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1/N expansion for general scalar interactions: Nonleading order
and application to bounded interactions
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Arbitrary polynomial ineractions of the X-component scalar field are considered in one, two, and three
dimensions. The effective potential is calculated up to the next-to-leading order in 1 jN. The result is applied

to the case of bounded interactions. Under certain assumptions on the shape of the interaction Langrangian,

the radiative corrections do not affect the large-y behavior of the effective potential.

I. INTRODUCTION

During the last couple of years there has been
considerable interest in nonstandard expansion
techniques in quantum field theory. The 1/N ex-
pansion' plays one of the central roles among
these techniques. Progress toward application of
this expansion to various models has been re-
ported in Refs. 2-7, the ideas of which are cen-
tral. to the present note.

In the following we shall consider the N-compon-
ent scalar field theory whose nonderivative part of
the Lagrangian is the O(N)-invariant infinite poly-
nomial of the form

V(4'/N) —N Q V( )(0)(4'/N)'1

Careful analysis of the leading-order approxima-
tion to models of the form

L = —,'(&„4'&"4 ') —V(4 '/N) (1.2)

has been recently given by Schnitzer. ' This note is
intended to expand the scope of his findings to the
next-to-leading order in 1/N Hence, when. ever
possible, we use notation which closely parallels
that of Ref. 5.

The paper is ordered as follows: In Sec. II we
derive the expression for the unrenormalized ef-
fective potential of the model (1.2) up to the next-
to-leading order. We add a short remark on the
one-dimensional case when our results are cor-
rect without need for renormalization. Sections
III and IV are devoted to the renormalization car-
ried out in two and three dimensions, respectively.
Explicit expressions for counterterms are de-
rived. Finally, Sec. V contains the discussion and

application of the general results to the special
case when the interaction part of the Lagrangian
is the Taylor expansion of the bounded, sufficiently

smooth function. This example is instructive
since one believes in the "good" large-momentum
behavior of such theories, ' but this feature is
spoiled by the traditional expansion technique in

powers of coupling constants. We argue that the
1/N expansion seems, hopefully, to be free of this
problem. In particular, next-to-leading radiative
corrections do not affect the boundedness of the
effective potential. The restrictions on the valid-
ity of the technique used in the paper are discussed
and a comment on the possibility of the extension
of the method to include bounded nonlocal interac-
tions is added.

II. THE EFFECTIVE POTENTIAL

Vo (4' /N) = g, V (0)(4'/N)'.
0 k! (2 2)

For now we do not specify the space-time dimen-
sion or the particular form of the interaction part
of (2.1).

The unrenormalized effective potential of our
model is given by

V (( ((p'/N) = V(„)(rp'/N) + V(, )((p'/N) + 0 (N '),
(2.3)

where y denotes the classical field and V«& and

+( i) stand for the Ieading and next -to -leading or de r
parts of V,ii,

Let us consider a field theory as defined by (1.1)
and (1.2). Its bare Lagrangian is

L(4)'/N) =-,'(()4)' NQ -—,Vo(")(0)(4'/N)". (2.1)
ff» ] PLN

We assume V,(4'/N) to be an infinitely differen-
tiable function of 4'/N, the nth derivative of which

equals

1IV /Nl=N(V( ' NBV) i—BV(N /N B l] ~ ,„'NB'(, I (V + N-i (2.4)
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a t d"P (P'+M')[I+4Vi'l(y'/N+B~)B~{P)]+4(rp'/N)Vi"(y'/N+B~)
V(,)(qP/N) = —

(2 )„ln (2 5)

The calculations leading to (2.4) and (2.5) are
left to Appendix A, so for the definitions of 8„
B„andM' which are given by (AB), (All), and
(A7), respectively, expression (2.4) agrees with
the result of Schnitzer. ' The validity of (2.5) may
be easily checked without recourse to lengthy cal-
culations. The 1/N power counting shows that dia-
grams containing a vertex connected with other
vertices by more than four lines are at most of
order 1/N. Therefore the relevant Feynman rules
are simplified; all couplings present in (2.1) sum
up to the "effective vierbein" vertex, as visual-
ized in Fig. 1. The cox responding factor in the
vertex. is

p= V '~(y'/N+B ) (2.6)

One can then anticipate (2.4) and (2.5) from the
formula (2.19) of Root's paper' devoted to the 1/N
44 theory. To this end it is enough to replace his
coupling &/4l by our infinite series p/2( . A simi-
lar observation was made by Townsend' while
studying the 1/N(4'), model. In general it is
more convenient to deal with the derivatives of the
effective potential rather than with Vff itself.
Differentiating (2.4) and (2.5), we obtain

(N) V(x)(~a/N+B )8y'y'N

8 V(, A
" dp 1.

sy2/N 2 ~ (2w)" (P2+M )(I+4pB,) +4py /N

4(P'+M)PSB2/BM -4PygN sM ~ 2 B 4P sp
p +M

B =g/2M,

B2(k) =(g/2M)(km+4M ) '.
(2.9)

(2.10)

Substituting (2.9) and (2.10) into (2.'I) and (2.5)
and then integrating, we obtain

= NVI0'i(rp'/N+II/2M),
~q~]'N (2.11)

[(m+')' '+(tn ')' '-8M], (2.12)

where we have introduced
2

m, '=~M2+~ p +SpM

In more than one dimension, subtractions are nec-
essary to make (2.7) and (2.8) finite. In one di-
mension, integrations can be perf ormed without
regularization. In particular, for &, and &, we
get

I

The gap equation is
M' =2V,"&(4'/N+g/2M) .

It is apparent that for a reasonable choice of Vo

[Vo(r) +~ as x ~] Eg. (2.14) has a positive, real
solution for y'/N=0. Details will depend on the
actual form of the interhction; however, this ob-
servation indicates. that the symmetric minimum
exists (at least in the large-N limit).

III. RENORMALIZATION IN TWO DIMENSIONS

In two dimensions, the scalar field theory is re-
normalizable to all orders. In the leading order
all divergences are eliminated by normal ordering
which is equivalent to shifting the arguments of
the expansion coefficients V by a divergent con-
stant c,

V&"&(c) = Vi "I(0), (3.1)
2

pM+2 p +kpkf

2 - X/2
-4M -16M p -2AM

N

AA'
(2.18)

where

& = (~'/4)»(A'/~')

is the divergent part of B„
B,= [ln(A'/pP) —ln(M*/p, '}].

%'e can then write

M'=2V "{X) p= V "(X)

(8 2)

(8.3)

(8.4)
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X, = (p'/N- (k/4(() ln(M'/ p') . (3.5) V(')(X,), we obtain

1
V o)(0) V(i)(0) + 5(()

N (3 8)

Expanding V(' (X,} around its renormalized value

The substitution (3.1) makes the integrand in (2.5)
finite, not so for the integral. Counterterms (1/
N) &"&, countervailing the remaining divergences
of (2.5), are of order O(N '), thus their relevant
contribution to ~~y) comes from graphs which are
(topologically) of the leading order. Let us define

v('&(x) = v('&(x)+ —Y 6"), x'-'1 1

N ~ (j—1)I

1 BM'
2p spy/N

(3.7)

%e relegate the derivation of this formula to Ap-
pendix B. In order to determine O(1/N) counter-
terms we have to separate the divergent part of
(2.5) and then give it the shape of (3.7). To this
end we rewrite (2.5) in a more tractable manner:

s V(, ) k d'P 4B, 4(p'/N Bp
Bqg/N 2 (2&()' 1 +4pB, 4p(p'/N+(p' +M')(1 +4pB, ) s(()'/N

4 BB, gM' 4p
1+4pB, BM spy/N 4p(p'/N+(p' +M')(1+4pB, )

4p(p /N 4 ~&, 8M' &p

4py'/N+(p'+M')(I +4pB, ) p'+M-'1+4pB, sM' s@'/N ' s(p'/N

In two dimensions, B, is finite

k' 1 [k+(k'+4M')' ']'
4&( (k +4k'M')'i' 4M

hence

aa, 1
BM' 4&(M' k(k'+4M')»2

(3.8)

(3.9}

(3.10)

In (3.10) we have omitted terms which behave like k ' or k ink. Substituting (3.9} and (3.10} into (3.8}, we
obtain for the divergent part of (3.8)

f d'k O'In(k'/M') ((' 1 s p 1 k sM'
(2&()' 4w(k +4M'k')'~' N k'+M' spy/N k'+M' 4&(M'(k'+ 4M'k')~ ~)a(p'/N

(3.11)

Introducing the cutoff, integrating, and then using the formulas (B5) and (B6), we obtain

6 ' = ——I (An'/p, '}{(k—1) V (0) +[-+In(A'/)(')] V ""(0)) . (3.12)

IV. RENORMALIZATION IN THREE DIMENSIONS

In three dimensions bothlogarithmic and power divergences are present in the next-to-leading
order; however, the scalar field theory is still free of induced derivative couplings. Now the nor-
mal-ordering constant is

C = -kA/2&('.

In three dimensions B, is

p' 'i' h 8
B,(p) = arcsin» = (p'+M') '(' 1-—M(p'+M') ' '+

SmP p +4M

hence,

(4.1)

(4.2)

BM 8' P +M

Using (4.3) and the formulas of Appendix B [these formulas must be suitably modified according to

(4.3)
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(88)I, we get

d'
4P+4 P'+)(f')B2V(') X,)By2/N 2 (2n')2 (P2+M )(I +4PB2) +4P(() /N

4(p V(2)(X )
8p'(p'/N 1 BM'

N P'+M' 2p B(()'/N

where

X, = q'/N hMj/-4v

(4 4)

(4.5)

M'=2v(')(x, ), I = v")(x;). (4.6)

Expanding B2 according to (5.2), rejecting finite terms, and integrating (with cutoff) the divergent ones, we
get from (4.4)

BV,)

B +2/N
= v"'(x)c'-2pc-2v"'(x)x c+ v"'(x )c3 3 3 32 3

In(A2/(22) —,'hp'+hpv(')(X, )X2 —2hp'
2

V(' (X,)
4m l6' ' 2p B(()' N

hence the O(1/N) counterterms are

Q(~) 2 C(2 p'(ft +2) 0) 4yCy(k + g)
O) Cy(P +2)

16

1 (A'/2')[A, , +2(6 —())), , —4(6/16) 41)I, ', ,

(4.7)

(4.8)

( h) v((+ )(o) v(2) -2+ )((}) (4.9)

V. APPLICATION TO BOUNDED INTERACTIONS

AND CONCLUSIONS

Consistency of the renormalization procedure
breaks down if the operator structure of diver-
gences differs from that of the original Lagran-
gian. This drawback is absent from two-dimen-
sional models of the type (2.1) but is unavoidable
in three-or-more-dimensional space-time. How-
ever, in the large-N limit nonrenormalizable as-
pects of the theory may be suppressed by an ap-
propriate power of 1/N. ' lf one deals with the es-
sentially infinite series in (2.1), then the corre-
sponding factors are 1/N' and 1/N for three and
four dimensions, respectively. This has allowed
us to derive the complete expressions for the next-
to-leading counterterms in three dimensions.

V(1+2)(O) VO4 —2+3){O)
h

(4.10)
2=0

O/

D =g P v('-'"'(o) v('-""(o)v(""(o)
1=0 ~= 0 ) ppg

(4.11)

Analogous expressions for the leading-order
counterterms in four dimensions can be immed-
iately anticipated from the formulas (5.14) and

(5.15) of Ref. 5. Beyond these approximations,
one needs to introduce derivative-coupling counter-
terms. The original Lagrangian does not involve
such terms, hence one does not have appropriate
normalization conditions available. The number
of arbitrary constants increases unmanageably
and the theory loses its predictive power. One
could dodge this difficulty and admit nonlocal La-
grangians with all kinds of derivative couplings
present from the beginning. An appropriate gen-
eralization of (1.1) would be an infinite polynomial
both in fields and their derivatives. The case when
the interaction part of the Lagrangian is an expan-
sion of a bounded function of fields and their deriv-
atives seems to be of particular interest because
one believes in the "good" large-momentum be-
havior and unitarity of such models. '

Unfortunately progress in exploring this idea has
been halted by the lack of a viable approximation
technique allowing one to make use of the bounded-
ness of the interaction. " Recently it has been re-
cognized that the usual difficulties with nonrenor-
malizable interactions were caused by the invalid
perturbation technique using the expansion in
power s of coupling constants rather than by the
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fundamental failure of the models. '0 The 1/N ex-
pansion was recently applied with some success for
studying various nonrenormalizable interac-
tions"" and seems to be suitable also for bounded
interactions. The following argument may justify
this hope:

Let the interaction Lagrangian be an infinitely
differentiable function of fields and their deriva-
tives. Moreover, let this function and all its
derivatives vanish at infinity faster than any poly-
nomial of fields and their derivatives. In the
1/N expansion, all diagrams contributing to the
effective action are built of the "effective vertices"
analogous to those of Fig. 1. The number of such
vertices increases with the order of the approxi-
mation but they are all proportional to derivatives
of the interaction Lagrangian. In the large-y re-
gime, factors from the vertices dominate, hence
boundedness of Green's functions remains unaf-
fected order by order in 1/N.

The above argument requires a more formal
treatment which shall not be attempted here. In-
stead, recourse will be made to calculations re-
stricted to the specific three-dimensional case and
to the next-to-leading order only. The result,
however encouraging, must not be convincing.

Let us return to the Lagrangian (2.1) and let us
make the following assumptions on V:

(i) for large x', let V(x') -x' (the mass term is
included in V);

(li) for x 0~ let V (x ) const + 0;
(iii) for k'& 1, let V("(x')-0 as x'-~.
From (4.5) and (4.6) we get

X,((()'/N) = y'/N- (@/4)()[2V(')(X,)]'~' . (5.1)

The boundedness of V(" combined with (5.1) im-
plies

= lim
g3 -+ oo

V(2)(X )
x,-'

V(1)(X )
1nX,

(5.5)

therefore,

V(„((('/N)-0 a.s q'/N-

In conclusion, in the large-cp' limit the effective
potential grows as y . Moreover, in this limit the
O(1) part of the potential is smaller than the O(N)
part, independent of the value of A.

However the above analysis may be destroyed
by higher-order contributions. It, hopefully, gives
strong encouragement to the ideas of bounded in-
teractions and the 1/N expansion.

APPENDIX A

We shall derive the expressions (2.4) and (2.5)

by the method of Cornwall, Jackiw, and Tombou-
lis." The effective action Qcp. G) equals

() II + g + cg

Neglecting the divergences which were just sub-
tracted, we see that in the large-(()'/N limit all
terms of (5.4) are proportional to V("(X,)(()'/N,
but

2

Iim V(')(X,) ~ = Iim V"'(X,)X,
pe -+ oo N

X,(9)'/N) -y'/Nas (p'/N-~. (5.2)

The leading-order approximation to t'he renormal-
ized effective potential gives'

V(„)(q7'/N) =N{V(X,)+(If/24(r)[2V("(X, )p~'). (5.3)

Consulting (5.2), (5.3), and our assumptions for
V, we find that V(»(y'/N) -(()' for y'/N- ~. In
order to study the O(NO) contribution let us expand
(2.5) such that

h dsp
V( )(y2/N) = ——

2 (2w)'

x g . —4V(»(X)~,
2=1

4V(3)(X )

p +M

(5.4)

FIG. 2. Two —particle irreducible diagrams contibuting
to I'2. (a) Graphs relevant in the leading and next-to-
leading orders. (b) Contribution to the next-to-leading
and higher orders. The shaded bubble represents the
infinite chain af graphs presented on Fig. 2~(d). The
heavy dots stand for the effective three-legs vertex
analogous to that of Fig. 1. The corresponding
factors are 2q, p. (c) Same as (b), except that the
factor at the heavy dot is p. %'e reject the diagram
stemming from the first member of the chain (d),
because the corresponding contribution is that of Fig.
2(a). (d) The bubble chain of Figs. 2 (b) and 2 (e).
Heavy dots represent p, factors at the ends are omitted.
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F(4p, G) = W(4p) +-, ihtrlnG '

+-,' ih'tr D '(rp)G+I;(cp, G),

where W(q4) is the classical action. The exact
propagator G,& is implicitly defined by

(A1)

In the previous formula the decomposition into
transverse and longitudinal modes with respect to
q/ = q//i4p] was performed. The analogous decom-
position of G„yields

5F(4p, G)/&G„(x,y) =0. (A2) Ga4a g(5ab 4paaq//4) + gq/aaq /a (A4)

D ' is the inverse free propagator which, in our
case, equals

D.,-' = i [Z +2 V,"'(q '/N) (6„—q.q, )]

+i[CI +2vq~4I(4p2/N) +4V~2i(q/2/N}/N]4p /pq.

(A3)

Finally, I'2 is the sum of all two-particle irre-
ducible vacuum graphs built of the exact propaga-
tors and vertices generated by the Lagrangian
written in terms of the shifted fields: L(4 +q}.
These graphs are visualized in Fig. 2. Diagrams
of Fig. 2(a} yield

d"gN V y' N+kq —V y' N -SgV '
qP N

+h[hg'V~~'I(/p'/N+hg) —(g —g)(V ~(»p'4/N hg) -V-~'
0( Ip'4/N))

+2(q/'/N) g( V ' (q/'/N hg) ——V (/p'/N))] j . (A5)

g=i/(k' —M'),

where

(A6)

The remaining graphs contribute only to the next-
to-leading order, hence we are just in a position
to evaluate g. (The leading-order result for I'
completely determines g as required for the next-
to-les, ding-order calculations. ') In the (Minkow-
skian) momentum representation,

S

(Al), finally changing for Euclidean momenta,
we obtain the sum of (2.4) and (2.5).

APPENDIX B

Expanding Vi''(X, ) around T "I(X,), as defined

by (3.6), we get

vi "(x,) = T""(x,)

M2=2V&»(q, /N+B)

d "p 1

(2 v)aa

(A'I)

(A8)

+ (I/N) g 6"'8V~'&(X,)/8 V"&(0) .

Using (2.2), we obtain

s V'"(X,)/»"'(0) = 1

(i 1)'-
(Bl)

The contribution stemming from the graphs of
Fig. 2(b) is

BM2

4 M' sV'(0) ' (

2
I'' = -8k p'

N
d "p B,(p)
(2w)" 1 +4pB, (p)

' (A9)
Using (3.4) we find

p3 h
2 2

d "k
„

ln [1 + 4pB, (k)]

and from those of Fig. 2(c}, the contribution is
a T'"'(X )/st'" (0) =, X (I +hp/4'') '.1

(i —1)l

where

+2kp
d "k

(2 )N B2(k), (A10)
This can be written in a more convenient form.

Let us notice that

s V~ "I(X,) &„„, hsM'.
aN*/N

= ""' *' '-4.44* a /N)
d"p 1 1
(2v)" p' —M' (k+p)' —M'

(A11)

. k
B,(k) = i—-
p = V "(q/2/N+ B,) .

Substituting all contributions into (Al), solving
(A2) for g, then substituting the result back into

In particular,

BM h BM
aa'/N 4 aa' aN'/N ) '=2p 1—

thus

(B4)

(B5}
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and, finally,

&7!'~(Xg) 1 p' h M'
~&'"(0) (j —1)! N 4m p,

'

(B6)
Substituting (B'I) into (Bl) we get (3.'I).

The above formulas remain valid also in three
dimensions, but then we must make the following
modif ications:

(@/4s) ln(M'/p, '), replace by kM/4w;

(B7) h/4'', replace by h/4'.
(B8)
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