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Certain relativistic field theories are sholem to be equivalent to the grand partition function of an

interacting gas. Using the physical insight given by this analogy many field-theoretic results are obtained,

particularly for the sine-Gordon field theory. The main results are enumerated in the summary to which the
reader is referred.

I. INTRODUCTION

This paper will employ a technique, known as
Gaussian integration, ' by which certain field the-
ories are identified with a gas of interacting par-
ticles. Originally the purpose was to rewrite a
partition function in a field-theoretic way, so that
field-theory techniques could be used. ' The idea
of this paper is to reverse the process in cases where
the analog field theory is a relativistic one. An

example is the sine-Gordon field theory which is
equiva1ent to the theory of a neutral Coulomb gas. '
The vacuum expectation value of ef&1 =e' 0~"' '",
which is a sum of vacuum bubble diagrams, is
equal to the grand partition function for such a
Coulomb system, Xo playing the role of the ab-
solute activity and P playing the role of the inverse
temperature. In these cases one can analyze the
field theory by using the underlying statistical-
mechanical an3log. Knowledge of the sine-Gordon
theory will yield information about the Coulomb
plasma. Likewise, one may use the Coulomb plas-
ma to gain information about the sine-Gordon the-
ory. This is the plan of this paper. It enables one
to use one's intuition of the Coulomb plasma to ob-
tain field-theoretic results.

Some of the results of this paper have appeared
in the mathematics literature. ~ ' The author feels
these are worth repeating since such mathematical
presentations are not accessible to most physi-
cists. This paper stresses simple, physical, and
intuitive methods of derivation.

The paper is organized as follows: Section 0
reviews the Gaussian representation method and
Sec. III is a perturbative check. This check gives
one insight into the statistical-mechanical-field-
theoretic analogy. In particular, the Feynman
diagrams have a simple physical description in
terms of the underlying thermodynamic system.
This correspondence is outlined in Table I. From
Sec. IV onward the main concern of the paper is
the two-dimensional sine-Gordon theory. Section
IV introduces the sine-Gordon field theory and
discusses its infrared-singular nature which in

the Coulomb analog model forces strict neutrality.
Section V determines the phases of the sine-Gordon
theory. At low temperatures there is a dipole gas,
whereas at high temperatures there is a plasma
phase. The impact on the existence of solitons is
discussed. Section VI shows how the nonlinear 0
model is equivalent to the sine-Gordon theory. In
Sec. VII the renormalization is performed to all
orders in XR and Pq', when Pq' is small. This
shows that the theory is mell defined. Other as-
pects of renormalization are also dealt with. In
Sec. VIII remaining ideas are discussed, most of
which depend heavily on the Coulomb gas analogy.
Most important is the vacuum structure and its
effect on the theoxy. Charge screening and shield-
ing, fractional charges, the effects of infrared
divergences on Feynman rules, and the sine-
Gordon solitions are discussed. Section IX is the
summary. There, the main results are simply
enumerated. The paper concludes with a comment
on vacuum gases as models for hadrons.

II. GAUSSIAN REPRESENTATION

he partition function for a system of interacting
particles may be represented as a field theory.
The technique, known as Gaussian representation,
is well known in statistical mechanics. ' In cer-
tain cases, the resulting field theory is a rela-
tivistic field theory. This is of particular interest
since it allows one to think in terms of the under-
lying statistical-mechanical system. This associ-
ation provides physical insight into the field theory
which one usually does not have, thus allowing for
the extraction of the interesting physical effects.

This section will review the Gaussian represen-
tation method along with comments concerning the
use of different potentials, the smearing of fields,
and vaxious other technicalities which occur in
passing from the grand partition function to the
field theory. For simplicity the Gaussian rep-
resentation method will be first applied to a speci-
fic example: the Coulomb plasma in three dimen-
sions. This was actually done by Polyakov' in
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analyzing a three-dimensional instanton confine-
ment mechanism. His instantons were monopoles
interacting via a potential which was of the Cou-
lomb type for large distances and mitigated for
short distances. Because of the softened short-
distance behavior, the Polyakov model has a
natural renormalization prescription. This will
be obvious later on. For the true Coulomb gas
there is no natural renormalization and the grand

partition function will be ultraviolet singular. For
the present, ignore the bad short-distant behavior
and any infinities which result from the use of the
bare I/~ potential.

Consider the grand partition function for a
plasma containing an arbitrary number of positive
charges (ions} and negative charges (electrons)
interacting via a Coulomb potential at a temper-
ature I/P and having an absolute activity, Xo:

d 8 '''dR1 d'X d'X exp
L 2

(2.1)

In Eq. (2.1) the charge is q on both the ion and the
electron. Both species have the same activity so
that although the system need not be neutral, only
configurations which are nearly neutral should
contribute to b as we know from physical consider-
ations. Xo, since it is the activity, is related to
the chemical potential go by Xo =e~"0. In Eq. (2.1)
V is the volume of interest, i.e. , the charges are
confined to the region V. Of course, y does not
exist because of the infinity resulting when a plus
charge approaches a minus charge. One can in-
troduce repulsive cores; alternatively one can
smear the charges a bit. The latter procedure is
more natural since, as will be shown later, the
smearing of charges corresponds to the smearing
of fields, a practice which naturally occurs in the
rigorous mathematical treatment of field theories.

Except for a self-energy term, (q'n/2)(2/~ 0 ~)

which is infinite, the exponent in Eq. (2.1) may be
written as

Vy ~ VXs~ exp -P d'R+iP p(R) y(R)d'R
R~ 8m y

Qg exp -P, d'R

where

+X' +X
Bv

+ 2A,, cos [Pqy(R)]d'R[,

(2.4}

Qy exp -P

Equation (2.4) is the fundamental Gaussian rep-
resentation of the grand canonical sum for a Cou-
lomb plasma. p has been expressed as the field-
theoretic

exp 2XO eospqy

where the angular brackets represent an average
with respect to the free massless Euclidean func-
tional measure in three dimensions. The corre-
sponding Lagrangian is the sine-Gordon theory
and hence one has the result that the sine-Gordon
field theory is equivalent to the Coulomb Plasma.

y, in some sense, represents a coarse-grained
Coulomb potential. The equation of motion for y is

with the "charge density"

(2.2) &'y= 4w(2Xoq) sinPqy .
Let p =i}f /then .satisfies

O'P = -4w(Xo q)(-2 sinhPqp),

(2.5)

(2.6)

p( R; R~, . . . , R„;q~, . . . , q„)= Q q, 5 ( R —R,} .

(2.3)

The self-energy infinity is made finite by smear-
ing the charges (which is equivalent to smearing
fields) or is completely eliminated by normal-
ordering the final Lagrangian of Eq. (2.4) as is
revealed in perturbation theory.

Doing the summations in Eq. (2.1) yields

which is the well-known Debye-Huekel equation. '
The Debye-Huckel equation is usually derived by
assuming that the Coulomb potential Q satisfies
V'p(x} = -4vp(x) where p(x) is the local charge den-
sity and hence equal to a mean charge density no
times the Boltzmann factor for a plus charge to be
at x(exp[ —Pqg(x)]) minus the Boltzmann factor
for a minus charge to be at x(exp[Pqp(x)]). For
high temperatures Aoq =no so that the Debye-
Huckel derivation yields the same result as Gaus-



sian integration. The Debye-Huckel derivation is,
at best, heuristic. For example„ it is not clear
why one should use the Boltzmann factors,
exp [+Pqg(x)], rather than the probability factors,

exp [6 Pq y(x) ] //exp[ Pq y{x)]+exp[- Pqy{x)]).
Gaussian integration eliminates this guesswork.
lt tells us that the correct charge density factor
is A.,q when the Boltzmann factor exp[-Pqp{x)]
—exp[Pq@{x)]is used.

In the above example the equation of Inotlon of
the field theory corxesponds to the Debye-Huckel
equation of the Coulomb plasma. The Gaussian
representation method applies to systeIns inter-
acting via arbitrary two-body potentials. Using
the field-theory representations of Nese statis-
tical-2Nechanscal spstePls, on8 can 05tasn the
analog/ of the Deb/8-Haeckel eqQQtson 5p looksng Qt

the corresponding field theory e-quations of motion
The previous derivation may be generalized in

several different ways. First of all, it does not
depend on the dimension. One merely replaces
the integrals ln the Rctlon by d-dimensional lnte-
grals.

Secondly, one can use other potentials such as
the Yukawa exp(-mr)/r. Consider a potential
V(r, r'). Let H, be the inverse of V, so that
H, (r, r') = (r]H, ~r') satisfies

f (r) H, (r, r') V(r', r")g(r")d'r d'r'd'r"

N= $)yexp —— d'r d'r'y r QQ r

Lastly, one ean have a gas of several particles
with different charges q"', q"~, ... , q'"' and activi-
ties XQ~ ', ... , A, Q~ '. In the Yukawa case one would
eall the q's quanta rather than chax'ges. The two-
body potential would be q, q, /r in the case of the
Coulomb gas, q, q, e '/r in the case of a Yukawa
gas, and q, q, V(r) in the ca.se of a general gas
where V(r) represents the basic potential between
two positive unit quanta. The grand canonical sum
18

+ g y( I & e 18el I 1Io 1 d 8 r
V'

(2.9)

In particular, when ~ = 2, X"& = X'2& =Z, q&'& = -q&'&
Q Q

=q, and the Coulomb potential is used, Eq. (2.9)
reduces to Ell. (2.4). By choosing X,"'=Xo different
from A.Q~"' =X~ one ean deal with a Coulomb plasma
of ions and electrons with an excess of ions (or
electrons). Finally, for a neutral system of Yuk-
awa particles with quanta +q and -q one obtains
a field theory whose underlying Lagrangian is the

mRsslve sine -Gordon theory,

f(r) g(r) d'r

(for reasonable f and g). One needs to assume
that

f (r) H, (r, r') f (r') d' r d' r' «0

for all reasonable f. The partition function for
particles lntex'Rctlng via p with activity Rnd in-
verse temperature 1espectlvely A.

Q Rnd p 18

xexp ——~ V(R„R;)p ~
(2.V)

+exp A. 8 "~ ~

which may be expres8ed ln terms of functloDRl
integrals using the Gaussian integration method:

1
Q){exp —— d'r d' r'y(r) H, (r, r') Y(r')

N 2

Jn two dimensions the massive Sehteinger model at
Zero ColetPlan angle is equivalent to the tNasslve
sine Gordon theor-g and hence is equivalent to a
neutra/ Fukmva gasP

For both Coulomb and Yukawa gases, singulari-
ties occur when opposite charges approach each
other. In addition, there axe sen-interaction in-
finities. The self-energy terms can be eliminated
by normal-ordering the potential, which is equiv-
alent to absorbing the infinity into XQ as will be
shown in the next section. This is well known to
s111e-Gol don 't11eol'lets. The slngular1ty I'esllltlllg
from plus-minus short-distance interaction is not
so simply eliminated. One convenient possibility
is to smear the point charges. This is a xeason-
Rble procedux'e 81nce point chR1 ges never exist
anyway. Replace a point charge at B,- by a charge
distributionf(r -8,). Hence ff(x)d'x=1 andf(x)
is peaked about x =0. p in Eq. (2.3) would be re-
placed by

p, „„,(r)= Q q, f(r-R, ) . (2.1

The limit f(x) 5'(x) reproduces the point charge
distribution. The effect on the field-theory rep-
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resentation is to replace exp [iPq}!(R)]by

exp i Pqy(r)f(r —R)d'r —= exp[iP(!t'*f)(R)]
(o) (b)

for the Yukawa case. The self-energy in the Cou-
lomb case is given by Eq. (2.11) with m =0 and in
the general case is

g2

2 f(r) V( r, r') f(r') d'r d'r' . (2.12)

III. PERTURBATIVE VERIFICATION

The purpose of this section is twofold. First,
the formal Gaussian representation is verified
in perturbation theory. It is checked to third or-
der in X03 for the Coulomb plasma model (sine-
Gordon field theory) in three dimensions. All
orders in P are resummed to give the first few
terms of the grand partition function. Thus Per-
turbation theory when rearranged does indeed give
the grand canonical sum. The second purpose of
this section is to set up a correspondence between
perturbative Feynman diagrams and the statis-
tical-mechanical system. This is done in the lat-
ter part of this section and the results are sum-
marized in Table I.

(exp(230 f cospq}f)) is the sum of vacuum bubble
diagrams. To obtain the Feynman rules one could
rescale y so that S, =

& fVx V}!d'R; however,
when not rescaled S, [=f (V}! V}!/Sv) d'R] acts
like the electrostatic energy of the system. To
retain this physical meaning the Feynman rules
will be listed without y rescaled. For bubble dia-
grams they are as follows:

(a) Draw all topologically distinct vacuum bub-
bles (connected or disconnected) with vertices of
an arbitrary even order (including zero order).
Order, here, refers to the number of lines at-
tached to a vertex.

(b) For each vertex associate a factor
(D., ) J„d'r,. i refers to the ith vertex.

(c) For each vertex of order 2n associate a fac-
tor of (-P'q')".

(d) For each propagator associate a factor of
( /} I)( /I Irr, I).'

so that cosPq}!(R) of Eq. (2.4) gets replaced by
cosPq(}i*f)(R}. This type of smearing is neces-
sary in mathematical field theory where fields are
distributions and must always be smeared with
test functions. In these models the smearing of
fields is natural since it corresponds to the smear-
ing of point charges. The self-energy term also
becomes finite and is equal to

2 - e-mjr- r'I
r' d'r d'r' 2.11

FIG. 1. Some Feynman graph combinatorial factors.
In (a) there are four lines connecting the two vertices.
According to rule (e) there is a factor of 1/4'. (b) is a
threefold self.'-energy tadpole. According to rule (f)
there is a factor of 1/3'. 23.

(e) Put in a factor I/l! for each pair of vertices
connected by I lines. See Fig. 1(a).

(f) Put in a. factor of 1/(2l)!! = I/2'I! for each I-
fold self-energy tadpole. See Fig. 1(b).

(g) Put in a factor of [(order of symmetry group
of graph)!] '.

(h) The empty graph is to be included and con-
tributes unity.

Equivalent rules for (a) and (g) are as follows:
(a) Draw all bubble graphs (topologically dis-

tinct, or not), that is, label the vertices and treat
them as distinguishable.

(g) Put in a factor of (number of vertices! ) ~.

The effect of the self-energy tadpoles is to re-
normalize A.0. Any graph can be drawn as a graph
without tadpoles plus tadpoles adjoined. Consider
the effect of adding an arbitrary number of tadpoles
to a "bare" vertex (see Fig. 2). The following fac-
tor will multiply the "tadpoleless" vertex:

1 1 1 ",, 1(-P'q')" ——„=exp - -,'Pq'
plol

(3.1)

If the smeared interaction 2Xocos(Pq}!*f) is used
Eq. (3.1) becomes

1
exp —&Pq' f(r), f(r'}d'rd'r' . (3.2)

One sees that the effect of tadpoles is to multiply
each vertex by e 8"' '" """". Hence rules (b) and (f)
are modified to the following:

(b} For each vertex associate a factor 2Xs f cPr,.
with A.

„

the renormalized activity and A.~
-8 X self-energy

0

(f) Do not include self-energy tadpole diagrams.

Alternatively one may use 2A.„:cosPqg: as the
interaction density. Normal-ordering corresponds

+ + ~ ~ ~

FIG. 2. The effect of self-energy tadpoles. The bare
vertex is replaced by a sum of terms, each one with an
additional tadpole attached.
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~ + ~ + + + ' '' = ~ ~eesosMAuzEo
+ + + +oo ~

(b)

+ ~ ~ ~

FIG. 3. The diagrams of order Q.

to a renormalization of Xp This fact, well known
to sine-Gordon theorists, actually holds for any
interaction which can be represented in Gaussian
form. One can also see this in the grand canonical
sum [Eq. (2.1}]where the self-energy terms would

simply factor out to multiply Xp" by e 8"""""'"",
i e A, - A. e-8 x selfwnergy

0 0 R
It will now be checked that to order AR' pertur-

bation theory reproduces the s of Eq. (2.1). To
zeroth order the empty diagram contributes 1 and
8 begins with 1. The diagrams of order Xp are
shown in Fig. 3. They contribute 2' f d'r=2XsV
which equals P, ~, Xs J d'r Th.e diagrams of
order AR' are shown in Fig. 4. They sum to

X„'Z,= —,'(2~„)'g ( ),
(-P'q')'"

n=0

1 2
(P )It ~ ])2n

d~It d3II (,-«'Cls. -s2~+e8~ ilsl ssl)

(3.3)

The & factor multiplying the expression comes
from the symmetry factor of rule (g). Equation
(3.3) equals

Qy- &0 4f2= +0

(3.4)

which is the second-order term of Eq. (2.1}.
The diagrams of order AR' are shown in Fig. 5.

They separate into two classes: those with an
even number of propagators between vertices
[Fig. 5(a)], and those with an odd number of prop-
agators between vertices [Fig 5(b)]. It. is not too
hard to sum these two sets to reproduce the third-
order term in Eq. (2.1).

It is doubtless that perturbation theory repro-
duces the grand partition function to all orders
in ~R for this particular example, the Coulomb
plasma in three dimensions. If another interac-
tion had been used, or if several charges of dif-

~ ~ + ~ + ~ + ~ ~ ~

FIG. 4. The diagrams of order ~R . The self-energy
tadpoles are dropped according to the modified (b) and
(f) ~les.

FIG. 5. Diagrams of order ~R . Diagrams of (a) have
an even number of propagators between vertices, where-
as (b) have only an odd number.

8 =exp connected graphs

oo

= exp 2A,R V+ &R'b) V
L=2

(3.5)

where b, =the connected graphs of order XR'. The
volume factor is put into the definition of the 5g

because vacuum bubble diagrams are proportional
to V due to translational invariance (actually this
is not quite correct because of boundary effects,
but is approximately true in the large-volume
limit). The vacuum energy per unit area (three
dimensions = two space+ one time) 8 for the field
theory is

8= P5,~„' (5, -=2) .
2=2

(3.6)

The 5, have an important connection with statis-
tical mechanics. They are the cluster integrals of

ferent activities had been used, perturbation the-
ory would have reproduced y. Of course, the
Feynman rules would have to be modified. In par-
ticular, rule (d} would have to be replaced by the
following:

(d) For each propagator associate a factor of
(I/P) V(r„r,)
Particles of different activities would lead to
vertices which would have to be distinguished.
The appropriate X's would have to be associated
with the appropriate vertices, etc. Finally, the
types of graphs and the factors associated with a
particular vertex order would be different. The
Feynman rules for other theories are thus easily
obtained by modifying the rules presented in this
paper.

A simplification can be made. There are zero-
order vertices (vertices to which no lines are at-
tached) in the Feynman graphs because the inter-
action 2':cosp~: when Taylor expanded begins
with 2Ae. One can rewrite 2Xs.cosPqy: (or
X"e's""")as 2As ..(cosPqg —1):+2Xs (similarly
for A."'e'8"""type terms). As a result the state-
ment, "Do not include zero-order graphs but
multiply all graphs by e'~R~" is added to Feynman
rule (a).

We know from perturbation theory that the con-
tributions of graphs may be expressed in the form
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the Mayer expansion. ' The thermodynamic prop-
erties are determined by these 5,. In particular,

&P) = Q If&Xs' (3. Ia)
l=l

P&P) = Q f&&Xs' * (3.7b)

where p is the density of particles, (p) = &Ã)/V,
and p is the pressure. When Xz is expressed in
terms of &p) via Eq. (3.7a) and substituted into
(3.7b) the equation of state is obtained. P&p) of
the statistical-mechanical system is equal to the
vacuum energy density 8 of the field theory.

The small parameter in the Mayer expansion
is the function, e "'—1. Often V(r) is short-
ranged so that e 8~'"' —1 is nonzero only in a
small region compared to 7'. Such a case occurs
in the very massive (m»1/V) Yukawa gas. An
immediate application would be to the massive
Schwinger model in two dimensions at zero Cole-
man angle, since, as previously noted, this is
equivalent to the massive sine-Qordon Lagrangian.
The charge e of the Schwinger model is related to
the mass m of the massive sine-Qordon model by
»&. 'v/2= e'. Hence one ma.y obtain results in the
strong-coupling limit of the massive Schwinger
model by using the Mayer cluster expansion applied
to R YukRwR gRS.

ID pex'fox'D11ng this check to ox'dex' X~ one notices
a coxrespondence between diagrammatic pertur-
bation theory and the Coulomb gas. The vertices
of Feynman diagrams are the ions and electrons
of the plasma. In the Yukawa gas case, they would
be the quanta and in the potential [V(r)] case, one
might call them the molecules. Up to a temper-
ature factor the propagators represent the inter-
actions. The number of interactions a particle
undergoes is the same as the order of the vertex.
Pairs of particles may undergo arbitrax'ily many
interactions and when summed these give the
Boltzmann factors. An external vertex at x cor-
responds to fixing a molecule in the gas at x. In
field-theoretic language it is the vacuum expec-
tation value of the operator C,(») -=e'8'"'*'. This

operator may be interpreted as producing a charge
q at x. Diagrams with several fixed extexnal ver-
tices are related to the correlation functions used
lD statlstlcaI mechan1, cs. ' ID field theory they
are the Green's functions of the C,(x) fields. Fin-
ally wx'ltlng

Q x(i&e&se«&)( (3 3)

By adjusting the X"' and q"' one may obtain better
approximations to polynomial self-coupled field
theories. In fact Eq. (3.8) is almost a Fourier
transform. Unfortunately the X"' must be positive
to retain their physical meaning. This restxiction
ruins the possibility of exact approximation.

(with Z„the partition function for I&I interacting
particles), one sees that the Nth-order diagrams
yield the N-particle partition function. Thus there
is a complete correspondence between Feynman
diagrams and the Coulomb plasma. This corre-
spondence is summarized in Table I.

There is a sense in which the usual polynomial
field theories (such as gX'/4! ) are Coulomb or
Yukawa plasmas. In a high-temperature limit
consider the sine-Qordon Lagrangian whose un-

derlying statistical-mechanical system is the
Coulomb plasma. The potential
V= -2X„:cos(4vP)~'q X: [X has been rescaled to
eliminate the P dependence in Ho (= & f VX VX)]
in this limit may be expanded in a Taylor series,
V =2Xs [ 1+«pq-':X'/2: (4~Pq')-2:X'/4&:+ "]
the system is "hot" and y does not fluctuate vio-
lently from 0, then V=-2Xs+Xs BwPq':X'/2:
-2Xs (4vPq')':X'/4!: and hence one has a massive
y theory with mass equal to amA+Pq' and a small
negative g coupling constant g equal to -32m P'q4Ãz.
Perturbation theory would be useful in this high-
temperature limit since the coupling constant is
small. Allowing arbitrary chRx'ges Rnd Rctlvltles
the potential V becomes

TABLE I. Feynman graph correspondence.

Statistical mechanics Field theory

particles
interactions

A, O, P

cluster expansion
correlation functions
a charge, q, produced ate

vertices
propagator s
coupling constants
&th-order diagrams
expansion in 2A& Jz (cosPqg- 1)
Green's functions
the oPerator 4q(x) = 8'sq" ["~
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IV. THE TWO-DIMENSIONAL SINENORDON THEORY

The last two sections have presented general
methods and techniques. A speeifie example, the
two-dimensional sine-Gordon theory, .

"will be,
for the most part, the subject of the rest of this
paper. As previously noted, this field theory is
equivalent to a two-dimensional Coulomb gas. The
interpartiele potential is a logarithmic one:

V(r) = -2q, q., ln 'IR~ -R~
0

(4.1)

with a, arbitrary. Equation (4.1) is also the inter-
action between two parallel lines of charge, one
with a charge per unit length of q, and one of charge
per unit length of q, . Thus one may view the
charges q as the charge densities in wires in the
usual three-dimensional world. The wires are

restricted to be perpendicular to a two-dimen-
sional sheet. Another equivalent model is to re-
place the charged wires by currents. The mag-
netic interaction leads to the same logarithmic
potential, V =-2I, I, lnr/a, T.he q's would then be
the currents, J.

The two-dimensional Coulomb plasma differs
from the three-dimensional version in one im-
portant way. Owing to infrared divergences, a
smeared charge distribution has infinite energy
unless it is neutral. Consider such a charge dis-
tribution p restricted to a finite region. The elec-
tric field goes like Qr'r/r' for large r. Therefore
the energy density VC V4/8w goes like (Qr'/8v)(1/
r') and hence the total energy diverges logarith-
mieally unless the total charge Q~ is zero. In
dealing with this two-dimensional Coulomb gas one
has two choices. The first is to require total neu-
trality. 5 would become

(4.2)

8 is independent of f2o as long as self-energies are
retained. p still corresponds to the sine-Gordon
field theory because non-neutral plasmas do not
contribute to the functional integral; however,
naive perturbation theory is incorrect. A correct
way of obtaining the Feynman rules is to use the
massive sine-Gordon Lagrangian and take the
limit m 0. As soon as m'V «1 the massive
propagator becomes (2/P) in~mr~. Perturbation
theory when rearranged and partially summed
gives Eq. (4.2) with m =1/ao. The non-neutral
sums are proportional to gpss

~~& and hence vanish
as m 0. The Feynman rules should use the prop-
agator of Eq. (4.2) in the limit where a, goes to
infinity. The technique of adding a mass term to
the sine-Gordon Lagrangian and letting the mass
go to zero is not new. Coleman ' used it in a paper
showing the equivalence of the sine-Gordon theory
with the massive Thirring model. It has a physical
meaning since it demands neutrality of the plasma
system. This paper will use this version of hand-.ing the infrared divergence. Total neutrality will
always be maintained.

An alternative approach is to enclose the system
in a grounded conducting casing. If there is an
excess charge within V then an equal and opposite
charge will appear on the conductor. In calculating
the partition function one integrates VC V4 only

over the volume V since the conductor causes V4
to be zero outside V. The Gaussian representation
of p would be modified to

x e~ -p ' x +2~, eospex .

SENT

V

(4.3)

The equation of motion, (P/4v) V'y -2XOPqsinPq)(
=0, is not valid because of surface terms due to
integration by parts. These surface terms rep-
resent dynamical degrees of freedom and must be
quantized. In principle this can be done using the
techni. ques of Halpern and Senjanovic. '4

V. THE PHASES OF THE SINE~RDON THEORY

This section will review the work done on the
two-dimensional Coulomb gas'" and relate it to
the work done on the sine-Gordon field the-
ory. '4""'"'" In particular, the phase of the
system wiQ be determined. Coleman has shown
that a vacuum instability occurs when gq' gets too
large. " This corresponds to a phase transition in
the Coulomb system. '
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Because the works of others will be referred to
and because people have used different variables
to denote the parameters of the sine-Gordon equa-
tion, there is some notational confusion. For ex-
ample, the P that Coleman uses is not the inverse
temperature. When confusion is possible I will
subscript letters with the authors initials. For
example, the p of Hauge and Hemmer is 2 the p
used in this paper so that P„„willrefer to their
inverse temperature. Pc =P„=(48P)"'q is the
coupling constant used by Coleman" and Mandel-
stam. ' This paper, for the most part, conforms
with the notation of Kosterlitz and Thouless.

The method of Kosterlitz and Thouless will be
used to determine the phases of the Coulomb sys-
tem when XR is small. For pq'«1, AR corresponds
to the density, so that small XR means a dilute
system. In fact, at Pq'=0,

Consider the situation where A.RV» 1 even though
AR«1. 3 has a maximum contribution for n»1.
Replacing the sum by an integral and using Stir-
ling's formula,

e2n IQ &RV+ 2n - 2n Inn - 1nn

2r

-1
2vf" (n,„)

1/2
max &

1/2
exp [2Xa V —ln(Xa V)]

4m

1 1/2
e2 XRV

4m'. R V
(5.1)

(N) =Ra 1n8=2XaV, X.a =
R

which shows that AR is indeed a density. The lim-
its ARV»1 but XR«1 correspond to a situation
where many ions are present but the density is
small which is the proper statistical limit (in the
limit X+V«1, (N) = —,Xa'V' so (N) «1 which is
undesirable).

When A.R is small one can calculate the mean
square distance between an ion and an elctron by
assuming that the other charges in the plasma may
be neglected. In fact the exact expression for the
mean square distance is

where f(n) =2nlnka V+2n —2n inn —inn and

n,„e"'"m«=A.R V. n,„=XR V fOr A.R V large. The
integral has been approximated by Laplace's meth-
od~

x 2N

~!~1
d'X ~ ~ ~ d'X d'R ~ ~ d'R (X -R )'e ' &

N 1 N 1 I

N=1

2N

x!x! dX ' dX dR ''d'R1 N 1 N

(5 2)

where U„is the energy of the configuration [see
Eq. (4.2)]. The N=1 term gives for the mean
square distance

(R4-28a2 r 4-28a2)(2 2pq2)
(r2) 0

(4 2Pq2 )(R2 28a r 2 284 )
(5.3)

where r, is an ultraviolet cutoff introduced to make
(r') well defined for Pqa~ 1. In fact, if the charges
were not point charges but "ringlets" of charge
densities of radius r, Eq. (5.3) would be the mean
square distance between ringlets. In using Eq.
(5.3) I am not implying that the N= 1 term domi-
nates. It is obvious from the above discussion
that a large value of N dominates. Using the domi-
nate term is, of course, like using a partition
function in lieu of the grand sum. Equation (5.3)
is inaccurate in the region r& (V/(N) )+2 and the
integrals should probably be cut off at such a value
(which is still a large number in the dilute-gas
approximation). In Eq. (5.3) I have neglected "edge
effects" which occur if one of the charges is near

the boundary of the volume. Equation (5.3) is cal-
culated on the basis that one of the charges is at
the center of the volume.

Equation (5.3) yields the following result for
pq2& 1:

(r')=, (Xa small) .R'(1 —Pqa)
2- Pq' (5 4)

The fluctuation in the distance between charges
according to Eq. (5.4) is large and hence for Pq'&I
the Coulomb system is in the plasma phase, that
is, the electrons and ions do not pair up to form
dipoles. At Pq2 =1 the same is still true since

8(r') =
( f )

(X„small) . (5.5)

In the region where 1&Pq'&2, (r') is renormali-
zation dependent, i.e., (r') depends on the param-
eter ro:



(r')=,R' (~)
nv pqm„=C(P)sin
2 2 p~, (5.8}

Pq'-1 8
2-Pq' (5.6)

(r ) =2ro'ln —(Pq'=2),

&r') = 2 ro' (pq'&2} .Pq' —1
Pq'-2

(S.V}

A phase transition occurs around Pq' =2 for small
The nature of the phase transition is simple:

As Pq' increases the free ions and electrons of' the
Coulomb plasma collapse to form dipoles, and a
new gas of weakly interacting dipoles is formed.
This phase transition has been examined in more
detail by Kosterlitz and Thouless, who find a di-
vergence in the polarizability in going from high

P to low P (i.e., from dipoles to the plasma). This
divergence is understandable since as the temp-
erature increases the average separation between
a plus charge and minus charge forming a dipole
increases. This causes the dipole moment to in-
crease and as a result the polarizability of the
system is greatly enhanced. Using reasonable
methods they obtain that q'P „;„.„,= 2.

This phase transition has an important relation
to the sine-Gordon field theory. The point Pq'=2
corresponds to P~' =8m. It was precisely at this
point that Coleman found a vacuum instability.
One can now understand this instability from the
Coulomb point of view: It is precisely a phase
transition from an ion plasma to a dipole gas.

Solitons are known to exist as solutions to the
sine-Gordon equation. The way the critical
temperature varies as X~ varies is important
since it may affect the number and stability of
soliton-antisoliton bound states. Luther~' has
proved quantum mechanically that stable bound
states occur for n = 1, 2, . . . , pq'/(2 -pq') (0&pq'&2}
(n =0 always exists and is the usual soliton) with
masses of the form

Equation (5.6) shows that although (r') is not of the
order of the size of the system, it is still much
greater than ro' and hence a dipole collapse has
not yet occurred. Although some dipoles may
exist, the preponderance of ions and electrons
is still unbound and thus the Coulomb plasma phase
stiH occurs. Of course as A, „getslarger the
above conclusions may no longer be correct since
Eq. (5.3) is based on the dilute-gas approximation.
It is conceivable that if A.„getslarge enough a
phase transition might occur.

Finally for pq' = 2 and pq'& 2 the dipole phase
occurs since

ARIES XRjl

QPOL, E

Pq&

PLASMA O&5'.g

FIG. 6. Three possible phase diagrams.

where C(P) is a temperature-dependent renormal-
ized constant. The renormalization of C depends
on the lattice spacing and the x-y anisotropy
(Luther used the spin=,' x-y-s lattice chain to
obtain the above results). This seems to indicate
that the number of bound states does not depend on
Xq.

There are three possible phase diagrams which
might occur. These are shown in Fig. 6. In these
diagrams the pressure p or the density p may be
substituted for X„if the equation of state is known.
One strongly suspects that Xz increases monotoni-
cally as p or p increases for fixed volume and
temperature. If Fig. 6(a) is the situation, the
dipole phase (Xs very large) will probably prevent
the solitons from existing even though Pq' is less
than 2. Both (a) and (c) cases require that an ad-
ditional parameter enter the theory, since X„,
being the only dimensional constant, has no di-
mensional quantity to set the scale." It is there-
fore meaningless to plot X„versus Pq'. Indications
(see Sec. VII) are that for pq' &1 a cutoff must be
introduced due to ultraviolet singularities. If this
cutoff can be removed without introducing a new
dimension into the theory (i.e., there is no di-
mentonal transmutation) then the only possibility
would be (b) and solitons of arbitrary n occur for
Pq' sufficiently close to 2. Koster1. itz and Thouless
obtained a curve similar to (c). They got p „;„,„q'
= 2(l + cps) with c= 1.3s. They used a cutoff in their
potential [U„T(r)=-q~q, ln(r jr0)+2p for r& ro and

Ii(r) =0 for r&r, ]. The reason for their result is
simple: They view the Coulomb system from the
dipole side of P„;„,q . Their first approximation
was to neglect the effects of all other dipoles in
calculating (r ), the mean distance squared be-
tween the plus and minus constituents of the dipole.
They obtained P„,.„„,q' = 2. What corrections re-
sult if other dipoles are taken into consideration'P
Basically, it will be easier to separate the plus
and minus constituents because dipoles will inter-
polate to reduce the potential. Consequently, each
charge is partiaQy screened and it wiQ be easier
to pull them apart. The presence of dipoles lowers
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the temperature at which the phase occurs (in
other words P„;„rq' increases with Xs). They ex-
pressed the screening in terms of an effective di-
electric constant e(r) which depended on the sep-
aration of the plus and minus. If possibility (c)
where to occur as Kosterlitz and Thouless have
predicted, one would expect the number of states
to be different from the current prediction (a
natural guess would be n = 1, 2, . . . , tI/(tl „;„„,—P)
and correspondingly m„=C(6)sin(nv/2) [P/(P„,„„r
—P)]). I refer the reader to their paper for their
results. lt may be that the situation depends on
how one modifies the potential at short distances
(to eliminate the ultraviolet singularities), and
thus Kosterlitz and Thouless's result is one pos-
sible example which might occur.

VI. THE NONLINEAR 0 MODEL

This section will show the equivalence of a non-
linear p model and the sine-Gordon equation. '
First consider the linear O(2) o model with a linear
symmetry-breaking term,

2= kfrr (88)'+2afncosg, (6.2)

which is the sine-Gordon Lagrangian. Bescaling
8 =(I/frr) It gives

1 2 18 = —,(8 It)'+ 2afrr cos
frr

(6.4)

or V(}t) = 2af„-cos[(1/f„))I] from which one can
translate the parameters of this model with the
Coulomb gas parameters:

A.o
= 2afrr,

1
(4rr p)"' q = —,or Pq' =

frr
' 4rrfrr'

'
(6.5)

Since a phase transition takes place in the sine-
Gordon field theory at Pq'=2 for A.„small, a
phase transition must occur in the nonlinear O(2)
o' model urith a small symmetry breaki-ng term for
f„=f/v8m. This complements the results of Brezin
and Zinn-Justin" and Bardeen, Lee, and Shrock, "
who find transitions in the O(N) nonlinear o model
in 2+a dimensions for N&2.

and

'(so)'-+ -'(811)' —V(o, IT), (6 1) VII. RENORMALIZATION

V(o, II) =-2ao+g(o'+ll' f„'). - (6.2)

When a = 0, m „'=0 (Goldstone boson) and m '
=16gf„'(the usual partially conserved axial-vector
current type relation of the v mass being propor-
tional to f„).When a4 0 the minimum of V occurs
atrr =0,

a 1 1
rr =(sign a)f„+—,—+0

4frr

and the II field acquires a mass,

2lal
mn = +0

frr

The nonlinear p model with a linear symmetry-
breaking term is the limit of Eq. (6.2) as g-~.
This has the effect of requiring o'+ll' =frr'. In

fact, if Eq. (6.1) were used in a functional integral
the limit g- would produce a functional 5 func-
tion, ( 5+oil' f)rr. To e-nforce the relation o'
+II'=f„'let o = f„cosgand II-= f„sing where 8-
is a new field. g becomes

Coleman" has indicated that the only renormali-
zation necessary in the two-dimensional sine-
Gordon model is for the self-energy tadpoles [such
as in Fig. 1(b)]. These infinite contributions can
be absorbed in Xo. One should use a renormalized
activity A.„and ignore the tadpole self-energies.
Coleman's result is true for Pq'&1 (Pc'& 4rr). For
I3q'~1 the result is incorrect: Although there are
no divergent graphs in any finite order (in Xs and

P) of perturbation theory, there are divergences
when graphs are summed. The reader has already
seen an example of this: The connected vacuum
bubbles of order Xs' (the graphs of Fig. 4 minus
the first one). They sum to

2I 'V d'x(r ""-1),
which converges for Pq'&1 and diverges for Pq'~1.
Vacuum bubbles are not the only diagrams with
divergences which cannot be absorbed in Ao. Con-
sider the contributions to the two-point function
from the graphs of Fig. V. They sum to

S(x ) =(n )'
a a 0 ao

(7.1)

The parameter ao has been left in and naive Feyn-
man rules have been used in calculating Eq. (7.1).
This is because the Green's functions for the fields
y(x) are ill defined. The interesting and well-

S

defined operators are the C,(x) =e's'"+'. Equa-
tion (7.1) converges for Pq'& I and diverges for
Pq'~1 [the same would be true if one calculated
the Green's functions for the 4,(x)]. Note that
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x- :y I- ~ ~ ~

FIG. 7. Contributions to the two-point function. Al-
though individual graphs are not divergent, the sum of
these graphs gives a divergent contribution to the two-
point function when P9' —1.

any individual graph of Fig. 4 or Fig. 7 is con-
vergent Thu. s one has a situation (Pq'&1) where
'o any finite order (in f3q ) graphs have no ultra-
»iolet di vergences yet @~hen perturbation theory is
sui)2112ed to all orders ultraviolet divergences ap-
pear, inzplying that nonperturbative renormali ra-
t,'o~z methods are necessary. Of course, one can
look at 8 [Eq. (4.2)] directly to see that there are
ultraviolet divergences for Pq' ~1.

This section will consist of showing that to all
orders in Xs (as well as,8q') 5 is well defined
when t)q2&1. I take this to be a proof that the O(2)
nonlinear cr model and the sine-Gordon field theory
are venormalizable to all orders for Pq'&1." For
Ptl'=-'1 a cutoff must be introduced. Whether it may
be ren~oved by wave-function and coupling-constant
renormalizations is unknown. If additional inter-
action counterterms must be added to the theory,
then the sine-Gordon Lagrangian would have to be
modified and the equation of motion would be an
inaccurate representation. An implication of this:
The soliton-antisoliton doublets would not exist.
I suspect that renormalization should be possible
at least for 1&Pq'&2 since lattice methods" have
shown the existence of these doublets. It is still
uncertain how to do this in the continuum field
theory, although the equivalence of the nonlinear
cr model and the sine-Gordon theory offers a pos-
sibility: Since g has dimensions of (mass)' and
the linear o model [Eqs. (6.1) and (6.2)] is re-
normalizable, g acts as a cutoff for the sine-
Gordon theory. If one could show that the rele-
vant quantities are g independent (or g dependence
can be absorbed into X2) for large g then this would

provide the method of renormalization. The same
is true in dimensions three and four where the
equivalence between the two models still holds.
Thus there is the possibility that using the linear
g model one can renormalize the sine-Gordon
Lagrangian in three and four dimensions.

I will now present strong evidence that the par-
tition function for the two-dimensional Coulomb
gas [Eq. (4.2)] converges for Pq2& 1. Xs, of course,
is e ~ "'" ""'" absorbed in Ao. The method is not
intended to be rigorous: Physical arguments are
used to approximate S. Equation (4.2) contains
only neutral configurations because of the infrared
singularity of the theory as discussed in Sec. IV.
The arguments of this section also apply to the
situation where neutrality is not required.

3 acquires a large contribution whenever an x,.
approaches ay; and Pq' is near 1. The nature of
the singularity is governed by

Itf(Pq2 e) d2X d2y e-282 In x- 2

IX-y) &6

~2 - 28q"
=V

1
('7.2)

Equation (7.2) is the contribution to It when a plus
charge and minus charge are within & of each other
(boundary effects being neglected). If c is suffi-
ciently small the plus-minus dipole will look like
a neutral object and will interact very weakly with
other charges and dipoles, even when these ob-
jects approach the dipole. e is just a small pa-
rameter. If a plus charge and rainus charge are
within e of each other then one says a dipole is
present in the system. Since there will be a mean
density p for the plasma and in this dissociated
phase charges are randomly located, the average
distance between charges is roughly (1/p) ~'. One
can take c to be a fraction of this distance, say
e =0 1(l/p)"'

Consider the term in 3 with N plus charges and
Ã minus charges (i.e., Z„)and single out the con-
tribution due to dipoles:

1
N'(N t

I && -y& l & E' for some &, f yy&J g ~ )xs - yy 1 q for some &I,jl, $2, jg

d x ' d xN d y '''d yNe N + c&y'''d &N d y ''d yNe N+

+ d-x ~ ..d x d y, ...d yNe + d g) 'd gN dy) dyNe 8 N

I&tl jll&6, l&$ yy I&& ' ' ' 'Iaaf/ ~Nl&E'

for some ordering of the x's and y's

no dipoles

(7.2)

The first Q terms in Eq. (7.3) have precisely 1, 2, . . . , Iq dipoles. The last term is the no-dipole term
where no x,. is within & of any y, . Because dipoles interact weakly they may be factored out of the sum-
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mands of Eq. (7.3):

z =g
)) 'p [I(pq2 B)]IZ no dipole(8)

1 1Z"o "Po" = ——d'x d'x 4'y d'y e 8 ~'"'"~' no x. within e of yt (7.5)

The combinatorial factor is accounted for as fol-
low8: Thex'e Rre

[N(N -1)~ ~ - (N I+1)]2

ways of pairing up l pluses with l minuses from a
set of N pluses and N minuses. This number
times (1/N! )(1/N! ) gives the

1
I t(N I)t (N I)t

of Eqs. (7.4) and (7.5). Equations (4.2), (7.2), and

(V.4) yield

etr/(82 s e) )s&2 S no dipole (8) (V.6)

As long as t!q'&1, I (pqg, 8) is small as one sees
from Eq. (V.2). It remains to show t "'"""(e)
does not diverge. Heuristically the reason for
this ls as follows 3" "p""vanishes lf a plus ap-
proaches R plU8 ox' a IQlnus approaches R IQlnus

and hence the charges must be evenly distributed
when N becomes large. Consider a minus charge.
Since the plasma is neutral it will see a charge
distribution of +1. Neglecting boundary effects,
one can lump this +1 charge distribution at some
effective distance I;r-, (N, 8). For e small enough

x,«will be independent of & and for N large enough
it will be a slowly varying function of¹ Fox
slnlpllclty tRke 'vsff to be R collstRnt Rs N goes to
infinity. Then for large N

@no dipole ~ ~ "28@ &+y2&1 1
eff

and this implies

3 fto djpo)q —~ g 2+@flo d1polc
N

ft= 0

convel ges.
To make the above argument mox'e precise let N

be large. Break V into 2N square cells of volume
V/2N. The length of the side of a cell is (lr'/2N)~2
=d(Ã). Approximate Zgt" 'P'" by summing over RII

ways of placing the plus and minus chax'ges into
the 2N cells:

y I/2 2 I'))
gAo dlpok one e"BU(C)

N!N! l 2N

(7.8)

[{V/2N) ] ls tile Rl'ea 111 whlcll R c!lR1ge 1s Rl-
lowed to roam, C is a placement of the pluses
and minuses into cells, and IJ(C) is the energy of
such R collflgtll'Rtioll (calculated wltll tile cllR1 ges
at the center of the cells). The minimum energy
configuration by symmetry occurs when the plus
and minus charges alternate as in Fig. 8. To ap-
proximate the energy of this configuration, pick R

charge, It has four nearest opposite charges [Fig.
9(a)] contributing a factor of (d )

'8' and four
nearest like charges [Fig. 9(b)] contributing a fac-
tor of [(v2d)']'-" . In the next row [Fig. 9(c)] there
axe eight opposite charges and eight like charges
giving a factox' of

[(2d)d]28 22 [{~5d)8]-2822 [(Vrg d )4]2822

To this order
+-8U( singLe charge ) [4I d tg I 2 &2)2822

Taking into consideration all rows and neglecting
edge effect8

f ( N} + -8 U ( single charge )

+2+ 2 1/2 4( j.)~ ~28q

n=o m-1
- 8 !

=exp p g (-1)"' 4pqgin()12+ m2)I .
tt —0 fft —1

(7 9)

Because the signs alternate f wiii be a, slowly vary-
111g fullctIOII of N (fol' exRIllple the third 1"ow Inlllt1-
plies the result of the first two by only

[(—",)'( —'„')'(",)']'8"=(1.04)'8" ). The total con-
tribution to e gv'c~~) is [f(N)2"]"2 (2N for each
particle and a 2 for double counting). One can

FIG. 8. Minimum-energy configuration.



1928 STU SAMUEL 18

(b) (c)

FIG. 9. Leading contributions to the energy of a minus charge.

bound Zg'"P"" by replacing e by its maximum
value f(N}". Since there are (2N)! ways of putting
the charges into the cells,

1 y 2N
g&0 dipole& ' [f(Pf)]&

!»I!N! 2N

P"y(N)"(4')"' e
N! N! (7.10)

where Stirling's approximation has been used in
the last step. Since f (Ã) [Eq. (7.9)] is a, slowly
varying function of N, Z&'""'"is highly attenuated
for N large and 8.od'p j converges.

It has now been shown that S(»(s, pq') is finite
for Pq'&1. 8 represents the sum of all vacuum
bubble diagrams (in a finite-volume limit). Since
this sum converges this indicates that other func-
tions (such as Green's functions of the relevant
operators) will have no divergences. It is folklore
that the vacuum bubbles represent the most ultra-
violet-divergent graphs.

The main result of this section is that the pre-
scription of absorbing the self-energies into the
activity renormalizes the sine-Gordon theory to
all orders when Pq & 1.

For the statistical analog field theories dis-
cussed in this paper, renormalization may be
regarded as the removal of smearing functions.
Consider the sine-Gordon theory. When charges
are smeared by an appropriate f, a well-defined
nontrivial partition function b(f) is obtained (well
defined in the sense that no infinities occur and
nontrivial in the sense that S(f) is not 1 or e'x»(",
which is the ideal gas grand partition function).
S(f) is, however, nonrelativistic. One would like
to take the limit f (x) -!»~(x) so as to recover Poin-
care invariance. Doing this naively causes $(f)
to go to one because the N0 0 terms give zero due
to the infinite self-energy. The way to avoid this
problem is to let A.o, the bare activity, depend on
f: A. p—= »(p(f). s becomes

X exp -P

A.o(f}=C exp Pq' f(r) In-!,r r'~ f(r—')d rd'r'

(7.12)

where C is arbitrary (from»(s ——»(oe 8"""'"'""one
identifies C with»(s), then the limit f (x)-f» (x)
produces a. well-defined S. »(0(f) goes to infinity
in such a way as to keep X~ finite and prevent 3

from going to 1. In the region Pq'~1, the»(o(f),
defined by Eq. (7.12), would cause (» (f) to be-
come infinite as f-5' and in this new region one
must not let »(0(f) go to infinity as fast as in the
Pq'&I region. Possibly a sequence of »(,(f)'s can
be found which affects a cancellation between self-
energy and interparticle interaction infinities.

Green's functions (and other relevant objects)
must always be calculated using this limiting pro-
cedure. Consider

G(x 1i}—(e(BQx(»e-(sax(p»)

1
N ~y exp -P

+ 2XO cosPqy

x et Bqx(x) e isqx(y& (7.13)

+ 2A., (f) cosPq(»(*f )
V

(7.11)

Equation (7.11) gives an upper bound on 3 of
e' 0+» since the functional f cosp»(*f &V chas.
a lower bound of 1 since the partition function is a
sum of positive terms beginning with 1. X,(f) is
adjusted so that lim& (a p(f }=—s is nontrivial and
any such limit should produce a good theory. The
reader has seen one example of this, the sine-
Gordon theory in two dimensions in the region
Pq &1. lf one takes
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Even after smearing (f cosPq)(*f) and using Ao(f)
of Eq. (7.12), this plus-minus Green's function is
zero due to the ultraviolet infinite self-energy
produced by e'8' "' and e '8'"'" . The correct
way of calculating is to replace Eq. (7.13) by

Xexp -p

+ 2)(,(f ) cospq()(*f )

x Z (f) e(8P(x+f)(&) e (()+(x+f)(v)

(7.14)

where Z(f) is a wave-function renormalization
constant. From physical principles one knows

Z(f) must be proportional to

exp —Pq' f (r) ln
~
r r'~ f—(r') d'r d'r'

since G(x, y) has a physical interpretation: G(x, y)3
is the partition function for a neutral Coulomb gas
with a plus charge at x and a minus charge at y.

Nonrenormalizability can be viewed as follows:
As f-5~ dipoles, triatomic molecules, molecular
rings, and other polyatomic structures will begin
to form. One must introduce renormalized activi-
ties for each of these structures. If f () is too
singular a limit to take, an infinite number of
polyatomic objects will form causing one to intro-
duce an infinite number of renormalized activities.
This infinite set is reminiscent of what happens
with polynomial field theories such as X' in four
dimensions. Here one is forced to introduce an
infinite set of counterterms, P„",(5g,„))('". The

5g,„couplings correspond to the unrenormalized
activities. In the high-temperature limit of the
sine-Gordon theory

V()() =2Xs -1+(4vPq') " —(4)(Pq')' —,

6

+(4vPq')' —,6'f

which is a polynomial field theory with a X' leadirig
term. The high-temperature sine-Gordon theory
being similar to this polynomial potential implies
the formation of polyatomic structures in the X'

theory. Thus one suspects that the cause for non-
renormalizability for the statistical analog field
theories is the same as in nonrenormalizable poly-
nomial field theories.

VIII. TIDBITS

The correspondence between sine-Gordon theory
and the Coulomb gas indicates that many effects
are completely missed in the naive treatment of

the theory. Most important is the structure of the
vacuum. When A.

„

is very small perturbation the-
ory is valid. The vacuum looks like a "vacuum"
since few charges are present. Wl&en A~ gets
larger, the vacuum is full of charges and the per-
turbation theory vacuum is;~ poor approxir»a&. ion
to the real vacuum which contains n1any plus and

minus ions. Also missed in perturbation theory is
the phase transition at f3q-' near 2. When f3q- is
small the vacuum (and hence the entire theory) is
radically different from when Pq-' is large. The
importance of the nature of the vacuum is neglected
in most treatments of field theory. It will be a
complicated vacuum structure which will lead to
quark confinement, asymptotic freedom, and the
hadron spectrum. A vacuum consisting of a. gas of
"quanta" would be compatible with asymptotic
freedom and quark confinement. When two quarks
are placed at small separation distance usually no

vacuum quanta will be between them. The physical
vacuum has little effect on these two quarks. Hence
small-distance behavior would be governed by bare
vacuum and free interactions. At large separation
distance the quanta would interpolate between the
quarks and strange effects could occur. For ex-
ample, a condensation into another phase might
take place in the region between quarks especially
if the gas is near a phase transition point. Such a
condensation could provide a confining potential.
In the two-dimensional sine-Gordon theory in the
plasma phase (Pq' small) one has asymptotic free-
dom. G(x, y) [Eq. (7.14)] goes like ~x-y~ ' ' for
small (x-y(. This is the same as in a free field
theory (one would sum the diagrams of Fig. 4 with

the two vertices labeled by x and y). However, in
this same phase there is charge screening for
large distances, and hence the opposite effect one
wants in confinement: Largely separated charges
have no interaction with each other; they merely
interact individually with the vacuum. In the dipole
phase, different effects arise. If one places a
number of widely separated charges into the
vacuum, the vacuum will immediately produce
the opposite charges to form dipoles at the, cost
of Pp. per charge. On this physical basis one can
write

(e(~QX(Pg). . . i a e( B„X}P) (8.1)

where Jp, (x)d'x =+1, p, peaked about x, and all
x; widely spaced. Because charges are immedi-
ately turned into dipoles the Green's function
G(x, y) [Eq. (7.14)] is constant for large ~x -y~,
and the two charges wi11 not be confined.

Now consider the situation when fractional
charges (say a + —, and a, --'- are placed in the
vacuum). These fractional charges cannot form
dipoles because the vacuum quanta are integral.
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The fractional charges are not screened. The
interaction between the + & and the -& will be es-
sentially a 1.ogarithm mitigated by dipole effects.
The dipole strength (which is determined by re-
normalization) will govern how much the dipoles
influence the interaction of the fractional charges.
For weak dipoles, one expects the logarithmic
potential to remain intact. One can write

(e~p[iP-'qX(x)] exp[-iPlqX(y)1) -lx-yl ""'"",
with q(r) an effective charge satisfying q(r) , for—

0(-asymptotic freedom) and q(r) slowly varying
for large r. This type of charge screening of the
Green's function is reminiscent of a similar phe-
nomenon" found in the massive Schwinger model.
In general one has

(ei8(K+f&ay(x) e-iB&N+f)aX(v))

y 2N)x y(-235 a (l~-vl) (S 3)

with 0 ~f&I, fq being the fractional excess charge.
For f =0 the Green's functions are roughly con-
stant. One can, of course introduce triality op-
erators

4„,(x) =exp[iP-', ~(x)]

e+„(x)=exp[ —iP-', qX(x)] =4 „,(x) .
The Green's functions for these operators vanish
unless the number of 4«, 's minus the number of
4,*&,'s is three times as integer. 4,»4,*&, con-
figurations and 4,&, 4«, 4,~, configurations exist.
This resembles the triality of the quark model.
Of course, there also are n-ality operators 4,I„=e'8'""'"'"' and 4,*,„(x)=4,i„(x).It is the nature
of the vacuum that determines these unusual ef-
fects.

Fractional quanta have already been used as a
possible quark confinement mechanism in four
dimensions. The model in mind is the meron gas
of Callan, Dashen, and Gross, "where the charge
in the theory is not the usual charge but the top-
ological charge, and the particles having fraction-
al & charge are the merons. The use of fractional
quanta is not as unnatural as one mi.ght think.

Another interesting effect is that the relevant
operators are of the form 4 =e'~"'i'i [y(p)
= fy(x) p(x)d'x] since these operators produce
charge distributions p in the Coulomb analog mod-
el. These operators are precisely the ones Cole-
man used to show the equivalence between the sine-
Gordon theory and the massive Thirring theory.
Being used to perturbation theory, one usually
works with the bare vacuum and approximates the
interacting fields by free fields in which case the

interesting Green's functions are (y(x, ).~ ~ g(x„)).
The sine-Gordon theory shows that such simplistic
vacuum expectation values may not be the inter-
esting ones. In fact there is no reason why, in a
particular theory, the relevant operators are not
complicated functions of the fields. This con-
clusion may be applicable to gauge theories.

A third unusual effect is due to the infrared di-
vergences in the sine-Gordon two-dimensional
theory. The normal Feynman rules are invalid.
For example, one would conclude from Cl
=2XocosPqy that bubble diagrams of order Xo'

(such as ln Ftg. 10) contribute to the vacuum en-
ergy. Thi.s is incorrect since it violates charge
neutrality. Renormalization procedures would
be upset if non-neutrality is not maintained since
the use of In(~ x -y~ /a, ) for the propagator would

make the theory depend on a„which it should not.
The modification of naive perturbation theory rules
by infrared divergences may affect four-dimen-
sional theori. es such as the popular gauge theories.
If such an effect occurs the usual Feynman rules
are wrong and may upset the renormalization of
infrared singularities.

Fourth, it is curious that to every finite order
(in Pq') in perturbation theory there are no ultra-
violet singularities; yet when all orders are
summed an ultraviolet divergence arises when
Pq'~1. The reader has already seen this in the
bubole diagrams of Fig. 4. They have no ultra-
violet singularities to any finite order; yet when
summed they are -As' J r '8' d'r which diverges
for Pq'o1.

IX. SUMMARY

Here is a list of the main results:
A (Sec. II). Certain field theories are equivalent

to gases of interacting particles, in particular the
following:

The sine-Gordon theory corresponds to a neu-
tral Coulomb gas.

2 The "massive" sine-Gordon theory and the
massive Schwinger model at zero Coleman angle
correspond to a gas of quanta, interacting via Yuk-
awa potentials.

B (Sec. III). The Feynman diagrams for these
theories have a statistical-mechanical interpre-
tation. The correspondence is outlined in Table I.

C (Sec. V). The vacuum of the two-dimensional
sine-Gordon theory undergoes a phase transition

FIG. 10. An infared-forbidden diagram.
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at Pq' near 2. For Pq'&2 there is a plasma phase
and for Pq'&2 there is a dipole gas phase. Pq'=2
is precisely the value Coleman" finds a vacuum
instability.

D (Sec. VI). The two-dimensional nonlinear O(2)
p model with linear symmetry-breaking term is
equivalent to the sine-Gordon theory. Results C
and D imply the following:

The o model undergoes a phase transition for
f =(I/Bv)

2 The cr model contains solitons and fermions.
E (Sec. VII). When Pq'&1 the sine-Gordon theory

[massive Thirring and O(2) o models] are renor-
malizable to all orders, i.e., they are well-defined
theories. "

F (Sec. VIII). The dipole phase of the sine-Gor-
don theory completely shields integral charges but
is unable to do so for fractional charges.

G The relevant operators for the sine-Gordon
theory are not simply polynomials in the fields.
They are C,(x) =e's'"'"' and have the simple physi-
cal interpretation of producing a charge, q, at x.
They are the operators used by Coleman to prove
the equivalence of the sine-Gordon and massive
Thirring models.

H (Sec. VIII). Operators exhibiting the quarklike
triality condition are 4,&, (x). They have this prop-
erty because of the infrared singular nature of the
sine-Gordon field theory.

I (Secs. IV and VIII). Naive Feynman rules may
be incorrect when infrared singularities occur.
The sine-Gordon theory exhibits such a property.

J (Secs. VII and VIlI). The sine-Gordon theory
has no ultraviolet singularities to every finite or-
der of perturbation theory; yet when diagrams
are summed an ultraviolet divergence appears.

K Callan, Dashen, and Gross" have recently
shown that the instanton approximation to two-
dimensional charged scalar electrodynamics with

massless fermions is equivalent to a neutral Cou-
lomb gas. The instantons are Nielsen-Olesen
vortices. The effect of the massless fermions is
to raise the inverse temperature Pq' from 0 to N,
the number of fermions. Since the Coulomb in-
teraction is mitigated at short distances their
model has a natural renormalization. Their result
together with result I of this paPer implies their
model mill Possible have (sine-Gordon) solifons.
The existence of such solitons depends on how
much the Coulomb force is modified and how good
the instanton approximation is.

There is a. good chance that a theory of strong
interactions in four dimensions will have many of
the properties exhibited by the two-dimensional
sine-Gordon theory. It is conceivable that the
hadron vacuum has a complicated structure which
must be treated using statistical mechanics.
Strange effects can occur when such a vacuum has
"a lot of quanta" in it. It would be able to support
asymptotic freedom because at short distances the
quanta are ineffective and at the same time it could
provide confinement since at large distances the
many-body effects of such quanta can be unusual.
It is conceivable that stringlike structures or other
types of extended objects could condense out of the
vacuum when other quanta such as quarks are in-
troduced. Further unusual effects created by a
strong-interaction vacuum may provide for the
triality condition now observed.
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