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We investigate the forward production of large-but-fixed-mass fermion diffractive states in the multichannel
eikonal model in the high-energy limit. The sum over paths to reach the final diffractive state can be treated
and solved as a random-walk problem with constraints, i.e., it is a diffusion problem with various boundary
conditions. We find that the sum of paths is not dominated by a “single-hard-multiple-soft” transition path,

unlike fixed-angle elastic scattering.

I. INTRODUCTION

A steady flow of experimental data has in the
past few years made the properties of hadronic
diffractive excitations (DE’s) much better known.
Production of DE’s was first discussed by Good
and Walker and since then it has been studied ex-
tensively by many authors.!?

For example, nucleon DE’s can be studied by
the reaction p +p = p +X where the Feynman scaling
variable is near 1, by exclusive reactions of the
type p +p = (p +nn’s) +p where the n pions have
momentum near to an accompanying p, by similar
reactions in nuclear targets, etc. Reactions in-
volving DE’s resemble closely high-energy elas-
tic scattering of the hadronic ground states in
their (constant) energy dependence and to some
extent in the sharply forward-peaked shape of
the differential cross section. We now have a
systematic picture of the variation of experimen-
tally interesting quantities in the production of
DE’s: (i) The ratio of the elastic cross section
to the production cross section, summed over all
DE masses, is of order 1, and not rapidly varying
with energy at several hundred GeV and above. (ii)
The slope of the DE production differential cross
section do/dt | ,_. b at ¢=0 shows a systematic
decrease (flattening) as the mass of the DE in-
creases. (iii) do/dt| ., has strong dips which
disappear as the mass of the DE increases. (iv)
In impact-parameter space, the production profiles
are peripheral (they peak at some nonzero im-
pact parameter). (v) The elastic scattering cross
sections of nucleon DE’s on nucleons show a sys-
tematic decrease as the mass of the DE increases.

One mode of analysis of these processes which
has proven useful is the Regge formalism, with
triple- Pomeron contributions.?®

Another mode of analysis employs a multichan-
nel eikonal approach.*'5:® This approach pushes
the phenomenology down one level, to “element-
ary” couplings, transition and elastic, of DE’s
with (absorptive) ¢ -channel exchanges. The model
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has the advantage of being explicitly s-channel
unitary, and has several nontrivial consequences
of interest. Moreover, a class of these models
with physically reasonable assumptions (“hopping”
models) seems to be qualitatively in agreement
with the experimental properties listed above.”
The hopping models are characterized by ele-
mentary transitions which are nonzero only be-
tween nearest neighbors, i.e., between DE’s which
differ in mass by one unit, say a pion mass. They
also happen to be exactly soluble.

We seek in this paper to uncover certain prop-
erties of multichannel eikonal models associated
with forward production of large-mass DE’s. We
are motivated in this by other work, some recent
and some not so recent, on large-momentum-
transfer processes. We refer in particular to
high-energy fixed-angle processes in potential
scattering,® to the same process in quantum field
theory®:'® (and by extension'! to large-p, inclusive
scattering of hadrons in the quark-scattering pic-
ture), and to large-p, inclusive scattering of had-
rons in the constituent-exchange model. In each
of the above problems, ¢ is a fixed fraction of
s; a common dynamical feature which emerges
is that, in a multistep picture, the large-¢ final
state is reached by a single hard step in which
most of the momentum transfer takes place ac-
companied by multiple soft steps. Naturally this-
fact, if it goes beyond the models in which it can
be verified, leads to a considerable simplification
in treatment of these processes.

However, we do not treat here the case in which
the final DE mass is a fixed fraction of Vs ; this
case would be the true analog of the processes
mentioned above. Rather we report a modest
beginning to this end, in which s =« while the
final DE mass is fixed but much greater than the
ground state. This limit may, of course, be of
interest in its own right. In this limit, the struc-
ture of any graph contributing to the eikonal is,
once the elementary transition couplings have
been extracted, identical to the topologically
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equivalent graph appearing in the elastic one-chan-
nel eikonal problem. Since the latter problem has
been solved long ago, the problem reduces to that
of summing over all possible mass-change paths
which lead to the given final DE mass, with weights
of these paths determined by their respective
elementary-coupling sequences. We have been
able to treat this latter problem by using tech-
niques well known from the theory of random walks
in one dimension. We have drawn heavily on Chan-
drasekhar’s treatment of Markovian processes.'?

We show that, generally speaking, the amplitude
for the forward production of large fixed DE
masses in the high-energy limit is not dominated
by the one-hard-multiple-soft terms in the sum
over paths: This result holds for a wide range
of dependence of the elementary-coupling strength
on the mass change, as long as this coupling
strength decreases as the mass change increases,
an assumption which seems reasonable.

In Sec. II we work out the details of the sum over
paths, while in the last section we compare the
results with the “one-hard-multiple-soft” approx-
imation.

II. SUM OVER PATHS

We consider the high-energy forward (or fixed
transverse momentum transfer) scattering to two-
nonidentical fermions. This process is described
by multiple exchange in all possible orders of
some connected unit. This unit completely char-
acterized the eikonal function ix(s, b) through the
impact-parameter Fourier transform of the am-
plitude when one unit is exchanged. Multiple ex-
change then ensures s-channel unitarity. The unit
exchanged may contain multiparticle intermediate
states and thus give an absorptive eikonal function.
In the multichannel eikonal picture we consider
here, DE’s are treated explicitly rather than
through the absorptivity of the exchange. (We
assume only one of the fermions can form DE’s
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FIG. 1. m, is a diffractive excitation of m j- The
wavy line stands for some connected and possibly s-
channel absorptive unit.

for simplicity.) The elementary-transition
strengths are taken as a simple function of the
DE masses, as shown in Fig. 1; in that figure j
indexes the DE state, by mass. Otherwise we
assume the DE behaves like the ground state in
the multi-unit-exchange amplitude.

Now in the dominant pieces of the multi-unit-
exchange, the fermion masses along the sides
play no role; recall the z-unit-exchange ampli-
tude has a Fourier transform proportional to the
Fourier transform of the single-unit-exchange to
the nth power. In this case, the amplitude for pro-
duction of a given final state m, factorizes into a
dynamical piece characterizing the one-channel
problem times a product of coupling strengths
defining a path to reach m; from the initial m,.
Figure 2 shows one path to reach m, (say) in a
triple-exchange graph. For each graph we must
sum over paths. It is this sum over paths with
which we are concerned here.

The Nth-order amplitude is then

N
My =M 32 I @lme,_mi,), (2.1)

wheré o indexes the path, and where M\ is the
Nth-order amplitude in the one-channel problem.
There are two physical restrictions in this sum
over paths: first that the sum over mass changes
is m;-m,, and second that at no intermediate
stage does the mass m,, drop below m,.

We shall consider ¢ to be a function only of the
mass change (and, by time-reversal invariance,
of the magnitude of the difference):

)=o(] mi, "mij_l|)5¢(l om|) .
(2.2)

The sum of paths in Eq. (2.1) is then symbolically
written

¢(mij_1?mij

N

= II otmi,_mi) =3 [o( om|)" .

o j=1

(2.3)

$(m,m,)
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FIG. 2. A sample graph for the production of m;. Only
the top line is allowed to have diffractive excitation.
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We now use our large-final-mass m, condition
by approximation of the sum over « by an integral
and by working with probability densities. Namely,
let us denote the unrestricted sum over mass
changes (substitute the label g for 6m)

62¢(q)-' r ¢(q)dq =K . (2.4)
Then
T(q) = % #(q) (2.5)

is a probability density for the (elementary) mass
change q.

The calculation of the restricted sum over paths
in Eq. (2.3) is then converted to the calculation of
the differential probability Wy(Az)dAy of coming
within dA; of a net mass change

Ap=m;—m, (2.6)
in N steps,

8= Wy(ads,= [ [r(a)da)", (2.1)

o

subject to

[ r@aa=1 (2.8)
and

L

> q;20VL<N, (2.9)

=
where the integration @ is restricted to the region

N
Ap—3dbp< A=) 0m;<Ap+3dAg,
i=1

(2.10)

and by dropping the subscripts on 6m;=¢; in Eq.
(2.7) we have assumed that the probability 7(ém;)
of a mass change dm; on the jth step is the same
for all j. ‘

In order to solve (2.7) with the restrictions (2.8)
and (2.9), we first solve it with the restriction
(2.8) alone [case (a)], and then use this result to
solve for case (b), when (2.9) is added. The meth-
od we use is adapted from the study of random
flights in Ref. 12.

We first treat the integration region (2.10) by
integrating the ¢’s over all space with a weight
D, which is unity where (2.10) holds and 0 other-
wise:

1 (= sin(3pdA .
D1='7; J‘m————(-gpp——-F—)eXp[ip(A—AF)]dp.
(2.11)

Additionally, since dAj is small, we approximate
the sine function in (2.11) by its argument. Then,
exchanging the p and ¢; integrations,

Wy(Ap)dAg = dzAnF J“” dpexp(-ipAp)Ay(p),
(2.12)
where
o0 N
Ax(p)E[f dq T(q)exp(iqp)] . (2.13)

The region ¢ =p~' dominates in (2.13). Expanding
the exponential and keeping only the first few
terms,

AN(p):{[ dq 7(q)[1 +1igp —%(PCI)"’]}

~exp(iNp(q) - 2p°N{(4a*))
=exp(-zp°N{q®)), (2.14)
where we have approximated by large N and re-
called 7(¢)=7(|¢|), so that (g)=0. The expres-
sions above define the average ( ). Using (2.14)
the integral in (2.12) can be performed.

Wi(Ag) = (27N (g2))"V2 exp (- (2.15)

AFZ
2N <qz>> )
The probability Wy(Ay) is correctly normalized to
unity.

Wy(Ap) has the appearance of a diffusion func-
tion. Indeed we shall now form a diffusion equa-
tion of which Wy(Ap) is the solution. The equation
can then be solved with the remaining restriction
(2.9) as a boundary condition, giving us the solu-
tion of the original problem.

Since in (2.15), N appears analogous to time in
a diffusion function, we form a continuous param-

eter time ¢ by the relation
N =«kt; (2.16)

k is the number of collisions (mass changes or
eikonal exchanges) per unit time. Then

2

W b(A) = (4nD1)Y/2 exp(- ﬁ)t) =Wl ),

(2.17) -

where we hﬁve defined the “diffusion constant”
D as

D=3k{q%) . (2.18)

Finding the equation for W is now a standard
procedure, which we repeat only for convenience.
Consider a time interval 6¢ large enough for the
number of collisions to be -large but short enough
for (| 6A|%) to be small on a scale set by D. The
probability of an increment 6A in 6¢ is determined
by the distribution W(6A, 6¢). Then

W(A,t+6t)= fw d(6A)W(A = 6A, 1YW (DA, bt) .
(2.19)
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Since (| 5A|2> is small, expand W(A —8A, t) in a Taylor series about A under the integral, and do

the same about ¢ on the left-hand side. Then

4D6¢

W(B, 1)+ 0t +O((BtF) =W(A, 0)+(4mD 60 ™ fd(aA)exp(‘ (M)z) {<_5A o > +1(0A) ilw}

The first term within the large curly brackets
vanishes by symmetry, and we have

oW 1 a°w N
—l = = — -1/2
57 00= 5 5ar (4nD51)
(GA)Z.]
A)(5A)? -
xfd(é )6 )exp[ 4ot |’
or

W acw
o Daar (2.20)

just the standard diffusion equation.

We could then have treated the unrestricted case
by solving the diffusion equation (2.20) with bound-
ary conditions

w(A,0)=7(A).

The restriction (2.9) is then added by a second
boundary condition,

W =0 for A=0.

(2.21a)

This condition prevents the mass~-change sequence
from cvrossing the point A =0; we assume the in-
itial ground-state position lies infinitesimally
above this. _

We solve (2.20) with conditions (2.21) by standard
Fourier-transform methods.!* Before we solve
the restricted case [with boundary condition
(2.21b)], it is instructive to re-examine the un-
restricted case [with boundary condition (2.21a)].
The solution is

W(A,t)=(4nDt)™V/? f dA"r(A')exp[— LA;N—)Z] .

4Dt
(2.22)

—c0

We find a small-¢ (small—N) form by expanding
around A=A’ :

W(A, t) 5, 7(A)+ T"(A)DE (2.23a)
or
W (8)= T(A)+ 3 (AHT"(AN . (2.23b)

By expanding (2.22) around A’= 0 [reflecting the
dropoff of T(A)] we find large-N corrections to
Eq. (2.15):

A2
(A t) t—>0(47TDt) I/Zexp< 4Dt>

[1 <A2>(4Dt 82; )] (2.24a)

(2;21b)

r

or

W& igen(2e (A9 exp (- )

<[1- 3 - v

which is more relevant to our problem.

Addition of the boundary condition (2.21b) simply
eliminates even Fourier components in the solution
of (2.20). We find for this restricted case

W(A, £) = (47D) 2 f ) da'T(a’) {exp [— %?f}

- em[- S50

(2.25)

(2.24p)

We expand this about A’=0 to find the interesting
large-N behavior:

WA, 1) o, (DI e exp (- g,

(2.262)
where
@n,= [~ asama). (2.27)
(V]
In terms of N rather than #, (2.26a) reads
2\1/2 2\}=3 /2
WN(A)largr\eJN ;T. (N <A » <A>+ a
AZ
Xexp<_ SN(AY ) (2.26b)

The small-N behavior continues to be linear in
N, as in Eq. (2.23D).

III. SINGLE-HARD-COLLISION APPROXIMATION

Here we wish to compare the results of Sec. II
with an approximation in which the paths containing
a single large (hard) jump are dominant. Denoting
the weight for this path by P, we have

8 A ptB - N=
P= f da, f dAzzj W (A)T(Ap - A, - A)
(0] Ap-8 k=1

N-k-l(A )9 (3-1)

where B is some small range characterizing the
size of the soft collisions, B<< &;; Wi)(A)) and
W, (4,) must also be calculated under the re-
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(a)
Af oA A
Aaﬂw'v—""v-w
steps
13{ (b)
b,
steps

FIG. 3. (a) The one-hard—multiple-soft path configur-
ation for a net mass change Ag. (b) These paths are
explicitly excluded.

striction that no large excursions are permitted
in making the net small mass changes. A, and A,.
For convenience we also let 8 characterize this
restriction, namely W{% ,, and W{} ,, satisfy Eq.
(2.20) with the boundary conditions W'’=0 for
A=0and B and W'=0 for A=A, -Band A+ B.
We replace the argument of 7 in Eq. (3.1) by Ap.

Equation (3.1) can be pictured graphically as
in Fig. 3(a), while the paths ruled out by the re-
strictions in W’ and W*? are shown in Fig. 3(b).

We can use large and small numbers of step
forms for the W in Eq. (3.1) by dividing the sum
over k into three regions,

Neky N

N 2
D ITSD HED I
k=1 k=l k=Rj*1 k=N=k,+1

where &, is a convenient division point. Generally,
the N dependence of the first and third sums is

the same as the second sum but with a small co-
efficient (because these sums are basically end-
point contributions). Thus we can write

8 ApB
Pr7(Ap) —[ an, [ 77 aa,

A =B k=R
X W, (8,). (3.2)

N-p X
W;')(Al)

The solution W'¥)(4, ¢) is

WL o= cald)exp -0t(3 ) Jsin 2%,
(3.3a)

2 (* Nos RTA!
c,,(B)z—B-f 7(A’)sin 3 da’,

0

(3.3p)

We can deal with this expression by noting that,
since the large-N (large-t) forms of W are needed,
we expect that for finite B8

D¢>>p2.

Therefore only the first few terms of the sum
over »n are of interest. In particular, keeping only
n=1 yields

w4, )= c,(8) sin ”_BA— exp (_ Dt %;)
or ‘ (3.4)
WH(A) = const X sin"_BA_ exp (_ n2<2Aﬁ"'2>k;> -

For WY we have

W (4, £)= Z”: d,(8) exp[-Dt(%)z] sin ™2

28 ?
: (3.5a)
_1 2 mwd
a.(8) = 3 ! 7(6’) sin 58 ds’, (3.5b)

‘where 6=A-A,+B. As above, this function can

be approximated in Eq. (3.2) by

X ) 2 A2 kl
W, (4) = const X sm—gg exp(— ﬂ_<8—ﬁ>r-> (3.6)

Inserting (3.4) and (3.6) into (3.2), we have

N-ky 2 2 ) .
P ~const ;; exp{-— lé%—}[iﬂ iV -k - 1)]} 7(Af)

=const XN [ ' dy exp[— ”Zg'\f) N1+ 3y)] T(AF)

2(A2
= const’ x [e (— 78<Bz >N>

_exp<— ”;;Ap N)} T(ap). (3.7

This exponential N dependence is to be compared
with the complete result given in Eq. (2.26b). We
see that for fixed Ay and increasing N, P is a
vanishing fraction of the complete sum over paths.
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