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It is known that the equations of motion of a classical system do not in general determine its canonical
description uniquely. Thus the corresponding quantum system obtained by canonical quantization is also
ambiguous. We use this freedom to quantize a free nonrelativistic particle so that the corresponding quantum
particle has half-integral or integral helicity. Methods are developed for finding inequivalent canonical
descriptions of a given classical system. It is emphasized that classical symmetries can be broken at the
quantum level by a suitable choice of the canonical formalism prior to quantization. It is suggested that this
may provide a new mechanism for breaking internal symmetries at the quantum level.

I. INTRODUCTION

In this paper, we adopt the view that a system in
classical mechanics is completely specified by (a)
the equations of motion and (b) the precise empir-
ical meaning (during a measurement) of the vari-
ables in the equations of motion. The state of
such a system is thus determined by a point £
=(£,,£€5,...,&,,) On a 2n-dimensional manifold M
(the phase space). The physical meaning of the
variables §; are a priori given. The time evolu-
tion of £, is fixed by the first-order equations

dg; (1) _

dt =§,‘(l):a,’(§(t)); (1.1)

where «(£) is a known vector field.!

In this point of view, the canonical formalism is
a superstructure which is not necessary for a
complete description of the classical system [as
defined by (a) and (b)]. Further, as is known,*?
we can in general find several (generalized) Pois-
son brackets (PB’s)

{e, 61 =0 ) (1.2)

and associated Hamiltonians H ’(¢), all of which
yield the same equations of motion (1.1)*

{8, HOE)} =, (8). (1.3)

The superscripts v on the (generalized) PB sym-
bols are to emphasize that the latter are canonical-
1y inequivalent for different v. The classical sys-
tem, by definition, is the same regardless of which
Hamiltonian and PB’s we use in the canonical
formalism.

However, when we canonically quantize the clas-
sical system, the resultant quantum system de-
pends critically on the particular canonical de-

scription we use for the classical system.*® Thus,
there is a deep ambiguity in the passage from
classical to quantum theory. This ambiguity is
distinct from the ambiguities due to factor-or-
dering problems.

In Sec. II, we show how this ambiguity can be
used to quantize a free nonrelativistic (NR) par-
ticle with no internal degrees of freedom, and ob-
tain a quantum-mechanical particle with an in-
trinsic helicity. This helicity can be half-integral
or integral. Thus the quantum particle can have
half-integral or integral angular momenta. It can
be a fermion or a boson. Such a possibility arises
because in quantum mechanics helicity is a prop-
erty characteristic of the generators of geometric
rotations on the states of the system. The form of
these generators depends on the commutation re-
lations between coordinates and momenta. Note
however that for a classical system as defined
by (a) and (b), the “generator of rotations” has no
intrinsic meaning and depends on the choice of the
canonical description.

In the next three sections, we discuss three
methods for finding inequivalent canonical de-
scriptions of classical systems. They are illus-
trated by the example in Sec. II. The basic ideas
behind the first method are contained in Ref. 2.,
We further develop these ideas due to Ref. 2 in
Sec. III.

The equations of motion of a NR free particle
are invariant under the Galilei group §.°> They are
also invariant under the larger group wherein the
spatial rotations in ¢ are replaced by GL(3,R). In
the conventional canonical formalism given in
textbooks,® only § is canonically implementable.
When we pass to quanturn mechanics, there are no
unitary operators to implement those symmetries
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which are not in §.° Such symmetries are thus
broken in the conventional quantum mechanics of
a free particle. This situation in the theory of a
free NR particle is generic. For a classical sys-
tem, the full symmetry group of the equations of
motion is, as a rule, larger than that which is
canonically implementable. The noncanonical
symmetries are then broken at the quantum level.
Further, the notion of canonicity depends on our
choice of the PB’s for the classical system. It
follows that different subgroups of the full clas-
sical symmetry group may become canonical when
the PB’s are changed.”? Thus, it becomes possible
to break appropriate classical symmetries at the
quantum level by a suitable choice of the canonical
description for the classical system. This is a
novel possibility for breaking symmetries at the
quantum level. In the final section, we indicate
methods to find canonical descriptions such that
the corresponding quantum theories will break
appropriate symmetries of the classical equations.
These methods may be useful in breaking internal
symmetries like SU(3). (See in this connection
Santilli.?)

The existence of ambiguities in the Lagrangian
and Hamiltonian descriptions of classical sys-
tems has long been known.” At the quantum level,
it has also been known for some time that the
Heisenberg equations of motion do not fully deter-
mine the commutation relations (CR’s) of ;. Wig-
ner and others investigated such quantum-me-
chanical ambiguities in the early 50’s.® Further,
the realization that the equations of motion permit
more general algebraic structures than CR’s led
to the development of parastatistics.® However,

a systematic study of the ambiguities in the La-
grangian and Hamiltonian formalisms of classical
systems has been initiated only recently.?:3

II. HELICITY FOR A CLASSICAL NONRELATIVISTIC
FREE PARTICLE

The conventional canonical description of a NR
free particle assumes the PB’s

{ai, 44O ={pi,p 3 =0,

(2.1)
{qi’f’j}(o) =0i;,
and defines the Hamiltonian to be'°
2
HO =2 (2.2)

2m

Here, m is the mass of the particle, g, are its
Cartesian coordinates, andp'./m are the corre-
sponding velocities. Thus, §;=¢; and §,,,=p;

(i <3). The equations of motion which follow from
(2.1) and (2.2) are

oy bilt)
q,'(t)‘ m

. (2.3)
p;(t)=0.
An alternative canonical description which yields
the equations of motion (2.3) is obtained by re-
placing (2.1) by

{‘Ii’qj'}u): _)\€ijkpk/l>3 ’
{pi,p,p =0, (2.4)

{q"pj}(l) = Gij s
where A is a constant. The new Hamiltonian #®
is the same as (2.2):

a_ b

H® = o (2.5)
It is trivial to verify the validity of (2.3). Note
that we get the same classical system for any va-
lue of A. Further, this value is unrestricted at the
classical level. However, the situation is differ-
ent for the quantum system as we shall see below.
(See also the remarks in Sec. I.)

The spatial rotation group SO(3) acts on 4 and p

as follows:

Qi"Rijqj;

.6
pi~Ry;p;, RES0(3). 0

An inspection of (2.4) shows that this group is
canonically implementable. However, its genera-
tors are no longer ¢ xp. They are, instead,'*:!

J:qXp«f.lﬁ (2.7)

as a straightforward calculation shows. Thus, the
particle has a helicity

ped=x (2.8)

in the direction of the momentum. It follows that
(a) quantization is possible only if A is half-inte-
gral or integral, (b) the quantum system is fer-
mionic or bosonic accordingly as X is half-inte-
gral or integral.’!

In the new canonical description, for the classi-
cal system as well, the generators of rotations
are given by (2.7). Thus, one may define the he-
licity of the classical NR particle in the new ca-
nonical description to be A. However, since the
classical NR particle is the same regardless of
its canonical description, such a definition is of
doubtful utility.

In the following sections, we will discuss the
close resemblance between this formalism and
Dirac’s theory of magnetic monopoles.

For the PB’s (2.4), the following symmetries of
the classical equations of motion are not canoni-
cal transformations; (i) spatial inversion, (ii) the
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Galilei transformations!?:®

qi~qi+wil,
pi~pi+mw,. (2.9)

The situation with regard to spatial inversions is
similar to that in Dirac’s theory. As regards (ii),
we note that Galilei invariance can be restored if
q; and p; are interpreted as relative coordinates
and momenta of two noninteracting particles, since
these coordinates are invariant under such Galilei
transformations.

We show in Sec. V that such a method of quanti-
zation is possible in the presence of a certain
class of interactions as well. The Galilei trans-
formations (2.9) are not symmetries of the equa-
tions of motion when the particle moves, for in-
stance, in an external central potential. (Here, as
usual, g; and p,/m are interpreted as Cartesian
coordinates and velocities.) Their failure to be
canonical is thus less striking for these systems.

It is of course not evident that there is any phys-
ical system in nature for which the method of
quantization of this section is the correct one.
However, such ambiguities in canonical description
and quantization seem to merit further investiga-
tion, particularly since they offer the possibility
of discovering novel and physically relevant quanti-
zation methods. In the sections which follow, we
study some schemes for producing inequivalent
canonical descriptions, and also touch upon their
physical implications.

III. METHOD 1 FOR FINDING INEQUIVALENT
CANONICAL DESCRIPTIONS

We assume throughout the paper that we are
initially given a set of PB’s

{Ei:E/}(O)=w¢(?)(E) (3.1)

and a Hamiltonian H ©’(¢) which yield the equations
of motion (1.1)." It is of course also assumed that
(8.1) fulfills the Jacobi identity.

Let {s} denote the set of symmetry transforma-
tions of the given classical system. Thus, £ - s(¢)
is an invertible transformation of M onto M such
that if £(¢) fulfills (1.1), then

4 s€=a,6Ee. (3.2)

Equations (3.2) are entirely equivalent to (1.1).
If we now set’®

{s;(8), s;(EN} P =wP(s(£)), (3.3)
and define the new Hamiltonian
H®(E)=H(s(£)), (3.4)

the equations of motion (3.2), and hence (1.1), are

evidently reproduced. [Note that o;(¢) =
L HOEN O =0 ()oH®(£)/08,.] The PB’s (3.3)
can be rewritten as

{£,810=00) (3.5)

for a suitable w ®.

If s is a canonical transformation relative to the
PB’s (3.1), w ™ and w’ are equal, while H*? and
H® differ at most by a constant by a well-known
theorem. Hence, (3.3), (3.4), and (3.5) lead to
nothing new. Thus we are led to the first method
for finding new canonical descriptions: Let s be
a symmetry tvansformation which is not canonical
relative to the PB’s (3.1). Then, the constructions
(3.3), (3.4), and (3.5) give a new canonical de-
scription of the same classical system.

The authors of Ref. 2 were well aware of this
method. (See also Ref. 3.) The new contribution
in this paper will be to develop ways to find such
transformations s. However, we will first illus-
trate the idea by a simple example due to these
authors. For a free particle, let s be any con-
stant nonsingular real 3x3 matrix which is not
orthogonal. If ¢; and p,/m are Cartesian coordi-
nates and velocities, the transformation

qi~Siid;
Pi=~Si;b; (3.6)

is a symmetry. It is also not canonical relative
to the PB’s (2.1). Let

{sintss s”q,}‘” ={sixbs s“p,}‘“ =0,
{siqu!sjlpt}(l)zéu, (3.3)

H‘l’(§)=$(sik1)k)(s“p,). (3.4%)

We can rewrite (3.3’) as

{qi7qj}(1):{pi)pj}(l):o)

3.5’
{’Iixpj}(l)zs;kls;kl' ( :

Then, (3.4’) and (3.5’) give the new canonical de-
scription.

We will now describe a method for finding non-
canonical symmetries. We will then apply it to
derive (2.4) and (2.5).

Let 7 be a krnown symmetry of the given clas-
sical system which depends on a set of continuous
parameters A=(A,,A,,...,A,). It is immaterial
whether 7*) is canonical or not. For a free par-
ticle, 7 can be a spatial translation:

T‘“(q,P).-=q,~+A.~, T(A)(Q,P)us.:Pi, (3.7)
A=(Ay, Ay Ay, i=1,2,3. '

For a central potential problem, 74’ can be a
spatial rotation:
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T8 (g, p) =R,
T“’(q,p),.”:R,.‘;“pj, (3.8)
R"™e80(3), i=1,2,3.

The empirical meaning of 4; and p, in (3.7) and
(3.8) is as in Sec. II. In (3.8), A=(4,,A,, A,) where
A; are the Euler angles.

Let c¢=(cy, €y, ..., C,) be a set of krown constants
motion. They are functions of £. For a central
potential problem, we can for instance take c;
(i=1,2,3) to be the components of angular momen-
ta and c, to be energy.

Now let A be a function of ¢(¢). Then the claim
is that the transformation ¢ - s(¢), where

s(E)=TWACENE) (3.9)

is a symmetry transformation which is in general
not canonical.!*!®

The example below will show that (3.9) in gen-
eral is not canonical. We will now prove that it
is a symmetry of the equations of motion. When
A is a constant, (3.2) (with s =7“’) and (1.1) are
equivalent. For constant A, (3.2) can be rewritten
as

Ja‘?’(é(t))g(%” =a, (T E@))), (3.10)
where

Je‘f’(€)=ii%§—) . (3.11)
Comparison of (3.10) and (1.1) shows that

JE)a,E) =, (7 (). (3.12)

Now if A is made a function of c¢(¢), since c(£) is
constant on classical trajectories, we find

ANE) _ y (e (1)), € (1))
dt 7
=a,; (T (&) (3.13)

by (3.12), which is the required result. In (3.13),
it is understood that A =A(c(£(¢))).

We now apply this method to the example of Sec.
II. For a free particle, spatial translations are
symmetries, and the Cartesian Velocitiesp,-/m
are constants of motion. So choose 7%® tobe a
velocity-dependent translation:

T g,p)=q; +Ay(p) ,
TN, p) =pyy i1,2,3.

Then the new PB’s [derived from (2.1) via (3.3)] are
{a:,0,1 " ==[8,A,(p) - 3,A,(p)],
{Pi!pj}(1)=0’

{gip } =55,

(3.14)

(3.15)

while the new Hamiltonian is
HYg,p)=p*/2m. (3.16)
When A is taken to be the solution of the equation'®

24,(p) - ,4,(p) =xe, b8 (3.17)
we recover (2.4) and (2.5).

If A is so chosen that its curl is not a second-
rank antisymmetric tensor under spatial rota-
tions, the latter will become noncanonical relative
to the new PB’s. This is a way to break rota-
tional invariance at the quantum level.

IV. METHOD 2 FOR FINDING INEQUIVALENT
CANONICAL DESCRIPTIONS

Initially, the classical system is described by
the dynamical variables &,, the PB’s indexed by
zero, and the Hamiltonian H’(¢). [Recall that
H®(£) is not the free Hamiltonian. It is the Ham-
iltonian which generates the equations of motion
for the PB’s (3.1).]

Our second method consists in first enlarging
this system by introducing suitable additional vari-
ables 7,. The Hamiltonian for this enlarged sys-
tem is taken to be g(¢£) while the PB’s between
q’s are also unchanged. So, the ¢’s continue to
fulfill the original equations of motion (1.1). The
PB’s involving n’s are taken to be

{Nesn s} @ =5, (4.1)
{£mt =0 (4.2)

for a suitable choice of Q, (consistent with Jacobi
identities). Thus,

M,=0. (4.3)
Next, we impose constraints on the system:
ofE,m=0, 0=1,2,...,v. (4.4)

Here, we require the following: (i) The constrained
hypersurface must be invariant under time evolu-
tion:

{p 8,7, HOE)}© =0 modulo constraints;  (4.5)

(ii) Using the constraints, we should be able to
eliminate all the n’s (and no more degrees of
freedom) by applying Dirac’s method for con-
strained Hamiltonian systems.'?

When the 71’s are so eliminated, the resultant
PB’s for rather Dirac brackets (DB’s)'"] w ™’ be-
tween £’s will in general differ from w@. Also,
due to (4.5), H® is a first-class variable."”
Hence, on the constrained hypersurface, its DB
with any variable is equal to its PB with super-
script zero:
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[}

={, HOE}. (4.6)

The equations of motion of {’s are thus unchanged
by the process of elimination of 7’s.

The result of these manipulations is that (i) we
have eliminated the extra variables 7, and are
left with the original variables &, (ii) the PB
w’(£) between &, and ¢, is in general different
from the PB w}’(¢£) we started out with, and (iii)
the original equations of motion (1.1) are still
generated by H®(¢) and the new PB’s.

We shall now apply this method to derive (2.4)
and (2.5).'® Enlarge the free particle system [giv-
en by (2.1) and (2.2)] by introducing the additional
“isospin” vector I=(I,,I,,1,). The PB’s involving
I,’s are assumed to be

I 1g} @ =€ 4y 1y, (4.7)

{&:,,119=0. (4.8)
Next we impose the constraints

¢ =11, -u=0, (4.9)

$2=Pola =1 =0, (4.10)

where p and X constants.

Both these constraints are preserved by time
evolution. Further, they can be used to eliminate
all the 7,’s (and no more extra variables). For:
(a) ¢, has zero PB’s with all the variables &;,7,.
It is in the center of the PB algebra. Thus we can
eliminate one degree of freedom by setting ¢, =0.
(b) ¢, is a first-class constraint.'” Further, it
generates nontrivial canonical transformations on
the enlarged phase space. So (4.10) eliminates
two degrees of freedom. Combining (4.9) and
(4.10), we thus eliminate three degrees of freedom
which can be taken to be the I’s.

It is easily verified that p,; and*®

q;“=q‘+p—12€”apj1a (4.11)
have vanishing PB’s (with superscript zero) with
¢, (and, of course, with ¢,). Thus they are first-
class variables'” and describe the reduced phase
space, which fulfills (4.9) and (4.10). Their PB’s
on the reduced phase space are

{113",4?}(0’=—7\€.-jk%§ , (4.12)
{p“pj}(o):o, (4.13)
{q?’pj} ©= Oi;e (4.14)

Now instead of working with ¢g* and p and their
PB’s indexed by zero, we can equally well work

with ¢ and p and their Dirac brackets indexed by
one:

{anj}‘”*'kin% ’ (4.15)
{pip39 =0, (4.16)
{qi’l’j}a)=5u- (4.17)

These are the same as (2.4). Further, for the
Hamiltonian p2/2m, the equations of motion (2.3)
are recovered.

V. METHOD 3 FOR FINDING INEQUIVALENT
CANONICAL DESCRIPTIONS

In the last three sections, we have described a
few methods for constructing inequivalent canon-
ical descriptions. As we have described them,
however, some of these methods [for example that
of Sec. II or Egs. (3.3")—(3.5’)] seem applicable
only to free particles. In this section, we will
show how all the methods available for the free
system can be applied to many interacting sys-
tems as well.

It is well known that for a large class of inter-
acting systems, there exist coordinates

£ =q"=qM¢), 6.0
Wa=pN=pNE), i=1,2,....m
which obey the free equations

dgi™t) _pi(t)

at m ’ (5.2)
apM(t) _q
at :

Here, n denotes the number of degrees of freedom.
Thus we can introduce new canonical structures
for such systems by first introducing the coordi-
nates £!N and then applying the methods available
for free systems. The new descriptions can of
course be finally rewritten in the variables £, if
desired. Note also that for every system which
admits such coordinates ¢V, the symmetry group
of the equations of motion is isomorphic to the
corresponding symmetry group of the free equa-
tions. In the usual formalism, only a subgroup
thereof is canonically realizable.

The construction of £V is analogous to the con-
struction of the “in” variables in the quantum the-
ory of scattering.?® We assume that the classical
system admits no closed orbits and that the inter-
action is sufficiently short range.?* Then the clas-
sical Mgller operator

Q+ =E.mm U”(o)(—t)U”(:)(t) (5-3)

exists and is invertible. (This definition of Q* is
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similar to that in quantum scattering theory.>°)
We have used the notation

p2
H(O)(E) =m +H1(°)(q,l’)

=HQ(p)+H(q,p), £=(q,P), (5.4)

where HY’ and H{®’ are the “free” and “interac-
tion” Hamiltonians, respectively. (Note that H©
denotes the full and not the free Hamiltonian.) The
variables ¢ and p obey the usual PB’s [cf. (2.1)].
The classical time evolution operators associated
with #© and H’ have been denoted by U, ()

and U gn(t) Their meaning is illustrated by the
action of the operator U (o)(t) on a point £ in the
phase space M:

[V o(t)E] = 2 t,{{ A{EL BOEO, HOE},
O HOER|
(5.5)

As in the quantum-mechanical scattering theory,
we have the properties

U”(O)(t1+t 2= UH(O)(tl)UH(O)(tZ), (5.6)
UHI('P)(tl'*'t 2):U1~1§,?)(t1)UH}?)(t2) ) (5.7)
UH(O)(0)= UH}?)(O)=1' (5.8)
Thus,
= lim U (0)(‘( -t)U (o)((t'—t))
t!—>—c0 Hp
= UH(O)(t)Q+U”(FO)(—t), (5.9)
or
(270, 0t)=U, 0O (5.10)

The new coordinates £™ are defined by
EIN = [Q* -
= lim U, (=D, 0% - (5.11)

t—>-c

Under time evolution, £ evolves according to

U” o)

U oft)E . (5.12)
H

Thus, by (5.10), the time evolution of £™ is given
by

EN=U o) (0E™. (5.13)
F

The interpretation of the right-hand side is sim-
ilar to (5.5). It follows that £}~ obey the free equa-
tions (5.2). The equations of motion of £, can be
recovered by expressing (5.2) in terms of £, using
(5.11). The two sets of equations are entirely

equivalent.

Note also the following facts: (i) Since U (0,(t)
and Uy, (0) (-¢t) are canonical transformatlons rela-
tive to the PB’s (2.1), [27]"* generates a canonical
transformation relative to these PB’s. Therefore,

b O = p 0
P =5,;.
(ii) In view of (5.14), the Hamiltonian H &’(p'™)
F
=(p™)?/2m generates the equations of motion (5.2)
for the PB’s (2.1). But so does H®(¢). Thus,

H®(&) and HO(p™) can differ at most by a con-
stant®:

(5.14)

HOE)=HL (p™) + constant . (5.15)

New PB’s and Hamiltonians can be introduced to
describe (5.2). They can then be reexpressed in
terms of £.?2 Of course, relative to these new
PB’s, the change of variable (5.11) will not in gen-
eral be canonical.

We now discuss how the variables 7% (g,p) in-
troduced in (3.14) are intimately related to the

in” variables for the magnetic monopole system.
The discussion should further clarify the origin of
the PB’s {+,*}* and the Hamiltonian H‘ of Sec. IL.

A NR charged particle in the field of a magnetic

monopole is described by the Hamiltonian

H® =[p - Bg))/2m, (5.16)
where B is a solution of the equation
B,(g) - 8jBi(q)=)\€”kg% . (5.17)
Here A is a suitable constant. A solution for Bis'®
(7-q) (A Xq)
B( )=—AJ+L‘ (5.18)
1 qle® - (g1’
where the constant unit vector 7 gives the direction
of the Dirac string (cf. Ref. 11). The PB’s of ¢
and p are given by (2.1). The relation of the Car-
tesian velocity ¢ to p is
q=[p-Bg)/m. (5.19)

Therefore,

. 1
{qi’qj}(m =Z6ij »
(5.20)

A
{q‘l’qj} )_—2- €uk§ql% .

Suppose that the position and velocity of the par-
ticle at time zero are ¢(0) and ¢(0). We now study
the action of [Q2"]™! on (4(0),§(0)).?

Let (4(0),§(0)) become (g(¢),4(¢)) after time ¢
when evolved by the full Hamiltonian H©:

U, o()@(0),a0)=(t),4(t)). (5.21)
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We are interested in this expression as ¢ — —c,
Then the particle moves almost in a straight line®*:
q(t)=tg(w)+s()+0(t7') as t - —w. (5.22)
Thus,
G(t)=¢(=)+ 0% as t = —o. (5.23)

The momentum p(f) conjugate to g(¢) is given by
(5.19):

p(t)=mq(t)+ Blg(t)].
Therefore, by (5.22), (5.23), and (5.18),

(5.24)

p(t)=mi1(°°)+Hl—lB[g(oo)]+o(t-2) as f = -,

(5.25)

Next we evolve ¢(¢) and p(¢) with the free Ham-
iltonian HY’ for a time —¢. Then, we let £ — -
to find g™, p™. Thus,

g™ =Tim [g(6) =L p(0)]

t>—c0

= s(=) 4= Bg(=)], (5.26)
P =p (=)
=mg(«)-. (5.27)

The full Hamiltonian H® can be written as
$mq(0)>. Since the magnitude of velocity is con-
served for this system,** it follows that

H© =}mg(=)?
:(plN)z/zm .

This is consistent with the general result (5.15).
The “in” variables obey (5.14). Therefore,

(5.28)

{si(oo), Sj(oo)}«)) = —Aﬁijkf(k;(;)o?) ’

{pi(),p, (=)} =0,
{si(oo)’[)j(oo)} © = 6:‘]‘ .

Comparison of Eqgs. (3.14)-(3.17) with (5.26)—
(5.29) shows that (i) the “impact parameter” s(e)
and “asymptotic momentum” p (=) correspond to
q and p of (3.14), (ii) g™ and p™ correspond to
rlA® (5 ) of (3.14). Thus the impact parameter
s() and asymptotic momentum p () of the mag-
netic monopole system obey the free equations of
motion, but their canonical description is not the
usual canonical description. It is the description
with the superscript 1.

It is possible to introduce new canonical de-
scriptions for the monopole system as described
earlier in this section. We will not pursue this
point here.

(5.29)

V1. METHOD FOR BREAKING CLASSICAL SYMMETRIES
AT THE QUANTUM LEVEL

We remarked in the introduction on the following
points: (i) The full symmetry group of the clas-
sical equations of motion is as a rule larger than
that which is canonically implementable. (ii) The
set of canonically implementable symmetries de-
pends on our choice of the canonical description.
(iii) The noncanonical symmetries can not be uni-
tarily implemented at the quantum level. They are
thus expected to be broken at the quantum level.

Thus, it becomes possible to break appropriate
classical symmetries at the quantum level. Such
a method may be relevant for breaking internal
symmetries.

In this section, we will illustrate the preceding
points in terms of the free particle system and the
canonical description (3.4’)—(3.5’). The papers
cited in Ref. 2 should be consulted for more thor-
ough discussions of points (i) and (ii). We will also
discuss which symmetries are expected to sur-
vive as canonical symmetries when the methods of
Secs. III and IV are used to introduce new canoni-
cal descriptions. This will also show how to con-
trol symmetry breaking in these methods.

The NR free particle equations admit GL(3, R)
as a symmetry group. An element g€ GL(3,R)
acts on Cartesian coordinates and momenta ¢ and
p as follows:

14
q:i= 84
¢ (6.1)
pi~gi;b;-
For the PB’s (3.5’), g is canonical only if
glsTs]*gT=[sTs]". (6.2)

We have used a matrix notation and M T denotes
the transpose of the matrix M. Thus the canonical
subgroup of GL(3, R) depends on the choice of s.
Now suppose that [sTs]™! is not a multiple of

the identity. Then spatial rotations are not canon-
ical. At the quantum level, let lg") and Ig”) de-
note states with eigenvalues ¢/ and ¢ for ¢;. Then
we find®

{q”] exp[—;i:H‘“t]lq') #(Rq"| eXp[—%H‘“t]qu@ .

(6.3)

Here, t #0 and R is a spatial rotation matrix #1.
In this particular example, the two sides differ
by a phase which depends on ¢’, ¢”, and R.*®:*°
Thus if we replace the initial and final states on
the left-hand side by general wave packets
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6=/ lahe(a)d%’,
(6.4)

|¢>=f1q”>b(q”)d3q”,

and denote the rotated wave packets by [¢® and
19,

|¢R>=fqu’>p(q’)d3q’,
(6.5)
w5 = [ IRg"plaa%”

we find that the transition probabilities are not
rotationally invariant:
% %)

ffenf-2ro ]l
(6.6)

Therefore, this quantum mechanics of the free par-
ticle breaks spatial rotational invariance.

The action in the phase space which is appropri-
ate for the canonical description (3.3")-(3.5') is

2
#

2

exp[—-é—H‘“t]

f (PQ - P%/2m)dt

(cf. Refs. 4 and 25). As is well known, the phase
of {g” lexp{-iHYt/%i}1q") [modulo the contribution
from ;~%? (Ref. 25)] is given by

¢
f (PQ -P%/2m)dt

0
where the integral is along the actual classical
trajectory with Cartesian coordinates ¢’ and ¢”
at times zero and ¢ respectively. This is just the
appropriate Hamilton’s principal function for this
canonical description. The failure of rotational
invariance in this example is due to the fact that
this phase does not transform properly under ro-
tations. These observations can be easily gener-
alized. Thus, suppose that a symmetry trans-
formation of any classical system (not necessarily
the free particle) can not be canonically imple-
mented for a particular choice of the canonical de-
scription. Then the corresponding phase-space
action® fails to change only by a total time deriv-
ative of a function under this transformation. Now
consider the quantum theory obtained by canonical
quantization starting from this particular canoni-
cal description. In the semiclassical approxima-
tion, the phase of a quantum amplitude in this
quantum theory is governed by the value of this
action along an appropriate classical trajectory.
Thus it fails to transform properly under this
transformation. This shows (at the level of the
semiclassical approximation) that this symmetry
is broken in this quantum system.

We now examine Sec. III in the context of sym-
metry breaking. Suppose that £ —f(¢) is a canoni-
cal symmetry transformation relative to a canon-
ical description with superscript zero. Then it is
clear from (3.3) and (3.4) that if f commutes with
S,

fls@)]=s[ &)1, (6.17)

then f will be a canonical symmetry for the new
description with superscript 1. Otherwise, as a
rule, it will fail to be canonical.?” Thus for a par-
ticle in a central potential, if s is a spatial rota-
tion around the third axis which depends on ener-
gy, rotations around the third axis will be canon-
ical symmetries in the new description. Rotations
around 1 and 2 axes will in general fail to be ca-
nonical.”®

Next consider Sec. IV. Suppose that the original
system described by the variables ¢ has the ca-
nonical symmetry group G; relative to the PB’s
with index zero. Let G,be the canonical sym-
metry group which acts nontrivially only on 7
relative to the PB’s (4.1) and (4.2). Then the en-
larged system has the canonical symmetry group
G¢X G, relative to the description indexed by zero.
Now suppose we impose the constraints (4.4) and
eliminate 7. Then only the subgroup of G:XG,
which leaves the constrained surface invariant
will survive as a canonical symmetry.

Let us illustrate the above for the free particle
system enlarged by isospin. For our purposes,
the group G, can be taken to be the Euclidean
group in three dimensions.® It is generated by

L0=€a57q6p7 andpi, (6.8)

under the PB’s indexed by zero. The group G,
can be taken to be another Euclidean group with
generators

1, and 0. (6.9)

The translations are trivially represented in the
latter. The “little group” which leaves the con-
straints invariant is the diagonal subgroup G of

G X Gnwith generators

Je=Ly+I, andp;. (6.10)

It is also a three-dimensional Euclidean group. It
is the only subgroup of G¢x G, which survives as a
canonical symmetry when the constraints are
eliminated and the new PB’s are introduced.

Consider the quantization of this system when
only the constraint (4.9) is imposed. The system
then describes a free particle with an internal
isospin degree of freedom where the total isospin
is fixed. The generators become Hermitian op-
erators. Quantization is possible only if
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u=II+1), 1=0,%,1,.... (6.11)
The Casimir invariants of G are®
M*=p;p;,
X=p d, (6.12)
=P, -

It is evident that the quantum-mechanical Hilbert
space carries irreducible representations of G
with the helicity X taking the values

1, =1+1,...,+1. (6.13)

We can now impose (4.10) as a condition on the
states.'® Consistency requires that A has one of
the values allowed by (6.13):

A = an eigenvalue of X. (6.14)

The condition (4.10) then picks out the representa-
tion of G with helicity A. A simple calculation also
shows that the form of J, on the states picked out
by (4.10) is

J0=€ aB)Q;ﬁy +A5a’ (6-15)
where g* is defined by (4.11) and fulfills (4.12)

and (4.14). These observations are consistent with
the discussion in Sec. II.
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_ . 3 .-i_ m QII_QI 2
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7 ne
-tm /2,,,.,”)a/zexp(__ m(_s%t-_sq)_>
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i
"
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