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Anharmonic oscillator and the analytic theory of continued fractions
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We study anharmonic oscillators of the type ax'+ bx'+ cx using the theory of continued fractions.
Introducing a new set of coupling constants (depending on a, b, and c) in terms of which the associated
difference equation simplifies, we write the Green's function of the theory in terms of an infinite continued
fraction of the Stieltjes type, whose poles give the energy eigenvalues. We prove that this continued fraction
converges where the corresponding perturbation series in the dominant coupling diverges. We obtain the
analytic structure of the Green's function in the complex plane of this coupling constant. A scale
transformation allows us to study the analyticity of the Green's function for ax '+ cx6 oscillators in the
energy plane.

I. INTRODUCTION

The study of the quantum mechanics of the an-
harmonic oscillator is of considerable interest
from both physical and mathematical points of
view. The first detailed study of the properties of
the perturbation series for the energy eigenvalues
is due to Bender and Wu. ' Simon' employed the
theory of singular perturbations in Hilbert space
to prove rigorously many of the properties conjec-
tured by Bender and Wu and, generally, to present
a rigorous study of the analyticity properties of
the energy eigenvalues in the complex coupling-
constant plane. One of his important results con-
sisted of the proof that while the Rayleigh-Schro-
dinger perturbation series for the energy eigen-
values is divergent for all values of the coupling,
arising from an essential singularity at the origin
in the coupling-constant plane, it is asymptotic in

an open domain around the origin. Numerical
analyses starting from the perturbation series
using Pade and Borel-Pade sums' confirmed the
branch-point nature of the essential singularity.
A nonperturbative method for the calculation of
eigenvalues of ~' type oscillators using the in-
finite Hill determinant was developed by Biswas
et a/. 4 in a series of papers. The method, being
nonperturbative, allowed the calculation of energy
eigenvalues for arbitrary values of the coupling to
confirm the asymptotic nature of the perturbation
series and the singularity in the coupling constant
at the origin. Following this approach, Hioe and
Montrolls developed an iterative scheme for the
computation of the energy of the nth excited level;
the method is based on an expansion of the truncated
Hill determinant arising from an orthogonal poly-
nomial basis for the eigenfunctions. More recently,
Graffi and Grecchi' have developed continued-frac-

tion approximants to the Hill determinants arising
in the study of ~' type oscillators.

It is our purpose here to study the properties of
the oscillator potential of the type m'+bx4+cx'.
As we have noted above, all the previous studies
have considered potentials of the type ~' .For
such potentials, studies which use the Hill deter-
minant show that the difference equation from
which the determinant arises, while only a three-
term one, involves terms a„„+„,and a„. This
feature presents considerable difficulties in the
analytic study of such systems from the viewpoint
of difference equations. In studying the ax'+bx4
+ex' oscillator we find, however, that there exists
for this problem a suitable three-term difference
equation involving contiguous terms a„„a„,and

, with appropriate coefficients. This allows, in
this approach, an analytic study of the system in a
fashion which was not possible in the case of ~'
oscillator s.

Our results may be summarized as follows: In-
troducing a new set of coupling constants u, P, and
y (which depend on a, &, and c) of which e is the
coefficient of the dominant potential and in terms
of which the difference equation simplifies, we
show that the energy eigenvalues of this oscillator
occur as poles in the energy plane of an infinite
continued fraction which we may define as the
Green's function for the problem, in analogy with
standard results in quantum mechanics. We next
show that this Green's function can be expressed
as a Stieltjes fraction (known in the literature as
an S fraction). This immediately allows us to
establish that the Green's function G{E)has, in the
complex plane of the coupling constant a (P, y, and
the energy being held fixed), a domain of analyticity
which consists of the entire plane, apart fxom the
negative real axis. We further find that though this
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infinite continued fraction converges in the domain
defined above, the perturbation series (in the same
coupling constant) diverges, the divergence arising
from a branch-point singularity at n =0. An alter-
native representation for G(E) results when use is
made of the fact that the even part of an S fraction
is a real J fraction. This representation allows us
to show that G(E) has a Lehmsnn-type spectral de-
composition in the complex a plane.

From these results, we derive interesting prop-
erties for the ax'+cx' type oscillator. We perform
a scale transformation in the original problem and
consider the limit p-0 which, for c&0, requires
b-0. The Schrodinger equation for this case then
reduces to a three-term difference equation in-
volving &„„a„,and a~, only, contrary to what
was obtained earlier in discussions of ~' oscil-
lators. The new feature which now appears is that
the c!continued-fraction representation of G(E}di-
verges by oscillation. However, the odd and even
parts converge, and we conjecture that one of them
represents the true Green's function for this prob-
lem since the &&'+&& +c&' oscillator has a con-
vergent continued-fraction representation for each
fixed P, including P =0. The scale transformation
also allows us, in this case, to study the analytic
properties of G(E) in the complex energy plane
for each fixed n and obtain the well-known re-
sults that the poles of G(E} are real and that
G(E) has a Lehmann spectral decomposition in
this variable.

Finally, another of our results may be mentioned.
The continued-fraction representation shows that
for a. particular set of values of the coupling param-
eters &, ~, and c, it is possible to obtain exact
solutions for a certain subset of the energy eigen-
values to which correspond polynomial eigenfunc-
tions (weighted with the usual Gaussian). The

remaining infinity of energy eigenvalues are
obtainable from a reduced (infinite) continued
fraction ~r, equivalently, from a reduced Hill
determinant.

In Sec. II we formulate the difference equation,
show that the energy eigenvalues are the zeros of
an infinite continued fraction G(E), and obtain the
subset of exact solutions which result from partic-
ular v" lues of the couplings. In Sec. III we use the
analytic theory of continued fractions to study the
analytic properties of G(E) in the coupling constant

The Stieltjes fraction form is obtained, its
convergence and domain of analyticity established,
and its relationship with the perturbation series
examined. The J-fraction form and the I.ehmann
spectral representation in the coupling follovvs. In
Sec. IV we study the ax'+c~' oscillator and the
analyticity of its Green's function in the energy
plane using a scale transformation.

II. THE EIGENVALUE PROBLEM: STATEMENT

AND SOLUTION

A. The difference equation and its solution

We start with the Schrodinger equation for the
anharmonic oscillator in one dimension, viz. ,

, +(ax' ~bx'+ex')g =Eg.
2m dx'

Here c&0 and the sign of b is left free. g is the
usual harmonic force constant and E the energy
eigenvalue. We convert (1) to a difference equa-
tion and formulate the eigenvalue problem in terms
of the zeros of an infinite continued fraction. We
set

y = e«'y(x),
where

f (x) = —~ ox4 +-,' px2 a & 0.

(2)

(4a)

(4b)

we obtain for Q(x) the following differential equa-
tion.

+2(-ax'+ px}~ +I [p'- Sn —(2m/h')a]x'
d'$, d(I)

+[(2mEA')+ p] I 4 =0. (5)

We solve Eq. (5) by writing for Q(x) the power
series

0(x) =Z aux'""
n=p

(6)

where U =0 for the even-parity solution and U =1
for that of opposite parity. Substituting (6) in (5)
we obtain the difference equation for the unknown
coefficients, viz. , the +„'s:

(2n+2+v)(2n ~1 ~v)a„„+[e+p(4n+1+2v)]a„

+ n[y —(4n —1 +2v)]a„, =0, (7)

where we have used

e =2mE/V

and

(sa)

(sb)

n and P are constants as yet undetermined. Substi-
tuting Eq. (2) in (1) and choosing
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From the differ ence equation it is easy to see that
if a, =0, all a j, for & =2, 3, ... vanish.

The difference equation ('I) is an equivalent de-
scription of the original differential equation (1)

for the eigenvalue problem. The necessary and
sufficient condition that nontrivial o„'s (for
» =0 1, . . .) exist which solve (7) ts that ihe fol-
lowing infinite determinant vanish:

e+P(2v +1) (2+v)(1+v) 0

fI(y —3 —2v) & +4(5+2v) (4+v)(g+v)

Qy —j4(» —1)+ 2v —1g & +Pj4 (» —1)+ 2v + 1]j2 (» —1) +v + 2] j2(» —1)+v + lj ' ' '

ajy —(4»+2v —1)]~ +P(4»+2v+1)

lf D„„denotes the first (»+1) x (»+ 1) determinant, then

D, =[e +p(4» ~1+2v)]D„—a[y- (4» +2v —I)][2(n —1) ~v +2] [2(» —1) +v +1]D, , (10)

The zeros of D, in the energy parameter & will determine the energy eigenvalues of the problem when
The numerical solution of this problem was discussed earlier in connection with the & and ~ an-

harmonic oscillators using these infinite determinants which are known as Hill determinants. In this paper
we do not propose to proceed with such a numerical program. We merely note that the infinite number of
the roots of D„ in the limit +- gives rise to all the energy eigenvalues and the corresponding wave func-
tions can be easily obtained from Eq. (6). Indeed, an exact expression for the coefficients &„ is given by

e +P(l +2v) (2+v)(1+v)

o(y —3 —2v) e+p(5+2v) (4+v)(3+v)

~[y (4(n 1)~2v -1)] e + p(4» —3+2v)
i

where we have normalized +0 to unity.
Thus the wave function

Q. Continued-fraction representation and eigenvalues as zeros
of the denominator

(12)

is completely known with a„given by (11). In the
limit when &-~ the zeros of D, give the eigen-
values and the corresponding +„'s are obtained
from (11). It may be remarked that in the approxi-
mation procedure when one terminates the infinite
determinants at the pgth point and obtains the roots,
the corresponding ~~, vanishes as can be seen
from (11), but all the other a„'s do not and these
are finite. One also notes that the series (12) is
convergent as a, /a„- O(1/v n) for large n, and the
wave functions are normalized whenever ~ corre-
sponds to an eigenvalue.

In this section we define a Green's function for
the problem whose poles in the energy parameter
occur as zeros of an infinite continued fraction.
We first obtain the infinite-continued-fraction
representation of the Green's function from the
difference equation (7) and discuss the eigenvalue
problem. It is easily verified from (7) that the
ratio a„,~a, is given by

a+i n+a
n+'

B„, + ~ ~ ~

where
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A„= (2n+ 1+v)(2n+ 2+ v),

B„=P(4n+ 1+ 2v) + e,
C„= -a(4n+ 2u -y —1) .

(14)

In this notation our difference equation (7) reduces
to

A„a„„+B„a„+C„a,= 0.
Noticing from (7) that

a, e + P(1+ 2v)

a, (v+1)(v+2) '

we obtain from (13) and (14)

(15)

e+ P(1+ 2v)

(v+ 1)(v+ 2)
e+ P(5+ 2v)+

c + P(9+ 2u) +

n(3 + 2v —y)

o(7+ 2v -y)(v+ 3)(v+4)

o.'(4n+ 2v+y —1)(2n+ 2u+ 2)(2n+ v+ 1)
e + P(4n+ 1+ 2v) +

&+ t)(4n+ 5+ 2u) + ~ ~ ~

Equation (16) gives the energy eigenvalues as the zeros of an infinite continued fraction, namely the equa-
tion

e +P(1+ 2v) u(3+ 2v —y)(v+ 1)(v+ 2)
("')('+') .+P(5+2v)+

(17)

(+ P(4n+ 1+ 2v) +.

We define the right-hand side of this equation as t¹inverse of the equivalent Green's function whose
zeros in the energy parameter are the ener'~y eigenvalues.

C. Exact polynomial solutions of the problem

From (17) we note that the infinite continued fraction terminates as soon as we attribute some special
values to y which is an expression involving the harmonic and anharmonic potential strengths. If these
are so arranged to ensure that

y=4n-1+2@, n=1, 2, . . . (18)

the continued fraction terminates at the nth approximant, leading to an nth-order polynomial in e. Thus
we get a. number n of energy eigenvalues and since the continued fraction terminates we obtain a similar
number of (reduced) polynomial wave functions. This feature immediately raises the question as to what
happens to the remaining eigenvalues as we must have for any anharmonic potential an infinity of solutions
for all values of the harmonic and anharmonic coupling strengths. It is interesting to note that under con-
dition (18) for which the continued fraction terminates, the equivalent Hill determinant as given by (9)
factorizes into two determinants one of which is finit, e. Thus, for example, if we choose y= 7+ 2v (i.e., n
=2) the Hill determinant (9) breaks up as follows:
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e+ p(2v+ 1) (2+v)(l+ v)

a(y —3 —2v) ~+P(5+2v)

e+ p(9+ 2v) (6+ v) (5+v)

a(y —ll —2v) e. P(13+2v) (8+v)(7+v)

a[@-[4(n+2)+2v-I]) g+ p[4(n+2)+2v+1] ~ ~

(19)

Hex'e y is 2v+7. The finite number of roots will
appear from the vanishing of the 2&& 2 determinant
which appears at the top left-hand corner. The
corresponding reduced eigenfunctions are poly-
nomials. From Eq. (11) we easily note that in
this case a, and g, are different from zero whereas
all the a„ for n - 2 vanish. The remaining infinity
of solutions are obtained from the zeros of the
infinite determinant oecuxring on the lower right-
hand side of Eq. (19). In other words these roots
are the poles of the reduced Green's function

ao

(-w„c„„)
+ ~ s e

8+1
(22)

G"(E)=
a(11+2v —y) (5+ v) (6+ v)

', (20)
6+p 9+2v +

c + p(13+ 2v)+ ~ ~ ~

where y=2m+ V. The new coefficients a„'s for the
eigenfunctions corresponding to the eigenvalues
of the reduced infinite determinant are obtained
from Eq. (11) and the requisite determinantal
expression in (ll) becomes

e + p(9+ 2v) (6+ v)(5+ v) ~ ~ ~

%e now apply a,n equivalence transformation to
this equation and reduce it to an S fraction. To
this end we introduce a sequence of objects
[ag such that

(23)

With the help of (23) and (15) we can rewrite (22)
in the form

0=8 a +
j.

1+1 ~2~&+

(24)

~ ~ ~ a[@-[4(n+ 1) + 2v —l]j c + P[4(n+ 1)+ 2v + 1]

(21)

The right-hand side of (24) is a, A, G '(E}fromour
definition of the Green s function. Then we have

The determinant (19) is being evaluated at 'y = 2v + V.

The generalization to the ease y=4n —1+ 2v is
straightf orward.

a,- A G(E}=

Soeo+
8 a+

+ ~ ~ ~
2

(25)

III. ANALYTIC PROPERTIES OF G(E) USING

THE THEORY OF CONTINUED FRACTIONS This is a Stieltjes continued fx'action if

A. The Stieltjes fraction form

Let us consider the difference equation (15).
From this equation we have From (23) and (14) we easily obtain
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F1+n+ I'1+n+ —F1+ I'1+ I'1'n+

F 1+ I' 1+— F n+ +1 I" 1+n+ F 1+ F 1+n+

(27)

F 1+n+ F 1+n+ I' 1+ I' 1+— I' 1+n+ F 1+
&2a = a, , (28)

I 1+ I" 1+ I 1+n+ I" 1+n+ — I' 1+ F 1+n+

B,„„=P(8n+5+ 2v) + &, (29)

B,„=p(8n+ 1+ 2v) + e ~ (30)

B2„~„=k,„,
2n+ I +2n+ I 2FI+ 1(

Thus G(E) is given by the continued fraction

(31)

(32)

It is convenient to define a new set of quantities
such that G(E) =

ko+

k, P+

k +

k,P+

k, +
k P+ ~ ~ ~

3 (33)

1

k„, t)+G (E)

where P = I/o. .
From the expressions (27) to (30) for B„and

a„we find that if n, is chosen to have the same
sign as P and if the couplings a, b, and & are
chosen so that y& 2&+3, all the k„defined above
are positive. G(E) as given by (33) is then an S
fraction. From the set of equations (27) to (30)
and from the defining relations (31}and (32) we
find, using Stirling s approximation, that a„
-n ' ' for large n. Thus k„-n ' ' in the same
limit, causing Q k„ to diverge. We have thus
proved the following theorem

Theorem I. If y& 2v+3, the function G(E) as a,

function of P (= I/o) for fixed P, y, and e is uni-
formly convergent over a finite closed domain of
I/n whose distance from the negative half of the
real axis is positive. Its value is an analytic
function of the coupling constant o. for all I/u not
on the negative half of the real axis.

However, if the condition y- 2 &+3 is relaxed,
the choice sgn ap sgn P ensures only the positivity
of all k„ for n~m, m being finite. In this case we
have the same theorem for that infinite part of
G(E) which we denote by G"(E}and which is given
by the following relation:

(34)

(
&n-iG'(E) +&.
q GR(E) + q

(3 5)

where P„, Q„satisfy the recursive relations

P„~,—b„„P„+P„,,

Qn+]. n+].Qn + Qrl —y y

(36)

with

P ~ 1 Po Q ~ 0 Qo 1

2n+ 1 2n ~ 2n 2n-1 ~ '

Having established the domain of analyticity of
the Green's function in the complex plane of the
coupling constant u, we would like to establish
the behavior of thy power series obtained on ex-
pansion of G(E) in powers of this coupling.

(if, e.g. , n is even). We also note that G(E) may
be obtained from G (E) using the equation
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8. Relation of the perturbation expansion

to the continued-fraction representation of Q(E)

Equation (33) can also be written as

hop+

k, +

p+ 0 ~ s (37)

%e introduce new quantities d„ through the rela-
tions

d, =1/k„,k„. (38)

With the help of (35) we can recast (84) as follows:

the real axis. The perturbation series converges
for d sufficiently small.

(3) If d, -~ when n- ~, then G(E) has an essen-
tial singuj, arity at o. =0 and the perturbation series
(37) diverges.

In our case for G(E) as given by (39) we find
easily that g„k„diverges and that d„-~ as
n-~. Hence we have the following theorem for
our Green'8 function:

Theorem II. The continued-fraction representa-
tion (89) or (3'I) for G(E) is convergent, but the
corresponding pex'turbatlon series lQ powex'8 of
the coupling constant n for fixed P, y, and e is di-
vergent and G(E) has an essential singularity at
n=O in the complex e plane.

%'e thus see that the continued-fraction repxesen-
tation is a good method of summing up the pertur-
bation series eve if the pertux"bation series di-
verges. The continued fraction is convergent and
may be interpreted as an analytic continuation of
the relevant perturbation series.

This is another standard form of the Stieltjes
8 fraction. It is well known that this S fraction
can be expanded in a power series in (-o) and
that the ser ies is unambiguously defined by the
8 fraction. ' Vfe write the power series as

koG(E) = C0 + C,(-a) + C,(-a)' + ~ ~

C. J-fraction representation of G(E) and analyticity

in the coupling constant: the l.ehmann spectral representation

We have shown in Sec. HIA that the Green's
functton G(E) has a Stieitjes S-fraction form. It is
well known" that the even part of a Stieltjes 8
fraction with 0„& 0 is a real 4 fraction; in othex'

words, the even approximants of the S fraction
are the successive approximants of a real 4 frac-
tion which also represents the function G(E)
Since the 8' fraction converges, both the even and
odd approximants converge to the same limit which
is the unique value of the infinite 8 fraction.
Thus our G(E) is also represented by the asso-
ciated real J fx'action. The J-fraction representa-
tion of our 9 fraction as given in (34) has the
following form:

The coefficients C„are all positive. This series
may be regarded as the perturbation expansion of
the Green'8 function in powers of the coupling con-
stant n for fixed P and y. Regarding the nature of
this perturbation, we have the following results
due to Stieltjes'".

If Q„k„diverges, the continued-fraction repre-
sentation (87) converges and we may distinguish
between the following three cases:

(1) If d„-0 for large n, then the perturbation
expansion is a meromorphic function of e. The
poles in Q' are on the positive x'eal axis of G and
the perturbation expansion converges for n suffi-
ciently small.

(3) lf for s-~, d„-«0, a finite number, then
G(E) has at most polar singularities in o. in the
region exterior to the cut going from (1/4d) to ~ over

C2 + C3 +g—

cj c2

cg c~

whex'e a stands for the coupling constant and the
cp a,re O'Iven by

c~ = 1/k~k~ „,, P = 0, 1, . . . .

For kp + 0 (41) ls a I eal positive-definite eT fr ac-
tion, %'e thus obtain the following results for oux

(E)12.
Theorem III. The zeros of the denominator of

the Z fraction (41) in the parameter z are all real.
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Theorem IV. G(E) converges uniformly over
every finite closed region in the complex z plane
whose distance from the real z axis is positive,
and its value in each of the imaginary half planes
is an analytic function of z in that half half plane.

Theorem V. If A~/B~ denotes the Pth approxi-
mant" of (41) then this partial fraction has the
further development

I.

where L, & 0, QI.„=1/k„and 0«x, «q, « ~ ~ ~

= x~. Thus from theorem V we obtain that the
Qreen's function has a Lehmann-type spectral
representation in the coupling-constant plane.

Iy. SCALE TRANSFORMATION AND THE ex~

ANHARMONIC OSCILLATOR

In Eq. (1) we make scale transformation

x=yZ-"
(where we have used 2m = b =1). Then the differ-
ence equation (I) reduces to the form

(2n+ 2 + v)(2n+1+ v)b„, , + [1+P'(4n+ 1+2v)] b„

+ u'[ y —(4n+ 2 v —1)]b„,= 0, (42)

where P'=P/& and u'= u/E'.
This result allows us to study the analytic be-

havior of the Green's function in the energy para-
meter also through u' (= u/E'). Vfe thus see
from (42) and our earlier results of Sec. III that
G(u') is analytic in the prescribed domain as
shown in Sec. III for fixed P' and y. In particular
if we set P=0, then for fixed u, G(u'= u/E') is
a function of the energy parameter F.. Similar

theorems as established in Secs, IIIA, III 8 and
III C for the couPling constant are valid for the
energy variable E, for a/axed value u. These re-
sults in the case of P =O are well known since in
this limit our Schrodinger equation (1) becomes
that for a pure xe anharmonic oscillator. '4
Nevertheless it is of some interest to note the
following: In the limit when P=0, we easily ob-
tain from Eqs. (2'I) to (30) that the S fraction (34)
which represents the Green's function G(E) has
the property that the series Qk„converges. Con-
sequently, we have the result that" the continued
fraction is divergent by oscillation for every value
of e'. Thus the sequence of even a.nd odd approxi-
mants of (3'I) converges uniformly over every
closed region whose distance from the real e' axis
is positive, to different distinct meromorphic func-
tions p(u')/q(u') and p, (u')/q, (u'), respectively,
whose poles are all on the negative real axis.
Vfe thus obtain two different limiting Green's
functions, and in such a case the perturbation ser-
ies is always divergent. %e thus conjecture that
the even part of the S fraction, viz. , the real posi-
tive-definite J' fraction (which is convergent) is the
true Green's function for the ax'+ x oscillator
and its analytic continuation for & ~0 is the Green's
function for the ax'+&x'+ &x' oscillator which we
have obtained earlier as a convergent S fraction.
Further, since the even part of an S fraction is a
real positive-definite J fraction, we conclude that
P(u')/q(u') has a Lehmann-type representation in
F. and that the zeros of the denominator function
q(u' = u/E') are all real. These will correspond
to the real energy eigenvalues of the x' anharmon-
ic oscillator.
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