
PH YS ICAL REVIE% D VOLUME 18, NUMBER 6 15 SEPTEMBER 1978

Some remarks on the Green's function formals»~m of %~ader's anl~ented q~ntn~ Seld
theory: Ynkawa model and "cr model"

M. Nouri-Moghadam
Department of Mathematics and Computer Science, Arya-Mehr University of Technology, P.O. Box 3406, Teheran, Iran

Tetz Yosbimura
Department of Mathematics, King's College, London O'C2R 2LS, England

(Received 4 May 1978)

Equations for Green's functions of the augmented quantum field theory with Yukawa-type interaction are
rewritten in terms of irreducible mmy-point functions. "Minimal" equations for many-point functions are
derived which do not contain the coupling constant explicitly, while the coupling constant appears

in "constraints" explicitly. The problem of finding lower many-point functions for given higher many-point

functions is also discussed. It is also shown that the "emodel" is not equivalent to the P4 model.

I. INTRODUCTION II. FUNDAMENTAL EQUATIONS

In this note we investigate the structure of
Green's function equations of augmented quantum
field theory of the Yukawa-type interaction. '
Though the equations for truncated Green's func-
tions are apparently linear, they become nonlin-
ear after separation of the reducible part of
four-point and higher many-point functions, aS is
the case for the P' model considered in our pre-
vious paper. ' In the present case the situation is
further complicated by the fact that there are two
equations for each t, where pg is the number of
fermion variables and g the number of boson
variables. Some of those equations degenerate to
become constraints. On the other hand, the
"minimal" equation for every Q does not ex-
plicitly contain the coupling constant A. .
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'The action in this model reads

8= iy "8~ -M /+2 yy~ -m —XQ g d s.
(2.4 )

Then the augmented field equations to be satisfied
by p and g are

one gets the following equations for Green's functions:
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III. STRUCTURE OF EQUATIONS IN TERMS OF IRREDUCIBLE MANY-POINT FUNCTIONS

After Fourier transformation, one gets the following equations for the two-point functions (from now on,
superscript T will be omitted):
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Here, combinatorial factors and transposed diagrams are omitted. Adding (3.2) to the appropriate com-
bination of (3.1) with respect to spinor indices, one gets

|'p, )+ T, I'p ) + (3 5)

Similarly, from (3.3) and (3.4), one gets

~ (T2o &P }+T 0 &P~})+ (3 8)

ing pa = p2 =fp in (3 &) and (3.6), one gets the "minimal*' equations for the two point functions

(3.7)

(3.8)

A strange feature of these equations is that they do not contain the coupling constant ~ explicitly. Now,
Eqs. (3.2) and (3.4) can be regarded as constraints on T» and ~„, respectively. So far, we have eight
fuIlctlons To2, 704) y20) 72~, 7'22, 723, 74p and fag but not enough equations. This is a rather awkward situa-
tion. Operating with s/&x„on Tr[y G»(x, x;y)] one gets the following constraint on G».

(3.9)

which is not trivial in the scalar-spinor model but is automatically satisfied in the pseudoscalar-spinor
model. Postponing further discussion of this problem, let us proceed to the equations for w» and w40.

The two equations for v'» read

+ a s v + 0 (3.10)

—T„(p, -p, -p„+p, )+ + /1 (3.11)

Here, use has been made of Eqs. (3.7) and (3.8). Adding (3.10) to (3.11), one gets
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(3.12)

The minimal equation for y~ reads

Again we have too many unknown functions but not enough equations and constraints.

IV. DESCENDING PROBI.EM

Now, let us return to the problem with equations for 7 and v, . Canonedetermine y, and v, if v „,
r», 7~, and r«r ageiven(& In Eqs. (3.7) and (3.8), T~, r», and v«aI)pear with arguments {p,-p, q, -(1)
(forward scattering). If r~, r», and r«with arguments (p, -p, (I, -q) as well as r» subject to constraint
(3.9) are given, Eqs. (3.7) and (3.8) can be regarded as coupled nonlinear integral equations. Defining

~()) J a'q[(q'-mb (e -s ) -)')'(~ q-»I) *.(e -e'(' -))l

~..(o) f&"e[4r* ~ )~=(e -'e )'*()'4'e-I)".-(V -V (t -(')[

7'»(P) = [(P'-~')r»(P)] ',
7'..(P) = [(p'-~')T,.(p)] ',

one gets the following equations for 7O2 and T2O'.

To2{P)+[&a(po)+P (&sod2T20& P)l {P

T20(p)+[o20{p)+p20(r2x 1'02 7.0 P)l '(P'-~'-ie) '=0

(4.1)

(4.2)

(4.8)

p,.(r.„T', );.;)I jeer'q(y q nr. &r„()=q-y--q)I(s q),'-,m'I)'. *() +q) * (-q, -)»"s&

(4.7)

+ ~ 9' 0 ~ &2j. Pyl» P 0 A+V~ M ~20tP+0' 'hx~P+0~ P~ (4.8)

(4.8)

Some comments are in order. For the integrals (4.1), (4.2), {4.7), and (4.8) to have the right behavior,
those integrals ought to be interpreted as subtracted according to the following recipe:

vl. (») = a(»") -„&'q[(q' — ') (e, qn )') '(r q —M) *-*(q, , '-,~-, »', -(')[(Y*-
(f(p")

x (P' -m' - ie) ',

ly[Toa ~20) ooa ohio 'ru] =0. (4.10)

Our next task is to find sets of sufficient condi-

etc. I et us write the system of equations (4.5) and

(4.6) abstractly
tions for the existence of the solution to Eq. (4.10).
So, let us try to apply Altman's theory of con-
tractor directions. Denote by 8 the case of in-
creasing continuous functions B(s) such that B(s)
&0 for g &0 and the integral
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a

s 'B(s)ds
0

(4.11} placed by

exists for some a&0. Denote by V. the direct sum
of complete metric spaces 7» of candidates for
T„and X20 of candidates for T,o. Then& is a
complete metric space, and the domain of Q' is a
subset of X. If there exists a positive constant

q & I and a function 8c 8 such that for each y

(=Fr(W) there exists a positive number e(T, y)
& 1 and an element T(= 'I}(W ) such that

II» -» —eyll - qellyll (4.12)

(4.13)

then the set Fr(W) c F is called a set of special
contractor directions for S' at T.

Let Xo be a. subset of 'Z and put S =—S(To, y)
= [T: qf(T, To)&r, Tc X] for a given T 0'X(aond
U =—&0 ~ g, where g is the closure of S. Then we
have the following theorem.

Theorem. Suppose the following hypotheses are
satisfied: (I) W: U- F is closed on U; (2) For
any T(=- Uo=X0A S, the set I, (W) is dense in some
ball with center in p;

a

(3) r o (I —q) s B(s)ds,
0.=(I -q)(1 -q} 'IIW[T. ]ll,

and q is arbitrary with q& q & 1. Then the equation

W [T]= 0 llas a sollltloll TE U Fol' pl'oo. f, see
Altman. ~

Condition (3) of the above theorem can be re-

s=s' 'llw[T0]ll.
0

(4.14)

W (T()2 T2()) = %11 S'12
(4.15}
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8'11=I,

W;, =-(p'-m'- 1.)-'P (T„, ;p)

x[&02(p) + P02(T21q T2o» p}]

W,', =-(p' M' f)-e-' ,'P,"-( „T, ;p)

X[(120(p) + P20(T21q T02q T20q p)]

W2. =I —(p -iif' 2&) 'P-20'(&21 To. ' pp}

X[o (p2)0P20(T21q TCQq T20 pp)]

(4.16)

(4. IV)

(4.16)

If input 7~, 7», and q„are chosen so that
KKKKT~, KKDDT», and DDDDT40 have sufficiently
large norm, there exist y, q, and 8 such that
the conditions of the above theorem are satisfied.
The snag of this theorem is that it is purely exis-
tential and does not give an algorithm for con-
struction of a solution. For a constructive ap-
proach, one has to impose further conditions upon
input.

Now let us assume that 5' is Frechet differenti-
able. 'Then the Frechet derivative can be written
as a supermatrix

920 (~21& 702' P}(1) fl ~ d q(y ~ q ()f)r, (p, q; p-q)[(p+q-)' ppl—]T",(p+-q)T„( p, q;p+q—- (4.20)

(4.21)
ren

p!~(~„rp) )fq'q, (q",'„- =') .,(p, -p- ; )[tt qq)*qM' )7:.(p ~ q) .,-(p q, p; q)--
If the input (o», @20, 72$ is such that the super-

matrix%" has at least a one-sided inverse for
(T», T20) belonging to some convex subset of 602

6 8» (8 „being Banach space of T „},and some
other conditions are satisfied, one can apply
Newton-Kantorovich —type techniques. An in-
teresting feature is that if g's are large enough,
8" is invertible, while it is not invertible in the
weak-coupling limit g02- 0~ @20- 0~ 721- 0.

If a solution (Tf„Tg,'I of E(ls. (4.5) and (4.6) is
found for a, given input (o02, (120pz21), then the
original equations (3.2) and (3.4) become con-
straints on 7, , 7„, T„, 7-, and y„with general
arguments. If z~, 7», and T~o with general argu-
ments can be so chosen that the terms with ex-

plicit factor g need not become large, i.e., if con-
straints with ~ =0 are approximately satisfied,
one need not worry about the overgrowth of higher
many-point functions.

For uniqueness of solution with a given input,
further conditions must be satisfied.

V. o MODEL

In this section„we consider the question whether
the actions

8'= e„ye"y -m'y'} -xy' d'x
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8 =
p ~~/ Q -w Q -2 A. 0'Q +0' cf x

(5.2)

y(a+222')y+4v )).o4'=0,
Who'@ —o =0. (5.4)

It is now obvious that Eq. (5.4) is not equivalent to
the equation 0 = W~p'. In the canonical quantum

are equivalent in the augmented quantum field the-
ory. 4 The field equations in the augmented quan-
turn field theory read

field theory, actions 5'and 8"are equivalent, and

one can eliminate many-point functions involving
0 from equations for many-point functions of the

P field. Green's functions with an external g line
can be expressed in terms of higher Green's func-
tions of the p field. But the situation is not so
simple in the augmented quantum field theory.

Let us define

6 »»& (~l& ' ' '
& ~ &&&&,& 1&

'
& X&& )

= &01&4 (x,) - 4 (~.b(y, ) ~ ~ o(y„}l)0). (5 5)

Then the equations for G» and Qo2 read

G20(P)+ 2 ( (5.6)

&[++~)»Qj[~+ . + ~)=0, (5.7)

(5.8)

(5.9)

It should be noticed that we do not have an equation of the form G~(p)+ ~ =0. Subtracting (5.7) from

(5.6), one gets

Similarly, from (5.8) and (5.9) one gets

=0. {5.11)

Equations
in order.

(5.12)

(5.10) and (5.11) are the minimal equations for Q20 and Q0„respectively. Some comments are
If G02(p) has a pole at p'= p', the first term on the left-hand side of Eq. (5.9) has the form

(y2 2 .~}2(f2 +2 )2 02

(5.13)

In other words, we assumed that the function

K&4&
(~'- ) '}'G02(& )P P)(P'-) '}'--

(5.&4)

is differentiable with respect to vat v=p . As we do not have the term Qo, in Eq. (5.9), the integrals need
not be interpreted as subtracted. In other words we have two alternatives. Either Eq. (5.9) is satisfied by

the integrals as they stand or satisfied after subtraction of respective values at p'= p, '. On the other hand,

integrals in Eq. (5.9) should be interpreted as subtracted. Moreover, for the last two terms on the left-
hand side of Eq. (5.10) to make sense, we assumed that the functions
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e,(p, v) = d'k (k'-i ')'G„(p, -p-k, k)G„( p-k)-'G-„(p+k, -p, -k)
(5.15)

H2(p, v) = &f'k
(k' —

i ')'G„(p, -p, k, -k) (5.16)

are differentiable at p= p, .
If Q„, Q», G22, and G«are given as input, Eq. (5.10) can be regarded as a. nonlinear integral equation

for G,0. In this case one cannot regard Eqs. (5.10) and (5.11) as simultaneous equations for G,0 and G„,
because of the degeneracy of Eq. (5.11). If G20 is found, Eq. (5.11) can be regarded as a linear constraint
on G~, and Eqs. (5.7) and (5.9) can be regarded as linear constraints on G„and G,2, respectively.

The equation for G» reads

Jqq&[g+" q~)=q, (5.17)

+q ~ .+ —
O (5 Ig)

For the sum of the first three terms on the left-hand side of Eq. (5.18) to make sense, one has to assume
that

2 2 2

qtq, q, & fq q.='" . I 0t , qqq, -q&0..t--q q& 0„( .q 'qq-, qq-q&, 0„tq —q& '0„tq —q, -q, q&

+G„(P, q+k, q -P,--k)G„(-q+ k)-'G„(q -k, -q, k)

+G»(P, -P+ k, -k)G„(—P+ k) 'G»(P —k, -tf, tl -P, k) +G~(P, -tf, P+q, k, -k)-]

(5.19)

is differentiable with respect to p at p=g . This is a restriction on G».
Anyway one cannot eliminate 6 „, ngO from the system of equations for G o.

VI. CONCLUDING REMARKS

The most important difference between a model
with only one field, e.g. , the p' model and a model
with two or more fields, e.g. , the Yukawa model,
is that the "minimal" equations in the latter do not
contain the coupling constant explicitly, but are
different from those in the pseudofree theory,
while the coupling constant appears in the con-
straints. On the other hand, the absence of the
bare vertex term in the equations is a good fea-
ture, and in particular implies that 7» (and T~)
can have nice asymptotic behavior without tricky
cancellations. The latter feature is, of course,
shared by the p' model.

As in the g model, if a field lacks a kinetic part
in its field equation, the equation for its propaga-
tor is degenerate. Nevertheless, one cannot
eliminate such a field from the augmented quan-
tum field theory.

So far, we have considered the equations for
Green's functions in the context of a descending
problem. On the other hand, if one begins with

g T02 T20 ~21 ( G02 G20 G21)
Yukawa model (in the o model), the equations
under consideration become constraints on higher
Green's functions. Those constraints seem to be
satisfied by continuums of functions, but we do
not have an algorithm to construct one or another
sequence of higher Green's functions with proper
symmetry.
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