete for comparison. The two theories
give identical results when the bare coupling con-
stant is fixed and the limit of zero lattice spacing
is taken. This is to be expected as the theories
are superrenormalizable. In our perturbative
treatment equivalence in this case is straightfor-
ward.

This paper is organized as follows: In Sec. II,
we develop a systematic perturbation expansion in
e. This requires a proper choice of gauge and a
nonlinear transformation on the “photon” field to
make the range of its quantum fluctuations (-,
+%). We analyze a few low-order diagrams to
demonstrate how the renormalized Green’s func-
tions becomes identical to that of quantum electro-
dynamics. In Sec. III equivalence is exhibited to
all orders in the renormalized coupling constant.
In Sec. IV we discuss the implications of our
analysis, in particular, the limitations of our per-
turbative proof.

In Appendix A we demonstrate effects of finite
range of quantum fluctuations and write the full
effective action relevant for perturbation expan-
sion.

In Appendix B we discuss the nature of regular-
ization provided by a lattice, and in particular, the
umklapp conservation of momentum. In Appendix
C power-counting arguments are briefly justified.
In Appendix D, we derive the Ward-Takahashi
identities relevant for our analysis.

II. CHOICE OF GAUGE, PROPAGATORS, AND
PERTURBATION THEORY

We limit our discussion to the Abelian case.
Wilson’s action ona Euclidean space-time lattice is?

S=3 @ (Toll - v )e i,

+ DL+ yE)er e 4ni y | (ma'+ 403)2 fRR

b= 3 (et _ 1), (2.1)
2e*
Here n is a four-vector with integer components
(in units of the lattice spacing) representing the
sites of the lattice. i denotes a unit vector along
the ith axis. yF are the Dirac matrices for the

Euclidean space-time with the following algebra:
{55} =26,,, F)T=9F. 9, is a 4-component Dirac
spinor associated with site n. A ; associated with
the “link” joining sites » and n+1i is the gauge
field. f,;; =Ap+Apn, ;- A, — A,y i the analog
of the field tensor.

Use of a Euclidean lattice does not present any
conceptual problems. The Lorentzian Green’s
functions can be obtained from the Euclidean ones
by an analytic continuation.!?

We have explicitly exhibited dependence on a in
the action as this is more relevant to see the con-
tinuum limit in perturbation theory. This action is
invariant under the local gauge transformations

Yo, Y~ yrettn,
1 (2.2)
An.i_.An,i - ‘e'; (emi - 9").

The action is-also periodic in the A,;’s with a
periodicity 2m/ea. This enables us to consider the
range of quantum fluctuations of A,; to be (-7/ea,
+m/ea). We therefore get

+r/ea

g =r/ea dAni Ir:I fdd)n danesm
+r /ea . - ’
IUporee aa, I fay, db,es

(m) = (2.3)

v/ea

where m is any gauge-invariant combination of
operators and (m) represents the vacuum expecta-
tion value of the “T product” of this combination,
where ordering is with respect to the n, coordi-
nate. Integration over the fermion fields must be
regarded in the sense of integration over anti-
commuting ¢ numbers.*!* When a- 0, the range
becomes (-«,+«) and hence naively speaking the
finite range does not matter in the continuum
limit.

When a—~0, if e and m are fixed in (2.1) and we
assume A,;, ¥,, and §, pass over to continuous
functions, we recover the QED action.! In parti-
cular,

1 - — ivan 1 -
% ane ieaA,.g wnol + d)nole 1-EGA’" Z/JH) - ; an d)r’ - 0 ’

so that replacing ¥ by (1+9F) has no new effects.

Fields and parameters in (2.1) must be regarded
as unrenormalized quantities. To develop a per-
turbation expansion in powers of e, starting from
(2.3), we have to choose a gauge using the tech-
nique of Faddeev and Popov.!*'® The matrix of
quadratic form in A ; in the action (2.1) is not in-
vertible even in the discrete case.

Because the range of A,; is finite the Faddeev-
Popov procedure can be carried through only if
we choose a gauge that is periodic in 4,; with a
periodicity 27/ea (or a submultiple of it). Consider
the identity
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A({A,,;})Hf do 6(51n[2ea(A

)

(2.4)
where the c,’s are arbitrary parameters in the
range (-1,+1) and A{ A,,}) is the Jacobian factor
coming from integrating the 6 function:

adauh-I1 cos(eaZ @ - A%,))

X (constant) .
Here 6? is the value of 6, where the 6-function
constraint is satisfied. As usual'’ it follows that
A is insensitive to the gauge transformations of
A,,. Therefore, it is independent of {#%} and hence
of the c¢,’s. Thus integrating (2.4) over the ¢,’s

(m) = Z“Hf

-r /ea

J

T /ea

with a weight factor exp(-c,?/2ae?) we may write

(constant) x A{A,, D] ] f ” de,

1
X eXp (- Tt sin® [ea X:(AZi -

A:-i,l):D: L,

with A factoring out.

Substituting for the factor 1 from this identity
in both the numerator and denominator of (2.3) we
may make a change of variables A,; - A4;5. Since
the entire integrand including the gauge choice and
the Jacobian factor are periodic in A,;, we may
move back the range of integration over 4, to (-n/ea,
+m/ea), extracting a group volume factorH,, fdG,,.
We thus get

dA,, Hfdzp,,dz" m exp [s_ E;_eﬁ anf( ea) (An -A,, i))
n n i

"'"Z In COS(Z ea(Ay; "An-i,i))] (2.5)

where Z is the integral on the right-hand side
without the factor m.

Equality of (2.5) and (2.3) is mathematically ex-
act and meaningful if we work with a finite lattice
and periodic boundary conditions.

Now that a gauge is chosen, we may evaluate
the Green’s functions for non-gauge-invariant com-
binations of operators also; residues at the poles
of such Green'’s functions provide the appropriate
S matrix elements, which will be gauge invariant.

If we retain only the Fermi fields in the expo-
nent, we can apply Wick’s theorem to products of
Fermi fields with a propagator?

1

+(1 a)Z(;(Q‘_iRI_Y?) (2.6)

S(p)= —

where
Q;=2sin’(z p;a),
As a—0, we recover the continuum propagator
1
m—iy pi¥f
i
Because of the finite range of integration over
the A,;’s, we do not recover the simple “Wick’s
theorem” for T products of the A,;’s, even if we
retain in the exponent only terms quadratic in A ;

(Appendix A). We stretch the range of integration
to (=, +w) via a nonlinear transformation,

R, =sin(p;a).

S(p)~

teaB,; =tan(3ea)A; 2.m

which is an identity transformation when ea =0. In
fact, this procedure is necessary if we want to de-
velop a consistent perturbation series in the cou-

r

pling constant. ¢ in (2.7) is the bare charge. We

can now apply Wick’s theorem with a propagator!®
2u (2.8)

21 (4/a?) )

sin?(3 k;a)

Dij(k) =

when ¢ =1.
The Jacobian of the transformation (2.7)

1
— T (2.9)
I,,-,-I 1+(ea)’B,;*?

is equivalent to a term =3 . In[1+(3ea)’B,;?] in
the effective action. This is similar to the ghost
part’® of the action in non-Abelian gauge theories.
To O(e?) this shows a “mass” equal to e¢/(av2)
for the photon. Its function is to precisely cancel
a singular mass appearing in O(e?) photon self-
energy, thereby leaving the renormalized photon
mass zero. This will be explicitly demonstrated
later.

With transformation (2.7), calculating
(Apgi,*++Ap ;) amounts to evaluating a more com-
plicated T product,

( [Bnli1 _%(ea)an i13 teoe ]

1

x[B —3(ea)®B, ; P+eee]eee).

noig nodo

At the poles of the Green’s functions the nonlinear
terms only contribute to a wave-function renormal-
ization so that the renormalized S matrix can be
calculated'” by just considering (B, ; -+ B, ; ).

We illustrate the nature of regula.rlzatlon prov1d-
ed by the lattice in Appendix B. A characteristic
feature of lattice regularization is the umklapp con-
servation!® of wave vectors. We demonstrate that
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FIG. 2. Order-e? anomalous contribution to the pho-
ton self-energy.
FIG. 1. An anomalous contribution to the self-energy

of the electron. The gaps occur because the interaction
involves a flip to the neighboring site. A,; is supposed

to be located at the midpoint of the sites » and n +1. in the continuum theory. These lead to anomalous
diagrams (see Figs. 1-4 for examples). These

the umklapp processes do not have any observable new vertices occur with extra powers of ¢. But
consequences in the continuum limit. since there is a possibility that the integrals are

Looking at the action (Eq. (2.1), the effective ac- also singular in ¢, we cannot immediately conclude
tion in terms of B,; is exhibited in Appendix A [Eq. that the new diagrams do not contribute when a —0.
(A5)]), we observe that there are multiphoton ver- Indeed, if we consider an anomalous contribution
tices, apparently nonrenormalizable, not present of O(e*) to the electron self-energy (Fig. 1),

J
@ 4 + T/a +T/a d4k1 d4k2 1 1
Za,,(p)eaf f 4 4 2\ qin2(l 201
et denp CMY @M T .(4/a®) sin®(L kya) >5:(4/a?) sin®(3 kya)

X z {eos([p = 3(k, +k;)];a) +iyE sin([ p - 5(k, +ky))ia)}
i

1
*m +(1/a)35,(Q; —iR¥Y) p-ky-ky

x{cos([p —5(k,+ky)];a) +iyE sin([p = 5(k, +k,)];a)} . (2.10)

We note an additional power of a® from the two anomalous vertices, whereas when g =0 the integral has
a superficial degree of divergence three leading to at most®® a 1/a® singularity when ¢ =0. Thus a 1/z sing-
ularity is left, precisely as for the electron self-energy in a renormalizable theory. We justify such pow-
er-counting arguments in Appendix C. Note the strong momentum dependence in the vertex factors, which
appears because of flip from one site to the next, occurring in the interaction term:

a Z Ga(L=¥E) Y, 40, (L +9E) y, ] LGea)A 2

The momentum which appears at the vertex is the average of incoming and outgoing fermion momenta.
It is easy to see that first two terms in the Taylor series expansion about p =0 have the structure 6m(a)
+22(a)2ip»yf: Thus, for example, the linear term in p coming from the electron propagator is

+ 1/ + m/a d4k1 diks 1 1
j: f_ @m)* (2m)* 33, sin*(3kya) 3, sin®(3kya)

m/a T/a

x Z (E] +iyEO Z (E, +iyF0L) Y (+0,pn —ivEELD,) Z (E} - iyEO)(E] +ivFO]),

.r
>
<

FIG. 3. A superficially convergent diagram with an FIG. 4. An anomalous contribution to the electron-
internal anomalous renormalization part. positron scattering amplitude.
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where 0,;,0; are odd and E,, E},E} are even in (k,
+k,). Also O, goes over to O; under (&, +k,), ~(k,
+k,); and likewise for E;. Then the symmetric
way in which different components of internal mo-
menta enter shows that only 37, y¥p, terms sur-
vive, other terms becoming zero on integration be-
cause of the oddness of the integrand.

Now consider the third term in the Taylor series
expansion® of £{¥(p) about p =0, obtained by dif-
ferentiating twice with respect to the p;’s and setting
all p,’s to zero. Differentiation of propagators will
increase the powers of internal momenta in the de-
nominator, in the limit a =0, so that with a? out-
side, =(p) has the form ¢>0(1/a) and vanishes in
the limit a—0. When the vertices are differentiat-
ed, we notice a form a*0(1/a®) which again van-
ishes. This argument is valid for all higher terms
in the Taylor series expansion. Thus we see that
anomalous diagrams do not lead to “finite parts”
when g—0.

Note that in the case of the normal self-energy
diagram there are no explicit powers of ¢ outside
the integral. The integral is linearly divergent
when g =0. For the third term in the Taylor series
expansion, about p =0, the situation is now differ-
ent. Differentiating the vertices, we get an a? out-
side, and the integral remains linearly divergent
if a is set to zero. We thus get a®0(1/a) which be-
comes zero when a—0. But if we differentiate
propagators, there are no powers of a coming out,
and the integral is finite when @ =0. Indeed, we
recover exactly the corresponding expression of
the continuum theory. Thus we see that momen-
tum-dependent vertices do not lead to finite parts
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and the finite part is exactly as in the continuum
theory.

Now consider the O(e?) contribution to the pho-
ton self-energy, due to the anomalous 4-photon
vertex (see Fig. 2). Relevant vertices are [see
Eq. (A5) of Appendix A]

33' Z (Bm +Bn+: i —Bn —Bn+j,i)‘1

Z (Bni +Bpii,; = Bpj _Bn+j.i)

nij

3 3 3 3
X (Bui® +Bpyi,s° = Bpi® = Bpuy,i’)

25T (Lea-s)
; ezza3 Z (Z (B, = B,- i,l)> (Z (B,,,.3—B"_'.".3)>.

(2.11)

Moreover, there are counterterms

A (a)-—}: (Byi +Bpyi,j = Bnj = Buiyg,i)®

Z <Z (By; = Bp-i.; ) (2.12)

-[2z2 @) -a®?
coming from rescalings of B,; and o, respectively,
and counterterms

- (626!1) ; <Z (B —Bn—i,i)>2— (%ea)Z;B,.tz

1 2 3 2
@ eor () = [5” 3 sin®(pa) - (1 - —> sin(4p,a) sm(zp,a)] L <? . %) _460_2

+sin(3 p,a) sin(3 p,a)

where
A +m/a d4k 1
a? f_"/., (2m)* 33,(4/a® sin*(3 k,a)

and we have used the fact that

f+ /a dk Sinz(%kja)
e (@M 35.(4/a%) sin*(L k,a)

is independent of j and is 1/1642.

Note that the singular photon mass from the loop
[Eq. (2.14)] is canceled by the ghost contribution
Eq. (2.13). Choosing

Ifa) , 1

Z(32) 2a2e+42e,

23
~aZ e?+6,, Zsmz( b, a)

(2.13)
coming from the ghost part of the action.
Vertices (2.11) give an amplitude’®
. e?
—— sin(3 p,a) sin(3 p,a) pra (2.14)
T
11
a?@=- v e?,

l'[g? loop can be completely canceled in the limit
a—0.

III. PROOF OF RENORMALIZABILITY TO ALL ORDERS

Following the lines indicated in low-order cal-
culations in Sec. II, we prove renormalizability
to all orders below:

A. Normal diagrams contribute the same finite part as in the
continuum case

By “normal diagrams” we mean those that have
counterparts in the continuum theory, i.e., all the
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vertices involve one photon and two electron lines.
The vertex factor and the propagators are differ-
ent, however. By finite part we mean the part that
is left when subtractions are made exactly as for
the corresponding Green’s functions in the continu-
um theory.

Amplitudes for normal diagrams reduce to those
of the continuum case, when we formally seta to
zero. This is because all propagators go over to
the continuum ones, and the range of integration
(-m/a, +m/a) becomes (-, +). Normal vertices
also go over to the continuum ones, since we know
that we recover the continuum action when a 0.

In particular, the yyA; vertex

ie - -
a‘l TZ‘ [ an(l "'}’?) an+iAm' _me»i(l + ytE) Zl)n‘Am‘]
gives
ie E\ -ip;a E\ +ib;a
S5 [ =y e = (L+yF) et %],

where p is the average of the incoming and out-
going fermion momenta.'® As q¢—0 we recover
—iey? and the unit Dirac matrix does not contri-
bute.

Later we consider the structure of the terms
singular in ¢ and show that they can be removed
by a renormalization of parameters. Therefore,
the finite part is exactly as in the continuum the-
ory.

B. Anomalous diagrams give a vanishing contribution
to the finite parts

As there are “nonrenormalizable” vertices, we
encounter integrals of increasing singularities in
a. However, powers of a associated with anomal-
ous vertices occur outside the integral. Counting
powers of a, from both sources, we see that the
superficial singularity in a of any diagram is D, =4
- 3F - B where B and F are the numbers of extern-
al photon and electron lines, respectively.?* This
is exactly as in a renormalizable theory. The
singularity in ¢ does not increase with the order
of the diagram and only the self-energy and @sz,-
vertex diagrams have superficial singularities.?3
Thus new diagrams (examples, Figs. 1-3) not
present in the continuum theory contribute to the
divergence structure.

Such primitively divergent anomalous diagrams
have a general form?°

a™x (an integral with at most a 1/a™Pa singularity),

where® n>0. If first D, +1 terms in the Taylor
series expansion about external momenta are re-
moved by counterterms, the integral takes the
form a”"0(1/a""') (Appendix C) and vanishes when

a—0 (provided that all internal renormalization
parts have been already rendered finite by similar
subtractions). We consider the y-matrix structure
and Lorentz structure of the singular terms later.

Now anomalous diagrams with D, <0 can be han-
dled. If anomalous vertices are contributing to
renormalization parts (example, Fig. 3), these
become zero with suitable subtractions and hence
the entire diagram. If anomalous vertices are not
contributing to renormalization parts (example,
Fig. 4), the diagram becomes zero when g =0, be-
cause of excess factors of a outside the integral
(provided normal renormalization parts, if any,
have been rendered finite by subtractions). It will
be shown below that there are no singular counter-
terms resulting from rescalings for diagrams with
D,<0.

C: Structure of the singular terms

(a) The fermion self-energy Z(p) has a diver-
gence structure om(a)+z,(a)2), p;¥f. Z(p) is in-
variant under p;~ - p,, yF ~-»¥ for any particular
index I. This follows from invariance of the action
under inversion of the Ith axis.?® This invariance
gives the structure 6m(a)+E,-zi(a)p,.yf for the first
two terms of the Taylor series expansion of Z(p)
about p =0, which are the only terms singular in a.
The symmetric way in which all axes are treated
makes the z;’s all the same.

(b) The @sz ; vVertex has a divergence structure
Z,(a)yE. The discrete symmetry?® mentioned above
implies that T';(p, k) is odd under p,—~ -p,,
k=~ -k;, yF—~-7F and even under these reversals
for other indices. This immediately leads to the
divergence structure Z,yf.

(c) Divergent paris of the photon self-energy can
be removed by rescalings of the 4,; and the gauge-
fixing parameter «. We may rewrite the Ward-
Takahashi identity (D4) (Appendix D) in the form

Z 2i sin(3 p,;a)D,;"*(p) = D™*(p) X (nonpole terms), ,
7

(3.1)

where l.)j,.(p) is the full photon propagator, and the
nonpole terms come from one particle irreducible
parts of the Green’s functions

<sin [Zea 2': (Bni = B, ,.):‘ , B°j>
and
<tan I:ea Z': (Byi = Bpes, ,)} ,Boj> )

This means that when D;;"}(p) is “contracted” with
sin(3 p,a), we must be able to remove a factor
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DU(p)= L = s pia).

This implies that the photon remains massless

to all orders. (A nonzero mass would lead to a
term linear in p on the left-hand side.) Moreover,
D ;i 1(p) must have a structure,

~ 4 . 1
Dji-l(p) ’—‘A“(P) Z ? Slnz(ii’ka)
kR
2 1
+ g sin(z p;a)B,(p) .

Since 13“‘1(1)) is invariant under p - —p and i —j,
B,(p) must have the form (2/a)C(p) sin(3 p;a),
where C(p) has no dependence on index i. More-
over, 3 [A;;(p)+A,(-p)] must be a symmetric
matrix. The symmetric way in which different
space-time axes are treated shows that if we
choose K = (k, k,k, k), 3 [A;;(K)+A;(-K)] canonly
be a linear combination D6,,+ E, where the second
term is the same for all j and i. But a term like
E leads to 27,2i sin(} p,a) on the left-hand side of
(3.1), and such terms independent of index i are
absent on the right-hand side.

In contrast to the conventional treatment of quan-
tum electrodynamics, it cannot be shown that
C=-D. Indeed, in our order-e? calculation in Sec.
II, this did not happen. But in addition to a rescal-
ing of the photon field, we can make a renormali-
zation of the gauge-fixing parameter a. This gives
counterterms of the form

4 | 4 | .
-Db; = sin?(3 pa) - C — sin(z p;a) sin(3 p;a) .

(3.2)

A,; (as also C) is made finite (in the limit a ~0) by
one subtraction. Therefore A;;(p)-A;,(k) and
A;(p) - A, (=) are finite, and so also is A,;(p)
-3 [A(R)+ A (-R)].

Since we have proven that 3 [A, (k) +A4,,(-k)] is
diagonal for K=(k,k,k, k), the counterterm (3.2)
will make the photon self-energy finite in the
limit a—~0. We have to make subtractions off the
p=0 point to avoid infrared divergences.

(d) The photon-photon scattering amplitude has
no superficial singularities in a. Equation (D8) of
Appendix D,

lim (Z sin(2 k@)1, o, by, by, kX1 + (5 €a)®B,2)

k=0 i
=Y sin(3k OV emlle+ Ry gy )
i1

% D~,11 k) + cyclic) ,

where V(k+k,,k,, k;) has no poles in its argu-

ments, shows that the term independent of exter-
nal momenta is indeed absent in I1;;,,. Hence the
photon-photon scattering amplitude does not have
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logarthmic singularities in a as superficial power
counting suggests.

(e) Additive and mutliplicative renormalization
of parameters do not generate nonvanishing coun-
terterms from the anomalous vertices: To per-
form renormalization, we make the substitutions
Am’ - Zsl/zAR

ni)

= /2R
Zl’n—'Zzl 24)" ’

om
m=mpt —, e=epxZ /(Z,Z2}'7?),

zZ,
where Z,, Z,, Z,, e, m are to be regarded as
series in ey, the renormalized coupling constant,
with coefficients as functions of @ and m . This
gives the counterterm for electron self-energy:

(7. 1(3 g [P

+(1+9F)e* %% = (m o+ 4/a)> ~om.

Since Z, has at the most a logarithmic singularity
in a, the part that survives as a—0 is

(z, - 1)(: (+ip,¥F) - mR> - om,

which is precisely what is needed to cancel the
divergent part. Similar results follow for the pho-
ton self-energy and vertex correction counter-
terms.

For anomalous vertices, the counterterms ob-
tained by this procedure become zero when a=0.
Thus, for example, the anomalous vertex ae 2PypA°
gives

az(Z,/Z,)e Vb p AR

and since Z,?/Z, is a power series in e, with pow-
ers of In(am ;) as coefficients, aZ,?/Z,~0 as
a—0.

IV. DISCUSSION

We have shown that the only effect of the anoma-
lous vertices with corresponding powers of the
lattice spacing multiplying them is to contribute
to the unobservable wave-function, coupling-con-
stant, and mass renormalizations. The fact that
the classical lattice theory has the correct con-
tinuum limit was relevant in giving the correct fi-
nite part. The feature of renormalizable theories
that the divergences are limited to the first few
terms of the Taylor expansion of the Green’s func-
tions about the external momenta together with the
local gauge invariance, the symmetric manner in
which all the space-time axes were treated, dis-
crete symmetries like parity, charge-conjugation
invariance, all have played a crucial role in giving
divergent terms having the same Lorentz and y-
matrix structure as in the continuum theory. Since
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the divergences were logarithmic, it was possible
to remove all the divergent parts by a rescaling of
the few parameters available. Apart from the
features involved here, we could have chosen any
lattice action, any gauge, and any nonlinear trans-
formation without changing the continuum limit.

Our proof was in the context of renormalized
perturbation theory. If the renormalized perturba-
tion series were convergent, we could have con-
cluded that within the domain of convergence the
lattice action in the continuum limit is equivalent
to QED even in a nonperturbative context. Even
in this case, since at a critical point the depend-
ence on the coupling constant is nonanalytic, in
principle the lattice action could give a different
theory in the continuum limit, for strong couplings.

But indications are that the renormalized per-
turbation series in QED is an asymptotic series.?®
Therefore it is mathematically possible that the
continuum limit of the lattice theory is altogether
different from quantum electrodynamics as defined
through a Lorentz-covariant regularization.

However, quantum electrodynamics as we know
it today is defined by renormalized perturbation
theory. Our faith in this prescription comes from
the excellent agreement with experiments.?” In
principle it is possible that QED by itself is mathe-
matically meaningless, its successes with experi-
ments being due to a coincidence that the renormal-
ized perturbation theory in lower orders is a valid
approximation to the complete theory. Taken in
this light, our proof is of the same status as our
belief that renormalized perturbation theory re-
flects the characteristics of the exact theory.

Divergences are not just a feature of the pertur-
bation theory.?®®° Thus for any nonperturbative
considerations, whether it be constractive field
theory®® or the renormalization group,®® we must
first define the theory as a singular limit of theo-
ries corresponding to a sequence of actions with a
cutoff. In this context, a lattice cutoff has certain
natural advantages.®?® Since by faithfully following
the prescription of renormalized perturbation the-
ory we have shown that the lattice action of Wilson
and Polyakov has the same consequences as QED
with a Lorentz-invariant cutoff, it may be used for
investigating questions such as the existence of the
infinite cutoff limit of QED.

We expect our analysis to go through in the non-
Abelian case also. Hence the lattice action may
be used for renormalization-group calculations of
quantum chromodynamics.

Our proof involved an expansion of the effective
action (A5) in powers of e. Such an expansion is
absolutely convergent only for 3 ea|B,;|<1. But
B,; ranges over (—=,+x). However, if we sum all
diagrams of a given order in 7 i.e., diagrams with

a specified number of loops), we should not expect
any trouble on this account.

The case of an anisotropic lattice, which is rele-
vant for the Hamiltonian formulation* and for the
transverse lattice formulation,® will be treated
elsewhere.?®

The anomalous vertices of our action are anolo-
gous to the irrelevant variables in the renormali-
zation-group formalism.®° Qur analysis has shown
that the cutoff dependence of the bare charge to
reach the required continuum limit can be altered
by adding vertices of higher dimensions with cor-
responding powers of the cutoff. The freedom this
provides us will be analyzed elsewhere.
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APPENDIX A: EFFECTIVE ACTION

Consider a free scalar field on a lattice. The 7-
point Green’s function is given by

G'u"'"r:Z_l I;I J- dé, exp(—% a?(8+m2a?) Z,: ¢,z

+3a%y ¢n¢"+i) Buy * " D -

ni

(A1)

Fluctuations of 0O(1/a) for each ¢, give a con-
tribution of O(1) to the action and hence contribute
significantly to the integral. Hence? it is difficult
to make a connection between continuum limits of
the classical theory where ¢, - ¢.; is of order a
(because of continuity of the classical fields) and
the corresponding limit in the quantum theory.

To evaluate G,, ..., we regard the term

1 2
za Z(z)nqui
ni

as an interaction (flip from one site to the next)
and calculate

II [dasmexp(—é a(B+m?a?) Y ¢,.2>¢,,1 b,

(A2)

using
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. . This last identity is valid only if the range of in-
1,2 2,2 2
I;I { d(bmexp< za*(8+m’a )}; by +Z ],,:b,,) tegration is (-«,+) for each ¢,. Only then,

s evaluating (A2) is equivalent to applying Wick’s
_ 1 JaOgpTp theorem for the product ¢_ *++¢ ith ¢ ¢
=exp <é < > . p m mp w n (bm
;: a*(8+m*a’) =6,,/a?(8+m?a?). In this case

=Z-1<i f_'_(z ¢,,<1>,,“.>N 5 BumiOn” " * O Oy ¢"H>

%0 2N N-1
ez 2 j’v—,<Z ¢>n¢m.'> N¢>,.1---¢",-IZ(¢,,,H+¢>H,-1>>-

Hence, we get a recursion relation,

7=l
-

. - 2 z ' .
Gpyevon, ) On n;Cryeeemicroninne e a1 @ 2 Grypovony yympvi -
1= *1

This can be solved by considering the Fourier coefficients? and is given by applying Wick’s theorem to the
product ONERN d),,r with a propagator in momentum space,

1
D(p)= m2+2i(4/a2) sinz(%[),—a) .

If the range of integration is finite, say (-n/ea, + 7/ea), the above result is no longer valid. We may
evaluate (Al) in this case, as a power series in ea, by making a nonlinear transformation,

(A3)

$eab,=tan(3 ea)¢,. (A4)

Under this transformation, we get nonquadratic terms in 6,, in the exponent. We may now make an ex-
pansion in ea, using the propagator (A3). Thus, a finite range of integration effectively introduces inter-
actions. (If there are interactions already, it modifies them.)

Applying the transformation 3 eaB,, =tan(z ea)A,; for our theory, we get an effective action

1 1 -JPtn) L rPm)\ 2771 2 X 2 1-X 2
Se“=___2_2{1+< 2 4 >] —'_EZ F(")22+Z 1[1( F(n))

n n
€" p(m I"-14 ae® roy (1+Xp(n) F(n) 1+ Xpny

— D0 In[(L4dEM)A i E )] - (mat+ 4a®) D T, 4,

Lin) S(n)
- l—iIL(") _ 1+i1L(")
v5a® ) <¢n(1-7eE) Tt Vi + P U 0) T ¥a ) (A5)
Lim +211 1-1 1
where
x IlF(n) _I;‘(n)+151‘(n)_1'{‘(n)

n I:'\n)_IZF(n)+If‘(n)_I:(n)+I:(n) N

Here I} (k= N) for a set (x,,...,xy) stands for an algebraic multinomial of degree %,

ﬁ-.
N _
I, = Koo Xy,

Gippete,iy)

where no two indices of the set (i,,...,%,) are identical. IF‘™ 1 P™ [F{™ gtand for such a multinomial
formed out of § ea B,;’s with ni’s corresponding to a “link” [Fig. 5(a)], the sides of an oriented
“placquette” [Fig. 5(b)] with vertex at site », and the sides of an oriented frame [ Fig. 5(c)], respectively.

In deriving this form of S ;, we have used the trigonometric identity
N N N DY
tan™X, + -+ tan™X, =tan™ !-}V_—I},LISN—_——-— ,
I — I3+ 1) — + <

where I =1 and the highest term I¥ is in the numerator or denominator according to whether N is odd or
even, respectively.
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Observing that IY is the coefficient of x* in
fo= @ +ixx) (1 +ixx,) * + (L+ixxy),

we can rewrite S,,, in the form

eﬂ_— 2 Z sin® eptn)

P(n)

= 2 sin®20,(,,+ 2. Incos20p(, = 2 In|fy N
20e” [, F (m

L

— (ma*+4a") 3 Pyl +50° 2 (Ball= vE)e200im g, + Dpa(levB)eBrimy, |, (A6)

L(n)

where 6 is arg f. f;(n) fp(my, andfp(,, are the
functions f, associated with the link, placquette,
and frame, respectively, at the site n.

It is interesting to observe that the B,; trans-
forms under local gauge transofrmations as

B, - (2/ea)tans (6,, - 6,)
1+leaB,tan} (0,, - 6,)

Bni -
which is a projective transformation.

APPENDIX B: NATURE OF REGULARIZATION PROVIDED
BY A LATTICE

In this appendix we demonstrate the umklapp
conservation of momentum provided by a lattice
and show that it does not lead to any observable
effects. We also exhibit the nature of regulariza-
tion provided by a lattice.

We consider the decay process “1” —“2” 4 “3”

+%“4”, with “1” at rest. With a simple Ay3 vertex,

we get in the lowest order, an amplitude
m~y xa*expli(k, - k, - ky— k)na) . (B1)
n

The sum vanishes unless p;= (¢, - k, - k, - k,),
is an integral multiple of 27/a for eachi. It is the

+1/a +7/a d4k d4k
2115 217 4 (21r)" m +(4/a2)z;‘sm Ry a)

Z(p) ~Z a* exp(ip*na) D, =ff oo

=-r/a -

T

periodic 6 function (27)*6*(p | mod 27/a) which has
the property that its integral is one whenever the
range of integration covers the point where p; is
an integral multiple of 27/a for eachi. All ob-
servables in a lattice theory have this periodictiy.
States with momenta p; and p; + 2N, n/a are iden-
tical: the phase factor e'*'* assumes identical
values at the lattice sites. Therefore to label

the states, it is sufficient to restrict each p; to an
interval of size 2n/a, say (-7/a,+m/a). An
enumeration of the number of states in a finite
lattice and the available number of degrees of
freedom justifies this.

If now the y field is sufficiently massive, decay
processes wherein all the wave vectors are in the
forward direction are possible. [For example,
“1” at rest and “2”,“3”,“4” each carrying a
momentum 27/(3a).] But such processes can occur
only if at least one particle has a momentum of
the order 7/a. In the limit a~0, this means “1”
must be infinitely massive. Hence suchprocesses
are irrelevant.

But virtual particles in loops can have arbitrar-
ily large momenta. We consider the order-®
self-energy in 2, Ao, theory (Fig. 6):

dk,

1 1

X o7y (4/a%) 3 sin’*(L kyya) mP+ (4/a%) ), sin?(Lk,,a)
X (2m)*6*(p - ky - k, — kg | mod 27/a). (B2)

n+j <

| 4

(a) (b) (c)

FIG. 5. (a) Link, (b) plaquette, and (c) frame. The
fourth axis is not indicated in (c).

If p, k,, and k, are such that (p -k, - k,),> n/a,

the value of k,; that contributes to the integral is
(p - k,—k,); - 2n/a (an umklapp process'®). This
is true generally. For any given configuration of
the other momenta, there is a unique value of the

<

FIG. 6. The lowest-order self-energy diagram in ¢*
theory.
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momentum we are integrating out, in the range
(=7/a,+m/a). But as the integrand is periodic in
ky;, the effect is just that of an ordinary 6 func-
tion:

+v/a +7/a qu d4k
(p)~ f f Byt DEIDE)D(p — k- k) .

- /a"-1/a

(B3)

This formally goes over to the divergent integral
encountered in the continuum theory when a - 0.

The contribution of the “normal” processes to
Z(p) is

)~ [

-r/a 't/u

X D(kl)D(kg)D(f) —ky—ky=ky)

+1/a qu dék
(2m) @) )I

xHQ(vr/a— (p=Fk,=ky),)
i

X0((p~Fk, =Fky);+7/a)

which also goes over to the divergent integral of
the continuum theory when a is set equal to zero.
This does not mean that the contribution of the
Umklapp processes vanishes when a—~0, as will
be shown below. The reason is that lim,_,Z(p)
is divergent and « =+ is possible.

It is seen from Fig. 7 that the area of the & ; -
k,; space which contributes to the umklapp pro-
cesses is 2 X 3 (r/a)? for eachi. (We have set
p =0.) Using the lower bound, D(k)> (m®+ 16/a®)™,

7\274 1 s
Z > a 2 z
umklapp (0)> constx [<a> ] (m +16/a )

- (85)

which blows up as a— 0.
On the other hand, if the integral were conver-
gent when a=0, since the total and the normal

T/a /a ;k

FIG. 7. The Umklapp processes correspond to the
shaded region in this k,-k, space.
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contributions have the same limit, the umklapp
contribution should vanish in the limit a - 0.

This can also be justified using simple bounds for
the integrals. We will do this for the case of two
internal-momentum integrations, and the proof
for the general case will be a straightforward ex-
tension. The umklapp process can occur only if
at least one component, say k,,, of either mo-
menta, is greater than 3 7/a. We now integrate
over all variables except k,(,,. Because we have
assumed that the integral converges in the limit
a—-0, we must get

+v/a
mlotal = [ dk2(4)f(k2(4); a); (BG)

v/a

where f falls off faster than 1/k,,, when a=0.
Therefore, the umklapp contribution

r/a
mumklapp>_[/2 dk2(4)f(k2(4)§a) (B7)

goes to zero as a—0.

Thus the umklapp processes do not contribute to
the finite parts. On the other hand, in Sec. III
we analyzed the structure of the terms singular
in a using expressions like (B3) which include
both the normal and the umklapp contributions.
Thus the umklapp contributions are completely
absorbed in the divergent counterterms.

There is nothing scared about the particular
range (-m/a,+m/a) we have chosen, except that it
is symmetric about the origin. Any range of width
27/a would give the same observable effects. The
terminology “normal” and “umklapp” depend on
the choice of this range. But for every choice, we
have the same number of umklapp processes and
we get the same contribution from them.

We observe that the propagator (in the scalar
case) is positive definite and has the bounds

1 1
o ZPW = e

The range of integration is also finite and there-
fore the integrals [e.g., (B3)] are finite. However,
if m®=0 the propagators are bounded on one side
only, so that the lattice does not provide an in-
frared regularization.

To compare with the amplitudes of the continuum
theory, we make the transformation

(B8)

K,:% tan(zak;) (B9)

which is an identity transformation when a=0,
so that we may continue to regard K; as the mo-
mentum. Now,

dk; = (1+ +a®K 2)dK,

and
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1 1
T @A sin'Gria) T (%K;a)zrlx?
i

m2+K? %ZEK oo’
(B10)

The range of integration becomes (-°°, +»), Thus
we get integrals very similar to the corresponding
continuum integrals. However, the propagator is
worse behaved at high momenta than it is in the
continuum theory. It approaches a constant (m?®
+16/a%)™* instead of falling off like 1/k2. However,
the Jacobian factor (1+ ;a°K ;%)™ makes every loop
integration finite.

APPENDIX C: JUSTIFICATION OF THE POWER-COUNTING
ARGUMENTS

We will briefly justify the power-counting argu-
ments we have extensively used. A detailed treat-
ment is given in Ref. 29.

We first remark that the leading singularities
in a if any, can be obtained by replacing the prop-
agator denominators by the corresponding rela-
tivistic expressions.?® To this modified expres-
sion we apply a straightforward extension® of
Weinberg’s theorem,® which we state below:

Definition. A real function f(P) (where P ¢ R")
belongs to the class A, if to every subspace S

CR" there exists an integer a(S) (power) and B(S)
(logarlthmlc power) such that for any choice of
m=n independent vectors Ml, - M

md

| AR, ny 0+ My, s Tyt o+ + 8,7, + ©) |

5Mnlot(M1)(lnnl)ﬂ(Ml)nza({Mth))

,_,nma((.u,,....Mm))(lnnm)B((M1 ..... Mm)) (Cl)

ni
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whenever Ce w, n1>§.1, 172>b3, ..
by...,b, depend on M, ..
on Ny ey Ny

If we collect together the » internal momenta
in (C1) into a 4n-dimensional vector P, then the
integrands of our modified expressions belong®
to the class A,

We are interested in the dominant singularity
in a of

.y Np>d,, Where
.,M,, and on C, but not

+r/a +r/a - -
f":f dyl"'f dynf(M1y1+“‘+Mn3’n)~

-r/a r/a
(C2)

Theovem. The dominant singularity of f, in a is
given by the (superficial) degree of divergence
of (superficially) the most divergent subintegra-
tion.

The theorem can be proven® by following exactly
the technique developed by Weinberg.*® Only the
intervals J *(n) (in Weinberg’s®® notation) are now
bounded [because the range of integration is (—/
a, +m/a) instead of (-, +=)].

It is immediately clear from the theorem that
any diagram involving the anomalous vertices does
not contribute to the finite parts. When we have
made suitable subtractions from all the renormali-
zation parts, the superficial degree of divergence
of any subdiagram is less than the power of a out-
side the integral. Also when subtractions are
made on the internal renormalization parts, the
most singular subintegration is the overall in-
tegral, so that our estimates of the singularities
of the counterterms is also correct.

APPENDIX D: WARD TAKAHASHI IDENTITIES

Consider the generating functional in the pre-
sence of external sources,

z(,m,m=2"]] f.::; dAnifdlp diﬁnlexp[ %ez ; Sin2<212 eald, ‘An-i.i>]
+Z 1ncos<eaz A, -4, ,)>

+a Z]ni tall(zea)Ani+a Zﬂjnnn"'a Z 77,,4’,.} (Dl)

We have considered j,; as the source of B,; = (2/ea) tan(%ea)AM, because we are interested in the Green’s

functions involving B,,;’s.

Ward-Takahashi identities are derived in the standard fashion'® 3! by making a change of variables cor-

responding to an infinitesimal gauge transformation:

—ea<; [tan(ea Z s {)> +tan <ea 2‘: Qs i =Aning, «)ﬂ —-8tan <e” Z A “An-i,4)>>l

1 = .
+e—aa4 Z [jn-i, {(Secz(%eaA,,-" "»J —j,,,(secz(%eaA"‘)),] + ia47] n<¢n>l - uﬁ@r&.’ﬂn =0 ’ (D2)
i
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2. Q. U

FIG. 8. Contributing diagrams in order e? to the
Ward-Takahashi identity for the photon propagator.

where {**+), means the corresponding Green’s
function in the presence of external sources j, 7, 7.
Differentiating once with respect to B,; and set-
ting J =0, we get
1 1
OBop) + —— (80— 5n,o)<—1+—(W> =0,

(D3)

where O, stands for sum of the operators occurring
in the first term of (D2).

This equation looks simpler if we consider the
Fourier coefficients,

D (pXO(p), B,e*s/?

= 2 sinttp )T
= ea P T ey 7 )
(D4)

where

O(p):a“ Z g-ipena
1 .
X ['Ea—ez? sin <2ea ‘Z A, -An_,',.)>

+ —Lll—z-tan <ea Zi: (A —An-i.i)>] , (D5)

where D™'(p) is the denominator of free photon
propagator. This identity is easily verified'® for
our free photon propagator:

1
D (p) S 2(ea)2i sin(zp,a)
1
x S, (4/a*) sin*(zp,a)

i

= 2i sin(3p,a)
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QL —~ =

FIG. 9. The one-photon pole dominates in the limit
of zero momentum transfer, in the Ward-Takahashi
identity for the J9A; vertex.

which is true when a=1.

Identity (D4) is complicated because of our com-
plicated choice of gauge. Some lower-order dia-
grams which enter in this identity are shown in
Fig. 8. We have verified the identity to O(e?).

" For the JpA, vertex, we get the identity

D (X0 R4 (p+ RV (p)) =i[Sp(p+ k) —Sp(p)]. (D6)

In the limit £ -0, the leading contributions comes
from the one-phonon pole of the Green’s function

on the left-hand side (see Fig. 9, for an example).
Using (D4) and considering terms linear in k, we

get

lim[z 2 sin(32,a)1+ (3ea)’ByH)| —iel;(p, k)]
g0l § €a

—i[SF'l(p+k)—SF"(p)]=0] .
Thus we no longer have Z, =Z,; rather,

Z 1+ (bealB,*)=Z,.

For the photon-photon scattering amplitude,
we get the identity

D' (kX0 (k)B; (k,)B,(k;)B, (ks))
=2 sin(3k;,0) D Viyg ks +E5 Ry, ky)
Jiiz

xﬁh‘l(kl)ﬁ. (k,)

j2t2

+(cyclie), (D8)

where V; .. ;. (k,; k,, k3) is the one-particle irre-
ducible part of the vertex

(1+ (zea)’B, ; *1B,,:1,Bn,1,) -
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FIG. 1. An anomalous contribution to the self-energy
of the electron. The gaps occur because the interaction
involves a flip to the neighboring site. A,; is supposed
to be located at the midpoint of the sites n and n +1¢.
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FIG. 3. A superficially convergent diagram with an
internal anomalous renormalization part.



FIG. 2. Order-e¢? anomalous contribution to the pho-
ton self-energy.



FIG. 4. An anomalous contribution to the electron-
positron scattering amplitude.
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FIG. 5. (a) Link, (b) plaquette, and (¢) frame. The
fourth axis is not indicated in (e).



FIG. 6. The lowest-order self-energy diagram in ¢*
theory.
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FIG. 7. The Umklapp processes correspond to the

shaded region in this k -k, space.



FIG. 8. Contributing diagrams in order e? to the
Ward-Takahashi identity for the photon propagator.
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FIG. 9. The one-photon pole dominates in the limit
of zero momentum transfer, in the Ward-Takahashi

identity for the JA; vertex.



