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%e observe that the theory of the Yang-Mills field with bare mass is included in the framework of
spontaneously broken gauge theories, except that the Higgs field is realized nonlinearly. %'ith the nonlinear

symmetry associated with the Higgs field taken into account, the SU(N) massive Yang-Mills theory and the
associated SU(N)L X SU(N)z nonlinear o. model are shown to be renormalizable and asymptotically free
theories in two dimensions.

I. INTRODUCTION

Extensive studies of non-Abelian gauge theori. es'
in recent years, both theoretical. and phenomeno-
l.ogical, originate in the proof of their renormal-
izability' in 1971. Renormalizable massless Yang-
Mill. s theories' give rise, via the Higgs-Kibble
mechanism, ' to renormalizable theories of non-

Abelian massive vector mesons. Such spontane-
ously broken gauge theories, '"' however, ex-
clude the theory of the Yang-Mills field with bare
mass, conventionally defined by the Lagrangian

+-,' m'(A'„)'.

In this form the massive vector field (Proca field' )

A'„ is no longer regarded as a gauge field (since the
mass term is not gauge invariant) and the renor-
malizability pxoblem is difficult t:o investigate.

There have been various attempts' o to explore
the renormalizability of the massive Yang-Mills
field. Most approaches are, in essence, based
upon the non-Abelian generalization of the
Stueckelberg formalism for neutral vector fields. '
Within the generalized Stueckelberg formalism the
gauge-field character of the massive Yang-Mills
field manifests itself at the cost of introducing un-

physicRl, scalar fields. It becomes possible to
quantize the massive Yang-Mills field in arbitrary
gauges by use of the path-integral quantization.
In four space-time dimensions power counting in

eovariant gauges indicates the nonrenormalizabil-
ity of this field theory, which has been verified by
explicit one-loop calculations. " Recently the re-
normalizabil. ity of the two-dimensional massive
Yang-Mills theory was studied; the conclusion
w Rs yet indecisive. '""

It has often been observed' 'o that in the gener-
alized Stueckelberg formalism the most divergent
part of the massive Yang-Mill. s theory is lumped
in the form of nonlinear chiral. Lagrangians. This
remarkable ehiral. structure i.s neither accidental
nor approximate. In this paper we shall point out

that the massive Yang-Mills theory is expressed
as a spont:aneously broken gauge theory in which
the Higgs field is introduced according to the non-
linear realization of ehiral symmetry. " Viewed
as a chiral gauge theory, massive Yang-Mills
theory exhibits a richer symmetry structure than
in its conventional form. In particular, the com-
bined use of the gauge symmetry and nonlinear
ehiral symmetry enables one to discuss the re-
normalization of massive Yang-Mil. ls theory. We
shall prove the renormalizability of SU(Ã) massive
Yang-Mills theory and, as a by-product, that of
the SU(N)z, x SU(N)a nonlinear & model in two di-
mensions. The latter by-product shouM be re-
garded as a generalization of the case of the 0(N)
nonlinear a model, ""'the renormalizability of
which was recently studied in connection with the
problem of phase transitions" " in 2+& dimen-
sions.

Interest in the nonlinear a model stems from
analogous nonlinear structures of lattice gauge
theories, as formulated by Wilson, " and aims at
understanding the phase transitions leading to
quark confinement in gauge theories. In particu-
lar, the 0(N) nonLinear & model, which in ordi-
nary perturbation theory realize8 R spontaneously
broken [0(N —I)-symmetric] phase, is known" "
to Possess, in the nonPerturbative la, rge-N limits
a fully 0(N)-symmetric phase realized linearly
with the occurrence of a bound state; such a sym-
metry xestorati. on mechanism leads to color con-
finement in the transverse-lattice gauge theory of
Bardeen and Pearson. "

In Sec. II we begin with a brief review of the non-
linear realization of chiral SU(N)~ & SU(N)s sym-
metry and set up our notation. In Sec. IH we

couple the SU(N)&gauge field , to the Higgs field
which is realized nonlinearly according to the
regular representation of ihe SU(N)g && SU(N)s
symmetry. A 8uitable choice of the gauge condi-
tion shows that this chiral gauge theory is identi-
cal with the massive Yang-Mil. ls theory. The con-
tent of this section ean be extended to other gauge
groups in a straightforward manner.
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In Sec. IV we derive the Ward- Takahashi (WT)
identities'" associated with the local gauge syrn-
metry and nonlinear chiral. symmetry of our mas-
sive gauge theory. In Sec. V we prove, by inten-
sive use of the WT identities, the renormalizabil-
ity of two-dimensional SU(N) massive Yang-Mills
theory and the associated SU(N)rxS,U(N)s non-
linear & model. An important observation here is
that the ultraviolet structure of massive Yang-
Mills theory is essentially determined by its non-
linear &-model component.

In Sec. VI we present an explicit calculation of
the one-loop renormalization counterterm for
SU(2) massive Yang-Mills theory, mainly to veri-
fy the argument in the foregoing sections.

In Sec. VII we discuss the short-distance be-
havior of our SU(N) models. Like the O(N) non-
linear rr model, " "both SU(N) massive Yang-
Mills theory and the associated nonlinear 0 model
are asymptotically free in two dimensions" and
have a nontrivial ultraviolet-stable fixed point in
2+& dimensions with e &0 infinitesimal.

In Sec. VIII we present a summary of our re-
sult. A'e speculate on the phase properties of
massive Yang-Mill. s theories and the related
SU(N) nonlinear & model in two and higher dimen-
sions.

Throughout this paper we shall employ dimen-
sional regularization'o to control ultraviolet diver-
gences, preserving the WT identities in arbitrary
dimensions. Special care is taken to separate in-
frared and ultraviolet divergences; we shall refer
to the infrared regularization procedure in Sec. V.

II. NONE, INEAR o MODEL

In this section we review the SU(N)z x SU(N}rr
nonlinear & model which is used to describe the
Higgs field in the succeeding sections.

Let us consider an (N x N)-matrix field M trans-
forming according to the (N, N) representation of
SU(N)z x SU(N)z, " i.e. ,

det(M/F} = 1,
(2.4)

where F is a real constant. In the presence of
this constraint the Lagrangian (2.3) is the only
chiral-invariant Lagrangian that involves at most
two space-time derivatives.

The constraint (2.4) means that the matrix M/F
is an SU(N) matrix. Any SU(N) matrices are pa-
rametrized in terms of (N' —1) real parameters.
The pararnetrization we consider is provided by

M = (o'+irr') X'= rr+i—rr, (2.5)

defined in terms of real fields rr'= (rro, rrb) and rr'

=(rr', rr') (a=0, . . . ,
N' —1), where we regard

(N' —1) fields rr as independent fields while treat-
ing m' and &' as dependent fields. The N&N ma-
trices }r.

'
(rr =0, . . . , N' —1) are the SU(N) gener-

alization" of the SU(3) }r. matrices:
(Irr = 1, . . . , N' —1) are Hermitian traceless ma-
trices and X'= (2/N}' '1, normalized so that

Tr(X'A. ) = 25' .
The product A. 'A.~ is written as

(2.6)

dabo (2/N)' bbab and fabo 0 (2.8)

In what follows we shall make extensive use of
the following U(N) notation: A nonunderlined vec-
tor A' (a = 0, . . . ,

N' —1) always stands for an N'-
component vector, and in particular its (N' —1)
components A (b = 1, . . . , N' —1) are denoted by an
underlined vector A, i.e. a A'= (A', A). We shall,
however, often denote an (N' —1)-component quan-
tityA' simply by A', regarding A' as A'=(O, A).
As in (2.5), the N x N matrix A'X' will be denoted
by A,

A =A'b. '= (2/N)' 'A'1+A . (2.9)

(2.7)

where the real coefficients d"' and f ' are totally
symmetric and antisymmetric, respectively, in
particular,

M- M' = UI. MUR, (2.1) Similarly, we write the N ~N' matrices d "A'
and f'"A' as

where the transformation matrices U& and UR are
SU(N) matrices. The Hermitian conjugate M of
M transforms according to the (N, N) representa-
tion,

(A)bc dbcaAa

(A x}bc fbscAs
(2.10)

)If M = URM U (2.2)

2 = a Tr[(au M )(SuM)]

with the field M subjected to the constraint

(2.3)

The nonlinear o model based on the regular re-
presentation of SU(N)z x SU(N)a is defined by the
Lagrangian

Vector and matrix indices will. frequently be sup-
pressed; e.g. , A'A', A'B', C B, and A'C B,
are denoted simply by A', A B, C&, and A C&,
respectively. Appendix A lists some useful for-
rnulas.

We express the dependent fields rr'[rr] and rr'[rr]
in a power series in rr so that M[rr] = F+irr+O(rr'/F),
i.e. , (2/N)' &'-F and (rr', rr}-0 as rr-0. The
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M[w] —M' =M[w'] = Ui M[w]Us (2.11)

reads in infinitesimal form, i.e. , n"=m'+5m',
o'"=0' +50', Uz =1+j~5cl, and U~= I+i~5ez,
etc. ,

SU(N) matrix field M[w]/E defined in this way is
determined uniquely, as demonstrated by explicit
construction in Appendix B.

In terms of (w', o'} the field transformation pro-
perty {2.1)

(3.1) it is evident that Z,[A, w J has the local SU(N)z,
symmetry as well as the global SU(N}z x SU(N)„
symmetry. Expressed in terms of (m', e'),
Z,[A, w] is given by

g [A, w] = ——'(SpA„—&,A„+gA~xA )'+—'ni'A„'

![(6„.}"(6„.)']

+ —,'gA .[(w+ox)81'o+( o+w x)S&w]

5w = -,' [{o+wx) 5e~ + (-0'+ wx) 6es] „

5o = -', [(-w+ ox) 5e~ + (w + ox) 6e„],
(2.12)

with the vector-meson mass given by

(3.2)

where 5ef, = {0,6~a), 5es =(0, 5es), and w' =(w', w),
&'=(&', &). If we rewrite (2.12) in the form

5w =w x (5ei, +6es)/2+ 0'(5ei —6e„)/2, (2.13)
6o= ox (5ei, + 5es}/2 —w(5&z —5es)/2,

it is clear that the fields w and & belong to the
regular representation of SU(N)1, +& while w

' and
&' are SU(N)z, & singlets. [Referring to the com-
binations —,'(6ez, + 6e„)and —,'(5ei, —6es) we call the
corresponding two SU(N) symmetries SU(N)~,

„

and SU(V)z s, respectively. ] The chiral Lagran-
gian (2.3) may also be written as

~ =l[(s„.)"(5„)'l. (2.14)

HI. MASSIVE YANG-MILLS FIELD

Let us introduce the SU(N)1Yang-Mills ,
field

A'„(a= 1, . . . , N2 —1) into the SU(N)& x SU(N) s
nonlinear o model (2.14). The gauge-invariant
Lagrangian is given by

S,[A, w] = ,' E'„„[A]'--

+ —,
' Tr[M'31„'[A]n&[A]M], (3.1)

with Eq„[A]= S„Ap—S„A'„+gf''A~A'„, where we
have denoted A„simply by A'„='(O,A&). Here g is
the coupling constant, and the covariant derivative
s)„[A]is defined as

~„[A]=5„—i2 A'„gA'= s& —i~g.A„,
while its Hermitian conjugate Q&[A] acts on the
left, i.e. , &&„[A]=&(~„+i—,'gA„). In the form of

We note that the SU(2)z, x SU(2)s version of the
nonlinear 0' model is renormalizable and asymp-
totically free in two dimensions, as a particular
case of the O(N) nonlinear & model previously
studied. "'" %'e shall, in later sections, extend
the proof of the renormaiizability of the nonlinear
& model to the SU{N)1, x SU(N)„case, by an argu-
ment which emphasizes the symmetry structure of
nonlinear realizations.

To quantize this system one has to impose a gauge
condition. If we adopt the gauge condition m'=0
(a=1, . . . , N' —1), Z, [A, w] takes the form

il,[A, w =0] = --,'(&„A,—s„A„+gAqx A„)'

+-,'m 'A „', (3.4)

M'M = (2/N}(o'+w') = F'=4si'/g',

or, equivalently, from the nonvanishi. ng vacuum
expectation value {M M), =F' Correspo. ndingly,
in perturbation theory based on power-series ex-
pansions in g or 1/F = (g/2m}, the field (2/N)' '&'
=F+iw+O(w'/E) develops a nonvanishing vacuum
expectation value so that the global SU(N)z
x SU(N)s syl111ne'tl'y of So[A, w] is SPoll'talleously
broken down to global SU(N)i, ,s symmetry. As a
consequence of the spontaneous breakdown of
chiral SU(N)z a symmetry, (N' —1) massless Gold-
stone bosons m' appear in perturbation theory.

In the (so-called unitary) gauge w'=0, only the
physical vector fields A'„remain and the equiva-
lence of the present chiral gauge theory and mas-
sive Yang-Mills theory is made manifest. This
gauge however, is unsuited for the discussion of
renormaiizability because of the vector-meson
propagator of the Proca' form (-g"'+P "P'/m')/
{P'—ri('). For this very purpose, we may employ
the standard gauge-fixing procedure"' to quantize
the theory in a gauge characterized by F'[A]
= -6"A'„. In this [Lorentz- and global SU(N}1,
x SU(N)s-]. covariant gauge the Feynman rules are
derived from the functional

whi;ch is precisely the Lagrangian for the massive
Yang-Mills field. The pure gauge-field nature of
the massive Yang-Mills field is not explicit in this
conventional form while it is manifest in the gauge-
invariant form of (3.1) or (3.2). In the latter the
vector-meson mass m =gI'//2 comes from the non-
linearity of the realization
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wfz, z]=f [aa][a ][ac][ac]

~ exp s dx g,g A, 5, C, C

+J~ W +Z. w)

with

g,„„[A,w, C, C] = Z,[A, w] ——(»A „)'
-v»v„[A]c,

V~[A] = 6"6„+gf'"A'„=6„+g(A„&),
(3.6)

(3.7)

where C'=(O, C} and C'=(O, C) are the Faddeev-
Popov ghost fields" obeying Fermi statistics.
The functional measure [Bw] stands for the invari-
ant measure (the Haar measure") on SU{N)z,
x SU(N}„and is given by

1/ [ ]=II det[(2/N)'"o'I+(o-wx)]„
X

where the matrix [ ~ ~ ~ ] in the last brackets is an
(N' —1) x (N' —1) matrix. Accordingly perturba-
tion theory is constructed on the basis of the La-
grangian

2 = oaf[. [A, w, C, C]

+i'�"](0)in[(2/N)'+& +(5 —w x)], (3.9)

where pg is the dimension of space-time. The last
term proportional to 6" (0) serves to cancel" the
leading divergences (quadratic in two dimensions)
in the wb ()t & 2) proper vertices; practically one
may entirely ignore this term by using dimen-
sional regularization in which 6" (0} can be set
equal to zero. In the present covariant gauge
Z.[[[A,w, C, C] preserves the global SU(N}~
XSU(N)s symmetry of Eq. (3.1) and Eq. (3.2); the
fields A„,C, and C belong to the regular repre-
sentation of SU(N)L, (i.e. , A„-A&= U~A„UI,, etc.)
and are SU(N} s singlets. In addition, Z.ff[A w C V]
is invariant under the local SU(N)z transforma-
tions

M = E exp(be' }[.'/E), (3.11)

where e' (a =1, . . . , N' —1) are real fields, the
gauge-invariant Lagrangian (3.1) is written as

z,(A, e) = --,'z„,[A]'

+-.'[m A'„Z"(e)s„e-b]',

(3.12)

= g [{ie)"/(bb + 1) !1',
tt= 1

where the group parameter «'= (0, 6e) is defined
as 6e'(x) =C'(x)6$ in terms of an infinitesimal
anticommuting number 4g independent of the
space-time coordinate x„;(6$, C, C} anticommute
among themselves. This gauge transformation is
known as the Becchi-Rouet-Stora (BRS) transfor-
m atl, on.

In the present covariant gauge the most ultra-
viol. et-divergent portion of the theory is contained
in the nonlinear &-model. sector rather than the
pure Yang-Mills sector. Power-counting and, in

fact, an explicit one-l. oop calculation" show the
nonrenormalizability of massive Yang-Mills the-
ory in four dimensions. (Although ordinary spon-
taneously broken gauge theories are renormaliz-
abl. e in four dimensions, the present chiral gauge
theory fails to inherit this feature because of the
nonlinearity of the &-model sector. ) However,
massive Yang-Mills theory and the associated
SU(N)& x SU(N)„nonlinear o model become renor-
malizable in two dimensions; we shall. show this
in the following two sections.

With the present parametrization (2.6) of the M
field the theory turns out to be multipl. icatively
renormalizable. This multiplicative nature of re-
normalization, however, is not common to arbi-
trary parametrizatlons. With those pal ametl'lza-
tions where renormalizations are not multipl. ica-
tive, the renormalization procedure is more com-
plicated and the renormalization constants may be
field dependent, as observed in the case of the
O(N) noniinear & model in Ref. 13.

With the exponential parametrization

6w = (a+w &)6e/2,

6a = (-w + o x}6e/2,

6A„=g 'V„[A]6»,

5C =C x 5e//2,

6V'= —[w 'F'[A]6t',

(3.10)

cab bf aabea/~

The Lagrangian of this form was previously de-
rived from a different viewpoint' and used to dis-
cuss the renormal. ization problem. ' With this ex-
ponential parametrization, however, the WT iden-
tities associated with the nonlinear chiral sym-
metry is not as simple as the one to be derived in
the next section.
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1V. THE NARD-TAKAHASHI IDENTITIES

Investigation into the renormalizability of gauge theories relies on the Ward-Takahashi (WT) identities
which express the symmetry property of the Lagrangian in terms of relations for the Green's functions. ,

To derive the WT identities let us consider the generating functional of the Green's functions

(4.1)

g „„,= J'„A"+K rr+r} C+. 6 ~ r}+8 o+p" ~ V„[A]C+—,'gG ~ (C xC}+-,'gZ ~ (-»+(rx}C+ ,'gP ~ (—tr+rrx)C,

(4.2)

where J„={O,Z„),K'= (K',K), H'=(H', 8), and G'=(O, G} are commuting source functions while r}'
= (0}9)} r} =(0 jr}) p}„=(0,p„),Z'=(Z', Z), and P'=(p', P) are anticommuting source functions. We have,
following Zinn-Justin, "introduced the external sources E', P', p'„,C', Z', and I"for the composite oper-
ators v [w], (r'[v], V [A]C, etc. to simplify the WT identities. I et us note that under infinitesimal global
SU(Ã)„transformations (2.12) the source term S«««changes such that 8«««- 2«««+5sZ

„„„

5„g =-,'[K ~ ( a+rrx-)+H. ((r+(rx}]5@„+—,'g5es ~ [(Z+Px)(o+rr x) C+{ P+Zx)-(- }r+(rx) C] (4.3)

{see Appendix C). Accordingly, we make in (4.1) a change of field variables corresponding to this global
SU(N)„transformation, noting the invariance of the integration measure. Then the result is the WT iden-
tity associated with the SU(Ã)„symmetry:

5
(f» (-(r-vx)K+(s- x(r)8 (+Z P+x) . +( P+Z -x) W[Z, . . . ] =0,

i5P i5Z
(4.4)

where I}= I, . . . , N' - 1 (i.e. , I}&0), and the re-
placement

v'- 5/i5K ', r'[1r]- »'[5/i5K], (r'[1r]- (r '[5/i5K]

I'[A, », C, V;K0, 8', p, G, Z', P']

=z(z, }(,. . . ] —Jdg(z~ ~ A +}'( r+@ (:y(. .g},

(4.6)
with

(4 6)

is understood within the square brackets.
Next let us derive the WT identities associated

with the local SU(N)z symmetry. It is important
to note that under the BRS transformation (3.10)
the composite operators V„[A]C,(C x C),
{-»+(rx)C, and {(r+v x)C remain invariant, as is
easily verified. On performing the BRS transfor-
mation on the integration variables A& and m in
(4.1), we are left with the desired WT identity:

J
5 5 5

dx J ~ +E —+H—
t" 5p„5P 5Z

5 1 5+r}.———q. s„W=O. (4.6)
M a "5J~

Similarly, a change of variables O' C'+5V' in
{4.1) leads to the equation of motion for the ghost
field C'.

5S ~ 5S
5JPcf ~ ~N&

5S ~~ 5Z
5g ' 5g

'

(4.10)

For later convenience we have duplicated the
same notation (A„,», C, V) in (4.10) as was used
for the bare fields (A&, v, C, C) earlier. It is
necessary to distinguish them for the time being,
but this notation will turn out to be useful, in Sec.
V where no distinction is necessary. Note that the
Legendre transformation is made on the indepen-
dent fields A u, ~, C, and C only. It follows from
(4.6) and (4.10) that

Z[Z, K, -r,}r,}8, p, G, Z, P]

ilnW[Z, K-, r}, r},8, . . .], (4.9)

where A~~ =(O,A„),»'=(O, s), C'=(O, C), and V'
= {0,C) now stand for the new variables defined by

~
—iq 8'= 0. (47). 5r . 5F 5F . 5r

Ce ~ 5C
Our next task is to rewrite (4.4), (4.6), and (4.7)
in terms of the generating functional F of proper
(i.e. , one-particle irreducible) vertices defined
by the Legendre transform2'

5Z 5F 5Z 5F
M.' 5X"

(4.11)
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In terms of I"[A, w, . . . ], the WT identities (4.4), (4.6), and (4. 1) are rewritten as

~ er 5I or - 5r 5I'—+xx —+ w ——X H+(Z+Px) —+( P+Zx) —=0 (a=1, . . . , H' —1),50 5p 5H 5P 5Z (4.12)

f
- ~r ~r OI. er eI aI. nr ~ SI

dx +—* —-H ———.————(s A") =0, (4.13}

s „51'/5p'„+5 I'/5C' = 0 .
In (4.12) and (4.13)

61'/5w' stands for -IC ' and w' stands for 51"/5X '.

('4. 14)

(4.15)

[Such replacement is simply a matter of notational convenience, making the relevant expressions compact
by use of the U(N) notation. ]

As a counterpart of the SU(N)s WT identity (4.12) we can aiso derive the WT identity associated with
global SU(Ã)z, symmetry. Equivalently, we may simply use the WT identity associated with SU(H}z,s,

x +g x —+Hx ++x—+ ~ ~ ~ +P x—+gx —I =0,
5A — 5n' — I' — 5C 5I — 5Z

which means that A„,x, H, C, C, e„,Q, p, and Z belong to the SU(N)z, & regular representation.

V. RENORMALIZATION

The procedure for the discussion of renormal-
izability of gauge theories is mell knomn. " For
completeness we outline the procedure due to
Zinn-Justin. First by the renormalization trans-
formation A" = &Z„A„",n = &Z, m„, m'=~Z, m„', E'

fine the renorm aliz ed quantities A „",m „",etc. ;
these renormalization constants are to be deter-
mined successively in the loopwise expansion of

At the zero-loop (tree) l, evei, I' is given by the
bare Lagrangian Z, tg+2 „„,with every quantity
replaced by the corresponding renormalized one,

If we calculate the one- loop correction I ~'~ on the
basis of this tree-level. Lagrangian, we shal. l find
the ultraviolet divergences. The one-loop renor-
malization counterterm ~'" is then given by the
divergent part of I't'~ so that J dx6gt'~ =- —I'i'i(div).
An important consequence of the WT identities for
I', (4.12)-(4.14), is that the one-loop renormal-
ized action fdx(S ' +AS '~) itself satisfies the WT
identities up to the one-loop approximation; fur-
thermore, it follows by induction that the complete
renormalized action fdx g„=fdx(Zi' +61:}must
obey the WT identities to each order in perturba-
tion theory. The possible structure of the counter-

term dg is constrained by pomer-counting and is
further restricted by the O'T identities. The proof
of renormalizability is completed if one can show
that the renormalized Lagrangian g„determined
in this way has the same structure as the initial.
bal e Lagrangian.

The above renormalization procedure is con-
cerned mith the removal of ultraviolet divergences
alone. However, since the n fields are massless
in perturbation theory, we must take special care
to separate ultraviolet divergences from infrared
ones in the course of renormal. izations. A possi-
ble may of avoiding the infrared problem is to
carry out renormalizations somewhere off the
mass shel. l.. An alternative trick is to introduce
a soft symmet. ry-breaking term which gives rise
to a mass term for the m fields, as employed in

Refs. 13 and 14. In practice, the external source
H (x) can be used as an infrared regulator since,
if H (x) is kept to be a constant H (0) in the
course of perturbative calculations, the source
tel m

H'(0) o'(x) = (H/2)'"H'(0) [ I" (v'/HE) + ]—
generates a mass term for the m fields.

In two dimensions the fields A'„, m', a', |"', and
C' are dimensionless in units of mass, and the
coupling constants 1/I' and g = 2m/I have dimen-
sion equal to zero and one, respectively. The ex-
ternal source p'„has dimension one whi. le
Ko, H', gG', gZ', gP' have dimension two. Pomer
counting tells us that the countertexm AC consists
of local ploynomials (of fieMs and sources) of di-
mension two. The general. form of AC is con-
siderably restricted by the fol.lowing observation:
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In the Lagrangian Z,«(3.6) any interaction ver-
tices that involve the A„field carry at least one
power of the dimensional constant g. As a result
of this, the counterterm ~ does not contain more
than two A

„

fields; in particular, A „andg need
no divergent wave-function and coupling-constant
renormalization, respectively. (The gauge pa-
rameter a also requires no divergent renormal-
ization. ) In addition, the ghost fields are coupled
to A„through the g(s "L) ~ (A„xC) vertex which is
proportional to the momentum of the outgoing
ghost field C, and they have no direct coupling to
(&', w'). Consequently, CZ does not contain any
terms that are proportional to C', p'„, and/or G'.
Thus the power-counting argument alone can re-
strict the renormalized Lagrangian Z,[A„w„,. . . ]
=4 ' +M to the form

g, =g, *[A,w, C, C, p, G]+gC[P, Z;w, C]

where k, l, and m run from 1 to N' —1. The first
three sets of equations (5.3)—(5.5) serve to de-
termine yo[w] and 8'[w]. D' we make identification
p'[w]- w'[w] and 4'[w]- o'[w] in these equations,
they imply nothing but the SU(N)& transformation
property (2.12) of w' and &', furthermore, if we
take into account the SU(N)z+s symmetry (4.16)
they represent the SU(N)z, transformation proper-
ty in (2.1.2) as well. Therefore, if we introduce
the N &N matrix 3R [w] = 6'[w]X'+i(p'[w]A. '+w), it
transforms according to the (N, N) representation
of SU(N)i x SU(N)s, JR[w]-3R' =3R[w']= Uc Illw]Us~
where the transformed field w' is defined by (2.12)
with (w, o') repLaced by (p', 6'). We next note that
the Hermitian matrix field 3R[w]3R[w] is invariant
under the SU(N)

„
transformation

1/2

5&(SII') = —.'5e& — s'+ i —w x

+K'p'[w]+ H'4'[w],

Z =g"[A, w]- —,'F'„.[A]'

(5.1) x (5/5w')(3RII ) =0,

——(»A )' - ~ » V [A] C2n

+p" ~ v [A]C+-,'gG (CX C). (5.2)

Here the functional 4 [P, Z; w, C] is linear in C and
linear in either P or Z, and yo[w] and I'[w]
= (6'[w], 5[w]) are functionals of w alone. On di-
mensional grounds, 4, p', and 6' contain the di-
mensionless coupling constant 1/I' but neither g
nor a space-time derivative.

Our next task is to determine the further struc-
tures of 2**[A,w], 4[P, Z;w, C], p'[w], and 8'[w]
by means of the WT identities. Now let us first
substitute the action fdx2, into the SU(N)s WT
identity (4.12) and isolate the coefficients of K,
H', etc. The result is the following set of equa-
tions:

(5.3)

(5.4)

p +g+gx

5Z**[A,w]fdx — 8 +8+w x p
N 5w

(5.7)

gek
t

2 1I2 ml

+ — — 80+5 —w x = 0, (5.5)

54 - 54jdx (Z +P X)—+ ( P+ Zx)—-
5P 5Z

2 1/2 pc k

+ — so+ 8 + w x —= 0, (5.6)N — — 5m

which means that the 3R[w]3R[w] is a constant
Hermitian matrix independent of w. (Recall that at
the tree level 4 [w]- &'[w] = (N/2)'I'[F+O(w')] and

therefore 5s(SII3R~) = 0 implies 5(SR3R )/5w'=0. )
Analogously, the Hermitian matrix 3R[w] 9R[w]
turns out to be a constant matrix. It is equally
important to note that the determinant det3R[w]
also is independent of m' since it is invariant under
SU(N)~ x SU(N)s transformations. With these ob-
servations in mind let us turn to (5.3)-(5.5). We
should look for those expressions for p [w] and
6'[w] which are a power series in w and which are
normalized so that s'[w =0] = (N/2) "'F' and w'[0]
= 4[0]= 0, where F' is a real constant (recall in
this connection that the counterterm consists of
polynomials of fields and sources so that the above
power-series nature is preserved in perturbation
theory). With the normalization condition 3R[w = 0]
= F', the matrix %[ad]/F' becomes an SU(N) ma-
trix, i.e. , II[w]II [w]=3R 3R=(F')' and

det(9R[w]/F ') = 1. In Sec. II and Appendix B we
have noted that the power-series parametrization
of an SU(N) matrix normalized in this way is
uniquely determined. Therefore F', s'[w], and
6'[w] can be set equal to F, w'[w], and o'[w] defined
in Sec. II, respectively.

Let us next look at the WT identity (5.6), which
implies that C[P, Z; w, C] is a scalar under the
SU(N)s transformation

5P'= --,'5e'„(Z+Px)",
5Z'= —25e„(P+Z x) ', -
5w = —iz5es[(2/N) o +v+w x]

or in the U(N) notation
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5x' = —
2 6es ~ (o+v x) ', (5.8)

M= ~+8,
N = Z+iP = (Z'+iP')A', (5.9)

where 5es= (0, 6es), and (b, c) run from 1 to N' —I
whi. le a runs from 0 to N' —1. Analogously, it
follows from the VVT identity associated with the
global SU(N)z, symmetry that 4 is also invariant
under the corresponding SU(N)z, transformation
on P, Z, m, and C. Possible forms of 4 are de-
termined from the following symmetry argument.
Let us wr1te

where a and b run from 1 to N' —1. From this
identity and (5.7) it follows that 2**[4,v] has the
local SU(N}z symmetry as well as the global
SU(N)z x SU(Ã) „symmetry. This symmetry pro-
perty and power-counting are sufficient to deter-
mine possible forms of i!**[A,w].

Let us first consider the case of the pure non-
linear o model; we turn off the coupling to the
gauge field g„-0. According to power-counting
2**[8=0, v] can involve at most two space-time
derivatives; this determines 2*~[8 = 0, v] unique-

ly:

Q=C=C. Z**[A =O, m]=-,'p Tr[(s„M)(6"M)), (5.16)

in terms of which 4 is written as

4[P, Z; n, C] = a(g + 5 (II) . (5.1 I)

A further constraint on 4 follows from the WT
identity (4.13). Let us substitute (5.1) into {4.13)
and pick up the coefficient of Ã:

54 6m 54
5m' 5P (5.12)

At the same time we obtain the WT identity

"54 54 1 54
dx —.————(CxC) =0.

5P 5n 2 5C
(5.13)

Substitution of (5.11) into (5.12) and (5.13) shows
that

b=0 and a= —,'. (5.14)

In terms of X**[A,v], the WT identity (4.13) now
reads

The (N x N)-matrix fields M and N transform ac-
cording to the (N, N} representation of SU(N)z,

xSU{N)&, i.e. , M-M'=Uz, MUs~, etc , .while Q

transforms according to the SU(N)z, regular re-
presentation 9-Q' = UzQU~ and is an SU(N)&
singlet. In general, SU(N}z x SU(N)s invariants
are constructed from appropriate products of M,

M, N, N~, and Q by taking traces or determinants.
%e know that 4 is linear in Q and in either N or
N . Note that Q, NM, and ME, which are
SU(N)„singlets, tranform according to the SU(N}z
regular representation. Accordingly, both
Tr(NM Q) and Tr(MN Q) are SU(N)~ x SU(N}s In-
variants. Moreover, in view of the nonlinearity
of the realization M M= F' and det(M/F) = I, one
may readily be convinced that these are the onl. y
invariants that meet our requirements for 4.
They lead to the followi. ng invariants:

(1}=Z {- v+o)CxP+. (a+ax)C, (5.10)
(11) =Z (a+ax)C+P (Fr —ox)C

where P is a constant which, at the tree level, is
equal to one. If we make the scale transformation
p"'(M, o', v', F}-(M, 'ox', F) and p "'(K', H')
-(E,8') in (5.1) and (5.16), P can effectively be
set equal to one. Consequently we have learned
that the renormalized Lagrangian il, [g= 0, x] in

{5.1) has the same structure as our initial bare
Lagrangian in (4.1); this shows the renormaliza-
bility of the SU(N)z, x SU(Ã)„nonlinear o model.

Let us next include couplings to the gauge field.
Since 2'*[A, x] can contain at most two A

„

fields,
its most general form is given by

@**[A,v] = —,'Tr[M'51„'[A]u"[A]M]

+-,'y Tr[(S„M){~"M)], (5.17)

where y is a dimensionless constant. We have
fixed the overall normalization of the first term
by an appropriate rescaling of M, J, etc. At the
tree level y vanishes, and the term proportional
to y, if any, is a part of higher-loop renormaliza-
tion counterterms. Now recall the softness of the
gauge-field coupling, as characterized by the di-
mentional constant g. In particular, on dimension-
al grounds the inclusion of the gauge-field coupling
does not affect the divergent part of wave-function
renormalization of the m fields. Therefore, com-
paring (5.16) and (5.17) we conclude that y is an
effect of finite renormalization (i.e. , finite re-
scaling of m, F, etc.}. Since finite renormalization
is inessential. in the proof of renormalizability we
may simply set y=0. Thus we have again learned
that the renormalized Lagrangian Z„coincides
with our bare Lagrangian in (4.1). This completes
the proof of the renormalizability of the two-di-
mensional SU(N) nonlinear & model and its associ-
ated massive Yang-Mills theory.

The wave-function renormalization of the n' field
and the renormalization of the coupling constant
1/J' are two basic divergent renormalizations we
have to carry out; accordingly we l,ntroduce the
renormalization transformation

m = Z'~'m„and E'=XZE„'. (5.16}
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&o') I" (p'=0)+(H,'/YJ5 (5.19)

where {&,'), —= 51'/5H„'(x) is the vacuum expectation
value o«,'(&) andi {p ) is the Fourier transform
of the renormalized inverse v„propagator 5'I'/

The mass renormalization of the vector field A„
is not independent:

m = ,'gF—={XZ)'I'm, ,

where m, = zgI'„is a renormal. ized mass, which
in general. is different from the physical vector-
meson mass. [In (5.18) we have assumed the
SU(X~,a symmetry. As is well known, ' once we
know the renormaltzabtllty ln ihe SU{Ã)g+a sym-
metric case, the theory remains renormal. izabl. e
even when the gl.obal symmetxy is spontaneously
broken down to smaller symmetries. ]

The foregoing proof tells us that the composite
operators v'[w] and o'[m] are multiplicatively re-
normalized. Although the SU(N)~, s singlet fields
v'[s] and o'[w] appear to mix under renormaliza-
tion, the mixing is avoided owing to the discrete
symmetry w'- —x' of the chiral Lagrangian (2.14).
(Recall that v'[-v] = n[n-]w'hi'le &'[-w] = o'[v];
see Appendix B.) In perturbation theory the pure
nonlinear & model preserves this discrete sym-
metry. It is broken in the presence of the SU(N)I,
gauge field but still governs the divergent part of
the renormalization of the above composite oper-
ators. Accordingly, o [w], for example, is made
finite by an appropriate rescaling o,'= (Y, Z) "'
xo [w]; the external source for this finite opera-
tor is given by H,'=(Y,Z)"'H'. The renormaliza-
tion constant F, can be set equal to one, as we
shall see below. We differentiate {4.12) once with
respect to v,'(x) and let all external sources vanish
except for H,'(x) which we set equai to a constant
H,'(0). The result is the WT identity

5~m'(x)5v„'(y). Since (&,')„Ho, and I'~(P') are finite
F, must be finite; consequently we can simply
choose Fo= 1. Proceeding with the WT identities
in the same fashion, one can further show that
(v„',o„')= Z~l'(v', o') are finite operators T. hus
the renormalization transformation we should use
is U{N)~ x U(Ã)a symmetric. The composite oper-
ators (-n'+a'x)C and (o+v x)C are multiplicatively
renormalized but they in general. mix under renor-
m alization.

Perturbation theory is developed on the basis of
the effective Lagrangian (3.6) with the source term
H,'o„'[w]added as an infrared regulator:

Z,„„[A, v, C, C]+ H „'o„'[v] = Z„, [A, v„,C„,~V]+Z;„„
(5.20)

1
Sp .= ——,'(s A, —s„A )'+ m, '(A )'-—{s"A )'

-ping„A ' sps„+2(s~w~) —qx Tf~ —Cs C,

where x'= (2/N)'~'H, '/E„and we have chosen H„'
to be a constant. The free propagators derived
from this free Lagrangian are l.isted in Fig, I.
The interaction Lagrangian g&„when expanded
in powers of A and m, contains an infinite number
of interaction vertices.

In this section we calculate the one-loop counter-
term in the SU(2) case, to verify the argument of
Sec. V. Expressions for SU(2) are obtained by
setting & - & and (v', g& - 0 everywhere in the fore-
going sections. In particular, the matrix field
M[1K] ls give'n by M[7f] = o+ fv ~ T wi'th 8 and 7l {0
= I, 2, 3) subjected to a constraint 0'+n' = E' or
o[s]= (S' —v')" '.

As is well known, "the steepest-descent ap-

&T & (p)& (p)& = — g + ((~-~)(~ -p )-em )D(p )p p
a b 2 2 ab
p & 2 2 py fL V

p —xxl

4T ~ (P) Tf (-P)P = i(am -P ) D(P )g
a b . 2 2 2 ab

7"C (p)C (-p)) = i/p

FIG. 1. Free propagators. All the fields and parameters are renormalized quantities; the subscript r is suppressed.
The parameter x2 is an infrared cutoff.
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X=X +g,
C=C" +g,

C =C" +g,

(6.1)

where A&', n'", C", and C" are determined so
that the exponent in (4.1) becomes stationary. Up

to the one-loop approximation, these stationary
fields are the arguments of the effective action
I'." We change the integration variabl. es from
(A, w, C, C) to (B„,}t, g, g) and henceforth denote
(A'&, v ",C",C") simply by (A„,v, C, C). Then we

expand the exponent around tbe stationary fields
and extract the term J '

[ &, }t, i), g] which is quad-
ratic in E„,X, g, g. The one-loop contribution to
the effective action I' is obtained by evaluating the

proximation to the evaluation of the functional in-
tegral (4.1) gives the effective action I' up to the
one-loop approximation. [In what follows we re-
gard (4.1) as written in terms of renormalized
quantities, although the subscript x is suppressed.
In addition, we set p„=G=P = Z =0 for simplicity. ]

We first shift the integration variables:

Gaussian functional integral

dS dx dg dg exp i dxL' B, X, g,

2 (8px') &"[&]'"x',
with

(6.3)

W"[v]=6 +x'v'/o', (6.4)

we make a further change of variables }('-P'
= V [n]}( so that (6.3) is brought to the form
2(S"P) . That is, we choose V [v]=6 + Pv'w,
where p[v] = I/[&(o+ F)]. The Jacobian associated
with this change of variables is given by S(P)/&(}t)
=g„detV~[w(x)] =+,{f/&[w(x)]}which is again set
equal to one by use of dimensional regularization.
(As a matter of fact, this Jacobian exactly cancels
the previous weight function M[s].) Expressed in
terms of P, I. ' takes the form

(6.2)

where we have set the weight function m[n] (3.8)
equal to one by assuming the use of dimensional
regularization. Since L ' [B,}I,g, g] contains, in

particular, a term of the form

I,~'} = --'(8„&„-8, I)„)'+-,'m'&„'——(8"&„)—m&"

(6.6)

+ —,'(s„4)' y+'N"„»y'+-,'y'M "y'+»a"'r "„„,a ~'

+ & flllcUdblf lib + 1)IJc(/Is sUyb+g45@b) y sf~ [A]y (6.5)

where +„,M', T„,&, U„„Q„„R„arefunctionals of A& and m. Expressions for these quantities are rather
complicated; accordingly we simply remark that T„,z and U~, are functionals of A „alone and quote the
following result:

Tr[ )lf + ,'(N ~
—N—")']= (I/F'} [(8q

~}'+(s„vr)']+3[(s„o/o)'—H / &]

—2(m/F)'Aq'+2(m/F')A" ~ (waq& —&Sqw+w x Sqs)+3(m/Fcr')Aq ~ 8"(mr),

Q~ = —,'g[(F —&}6~+e"'w' v'w'/(F + &)-]. (6.7)

2"'"(iii) = ITr[+ ,'(Nq Nq')'], ——(6.8)

where J stands for the ultraviol. et-divergent part of

[i/2(2&)"] d"k(1/k'), i.e. , I= I/[4v(2 —n)] as n- 2.

There are five types of diagrams which give rise
to the one-loop ultraviolet divergences; see Fig.
2, diagrams (i)-(v). Since T»z and U~» involve

A& alone, diagrams (i) and (ii) are common to the
massl. ess pure Yang-Mills theory and give rise to
divergent terms proportional to A„'. In the pure
Yang-Mil. ls theory, however, there is no mass re-
normalization and therefore the ultravio1. et diver-
gences coming from (i) and (ii) must add up to
vanish. Diagram (iii) yields the one-loop diver-
gence of the form

Similarly, diagrams (iv) and (v) lead to the follow-
ing one-loop divergences:

2""(iv) = I& Tr(QQ"), (6.9)

2""(v) = f2nm Tr(Q) . - (6.10)

Substitution of the expression (6.'I) for 0 shows
that these two expressions combine to vanish.
Consequently, the one-loop renormalization
counterterm is given by AC= -L~"(iii) with the
substitution of (6.6). It is easy to see that this
counterterm is compatible with the WT identities.
In particular, the divergent renormalization con-
stants Z and X are determined to be (set N= 2)

Z = 1 —(2/F, ') [N - (2/N)]f,

X= 1 + (4/F„')[N (1/N) ]I, —
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(iv)

(v)

I ITP" I + Ui v

A+( ~ A„

M Q + N (

As is well known, "P' and y" are given by

P = (p.d/dp) e, yie = ,'(-pd/d p, ) lnZ, (7.2)

where d/dp, i s a derivative to be taken with bare
parameters m and F fixed. Noting the fact that
I/(4wE') = ep. ' "(XZ) ' is a bare parameter inde-
pendent of p. and using (6.11), one finds that

P ' = e(& —2Ne) + O(e'e) . (7.3)

Similarly, if follows from (6.11) and (7.2) that the
anomalous dimension y i of the w„field is given by

y ' = [N —(2lN)]e+ O(ee) . (7.4)

As a consequence of U(N)i, x U(N)w-symmetric
renormalization, the composite operators w'[w]

and o'[w] have the same anomalous dimension. It
is clear from (7.3) that the theory is asymptotically
free in two dimensions while it has a nontrivial
ultraviolet-stable point e„,„„,= e/(2N) of order
E in 2+& dimensions.

FIG. 2. Diagrams (i), (ii), and (iii) represent the
propagation of B„,g, and IIel, respectively. Diagram {v)
represents a mixed B„-gloop.

where we have recovered the subscript r. The
above expressions with general N correspond to
the SU(N) case; in this case we have determined
them from the one-loop A„A„A„m,and wm propa-
gators using the power-series expression (B6) of
Appendix B.

VII. ASYMPTOTIC FREEDOM

The O(N) nonlinear & model is asymptotically
free and has a nontrivial ultraviolet-stable fixed
point in m = 2 + & dimensions" "with & & 0 and in-
finitesimal. This short-distance feature is also
true for the SU(N) nonlinear & model and therefore
common to massive Yang-Mills theory as well.
To see this let us consider the renormalization-
group equations, "which, e.g. , for the renormal-
ized inverse w'w propagator I' (P') = 6 I'(P'),
takes the form

(
8 8 8

p —+P + +P' ——2ye I'{P' e m a p) =0
8p, 8m„8e rw

(7.1)
where u is an arbitrary reference mass (or, more
definitely, one may regard p,

' as denoting the re-
normalization point p' = p') and e = p" '/(4wF„'). In
n =2+ & dimensions, the coupling constant 1/F„'
and the w f ield have dimension (2 —n) and (n —2)/2,
respectively, in units of mass; correspondingly,
by means of the dimensionless coupling constant
e = g" /(4wF„') we have defined the continuation of
1/F' into n dimensions.

VIII. CONCLUSIONS

In this paper we have presented a systematic
study of Yang-Mills field theories with explicit
mass terms. We have shown that these theories
may be considered within the conventional frame-
work of mass generation via the Higgs-Kibble
mechanism in gauge theories. The unique feature
of this class of theories is that some or all of the
Higgs fields are realized nonlinearly. For these
nonlinear realizations the Higgs sector of the the-
ory involves solely the Goldstone bosons which
are absorbed by the Higgs-Kibble mechanism. In
a particular (unitary) gauge, the entire nonlinear
Higgs Lagrangian is reduced solely to the explicit
mass term for the gauge field.

As an example of this mechanism, we have
studied an SU(N) massive Yang-Mills theory. In
the case where all masses are degenerate, the
equivalent Higgs theory involves nonlinear chiral
Higgs fields, having an SU(N)~ x SU(N)n symmetry
The SU(N)1, symmetry is gauged while the SU(N)„
symmetry reflects the mass degeneracy and sym-
metry of the massive Yang-Mills theory.

With the fundamental structure of massive Yang-
Mills theories determined, we have focused on the
renormalizability and perturbative aspects of
these theories. The renormalization problems
were studied using the standard covariant gauges
where the divergence structure is softer than that
of the original unitary gauge. In this formulation,
it is clear that the principal, divergences are those
associated with the nonlinear Higgs sector of the
theory.

In four space-time dimensions the divergence
structure remains untractable for the nonlinear
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Higgs theory. However, in two dimensions the
analogous O(N) nonlinear v models were known to
be renormalizabl. e. We have extended this proof
to the SU(N)& x SU(N) „noniinear o model.

Using these results, the nonl. inear chiral gauge
theories (massive Yang-Mills theories) were
shown to be renormalizable in two dimensions.
This proof requires the full use of the Ward-
Takahashi identities for the global SU(N)z x SU(N)„
symmetries as well as those associated with the
local SU(N) I, symmetry.

We have further shown that these theories are
asymptotically free field theories. This fact im-
plies that these theories are governed by a non-
trivial. ultraviolet fixed point above two dimensions.
Whether the theories may be extrapolated to four
dimensions while maintaining control of the short-
distance behavior remains an open question.

We may also speculate on the phase behavior of
these theories in two and higher dimensions. In
two dimensions, the SU(N) nonlinear & model
(chiral Higgs theory) is expected to exist in the
nonperturbative symmetric phase. The perturba-
tive Goldstone phase is expected to be unstable
due to infrared instabilities as a result of Cole-
man's theorem. " This result could be established
explicitly in the O(N) models at large ¹"" We
have not been able to extend these explicit calcu-
lations to the SU{N} models. Above two dimen-
sions these theories should exhibit a phase transi-
tion with the weak-coupling phase being the per-
turbative Goldstone phase.

Contrary to the o' model, the massive Yang-
Mills theory is expected to remain in the pertur-
bative broken-symmetry phase even in two dimen-
sions. The Higgs mechanism is expected to pre-
vent infrared instabilities at least for weak cou-
pling. For strong coupling, a symmetric confine-
ment phase may exist as in the case of O(N) gauge
theory. " Above two dimensions we expect similar
features to exist so long as the short-distance be-
havior remains under control of the ultraviolet-
stable fixed point.

APPENDIX A

In terms of the "SU(N) notation, " (AB)'=d'~A'B
and (A x B)'=f"A'B read

APPENDIX 8

In this appendix we study the parametrization of
the SU(N) m at rix

M[x]/F = (0+iv)/F, (Bl)

normalized so that N[w] = F+i w + 0(m'/F)
In what follows we shall set F= I for simplicity.
Since 51[v] is an SU(N) matrix connected to the

unit matrix, lt 1s uniquely w1 itten as

N[x] = &+ iver = exp(iu),

in terms of a traceless Hermitian (NxN) matrix
u=u'X', where u'(x) (a= 1, . . . , N' —1) are real
functions. Repeated use of the basic formula

uu = {2/N) u' I + (uu) 'X' (BS)

enables us to cast exp(iu) into the desired form
(Bl); in particular, w(u) is given by

w = [I —(u'/SN)]u —'uuu+-O(u') .

[In deriving this expression we have used the re-
lation ux (uu) = 0 which follows from the identity"

f~ada-+f. ~ada-+&"Aa" = 0

which is valid for SU(N). ] We can solve (B4) for
u in a power series in w and express v'(u) and

o'(u) in powers of v; this procedure defines the
parametrization (Bl) uniquely. The first few
terms in v [v] and o'[v] are given by

(2/N)'I'x' =- (1/SN)w .8v + ~ ~ . ,

(2/N) 'I 'o' = 1 —(I/N) v' —(I/2N ') (w')'

(1/4N) s ~ v v w + ~ -~ ~

o= --,'v v —(I/4N)(v')» —8&'&

+(I/12N)(n' ~ v v)w + ~ ~ ~,

AB = [(A +i A x)B]'X'

= (2/N)(A B)1+[(2/N)'I'(A B'+A'B )

+[(A+iA x)B]']X', (A2)

where AB expressed in terms of underl. ined vec-
tors denotes an (N' —1)-component vector, (AB)
()t ~0).

(AB) = (2/N)' '(A ~ B)

= (2/N)' '(A'B'+A ~ B),
(AB) (2/N) I (A B +A B ) +(AB)

Ax B=A xB [(A x B)'=0].
In view of (2.7) the product AB is rewritten as

(Al)

where omitted terms are of a higher order in the
m field. The overall normal. ization constant F is
recovered if we replace {v',o') by {v'/F, o'/F)

By making Hermitian conjugation in (82} we
learn that v'(-u) = —v'(u) while o'(-u) = &'(u). Cor-
respondingly, v'[w] is odd in @whereas o''[v] are
even in n.
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APPENDIX C

(Cl)

The P and Z terms in i'. „„,(4.2) are written as

$,(P, Z) =~8g Tr{ P[C( o+i )v+(&-erg]
+iZ[C(5+iv) —(o —ix)C]) .

(C2)

In this appendix we calculate the change of the
source Lagrangian (4.2) under an infinitesimal
SU(N)& transformation. Since the first term on the
right-hand side of (4.3) is trivial we shall confine
ourselves to the second term.

Let us first note thai, in (N x N) -matrix form,
(2.12) reads

&(&+») =&&[«~(&+«) —(&+«)«s].

Applying the left transformation on (C2) gives

5sg, (P, Z) = —,
' i g Tr[-(P+iZ)C(ft+iw)«s

+ (P —iZ) «s(a'i-n)C]

= —,', g Tr{5e„[(Z—i P)C(o+iPr)

-(5 —iw)C (Z +i P)]).

Finally repeated use of formula (A2) leads to the
desired expression (4.3).
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