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Relation between the solutions of Newton's and Heisenberg's equations of motion
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For a class of problems it is shown that a solution to Newton's equation of motion may be interpreted as
the generating function for the matrix elements of the coordinate operators in the Heisenberg representation.
For three one-dimensional problems, the harmonic oscillator, the particle in a box, and the x ' anharmonic

oscillator, solutions to the quantum-mechanical problem are given in terms of the classical solution. A brief
examination is made of a two-dimensional problem in which the angular momentum is conserved.

I. INTRODUCTION

In a series of earlier papers attempts have been
made to solve anharmonic-oscillator-type prob-
lems' based on the following pair of assumptions:

(i) Matrix elements decrease rapidly as the
difference between indices (distance from the main
diagonal) increases.

(ii) Matrix elements vary slowly parallel to the
principal diagonal. The experience gained in the
application of these ideas to oscillator problems
has led to modifications in these ideas.

The solution of a quantum-mechanical problem
in the matrix form involves the construction of
pairs of operators g;, P; such that

{i) the commutation rules are satisfied,
{ii) the Hamiltonian operator H expressed as a

function of the P; and the g; is diagonal.

In terms of the type of approximation referred to
above it is possible to separate these two aspects
of the problem. The diagonalization of H may be
treated primarily as a problem in the difference
of the matrix indices while the commutation re-
lations primarily involve the dependence of ma-
trix elements on the sum of the indices. The part
of the problem that depends on the difference of
the indices. the diagonalization of H, can be re-
duced to the solution of Newton's equation: I
=- u&a.

The demonstration that the diagonalization of II
can be approximately achieved in terms of a so-
lution of I" = ma will first be carried out in Sec. II
for a one-dimensional problem for which the
motion is periodic and for which the potential is
assumed to be expressed in terms of powers of
the coordinate. The generalization to a many-
degree-of-freedom problem is straightforward and
is carried out in Sec. III. To complete the solu-
tion of the quantum-mechanical problem the com-
mutation conditions are introduced in Sec. IV. In
Sec. V the application of the method to the har-
monic oscillator, the particle in a box, and the

x4 anharmonic oscillator are treated.
The demonstration that a solution of Newton's

equation can be used to find approximate matrix
elements has previously been given by Klein' in
the course of a derivation of the %KB method. The
derivation presented here grew out of attempts to
solve Eq. (1) as a set of coupled algebraic equa-
tions to which it reduces if the sum (2) is trun-
cated. The truncated-sum point of view gives
insight into the sizes of the various matrix ele-
ments which may be particularly useful guidance
in treating nonseparable problems. Several two
dimensional problems are mentioned.

II. THE DIAGONALIZATION OF THE HAMILTONIAN

IN A ONE-DEGREE-OF-FREEDOM PROBLEM

The Newton and Heisenberg equations both have
the form

where in Newton's equation x is a number awhile in

Heisenberg s it is a matrix. The time derivative
of a Heisenberg matrix element is given by

The equation becomes

This is a set of coupled algebraic equations usually
nonlinear since E will in general be a complicated
function of x. The computation of [F(x)]„presents
computationa1 problems, and before attempting this
calculation the first assumption will be introduced:

(i) The dependence of the matrix element x„
on the sum of the indices is weak enough so that
the approximation

ls adequate to treat t,he dlagonallzatlon of H. The
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assumed weak dependence of x~ on a+A will be
recovered when the commutator is treated.

In order to calculate [F(x)]„it is useful to in-
troduce the generating function g(8),

g(8) =Q n„(e'"e+e '" }.
If the function F[g(8}]is expanded in a Fourier

series,

F[g(8)]=+ P,(e'"~+e '"»),

then the coefficients P are functions of the e. If
F(x) = x', then

g'(8) = + a a a (e'"&~+e '"&~) ~ ~ ~

~ ~ oy

~ (eirr0 -irr»)

Thus the number P„ is given by

4 0 oy'e

Ql + 0 ~ 1 pjpr, krak yak ' ' '+ye ry rg ~ye/

where the inner sum is taken over all of the 2'
possible permutations of the plus and minus signs.

The matrix element (x')„ is given by

(x')„= x„,x,,, x. .. ,x,
Cy ' 'Ce

If (2) is used this becomes

(x'),i,
= o. . .a (5 +5 )(5 +5 ) ~ ~ ~ (5 +66 re~ @ cl+ry e.cy rj ' cy c2+r1 clic2 y1' ' ce-1~+r c 0-y

c& ~ - .ce-& ri ~ ~ re

The sums over the indices &„,&, , may be done
to give

(x'), i,
= Q (6, „,+6. . .)

~ ~ ~r
7r r+y wy + ~ ~ .ar ~ery' ' 're

The r sum is over all the ~ and over the 2' pos-
sible permutation of the signs. This answer may
not be correct because the Kronecker &'s may
not all have vanishing a,rguments in the interval
of summation. These missing terms are of the
type that is consistently neglected in this approxi-
mati. on. For small quantum numbers nea, r the
edge of the matrix they will be significant. For
powers of x it follows that by comparison with
the expression for g'(8) that

(x').o
= Q P,(~.p. , +8., s ,)-

For a function F(x) that has a power-series ex-
pansion it is concluded that the matrix element
[F(x)]~ is given by

[Ax)].~=+ P,(~.p., +~.p .),
while the function F[g(8) ] is given by

F[g(8)]=P A(e"'+e '"').

There is one final approximation required before
Heisenberg's equation (I) can be reduced to New-
ton's. The energy difference E, —F; is assumed to

pIopoI tlonal to (a-6),
(E,—E,) =(a —b)AE.

The proportionality constant 4E will have a de-
pendence on a + &, but this is temporarily neglected.

The preceding results are substituted into (I)
to give

—m(a —Ii)'(6 F/5)'x, ~
= [F(x) ],~,

or if a+5 =r,
—mr '(s z/I )' a, = p„.

Now Inultlply by 8 +e Rnd sum over P to l"e-
build the generating function and the equation be-
comes

2d gm(aZ/fi)'„, =F(g).d8'

If the substitution

8 = (6 E/Pi ) i

is ma. de, the equation becomes Newton's equation

»ig =F(g) .

If this equation is multiplied by g and integrated,
the conservation of energy equation

-'»ig'(I) + Vfr(i}]= -'i»P'(0) + I'[g(o)] = H(o)

results. The expansion of the right:-hand side in R

Fourier series gives

H(0) = H(i) =H(0)e'" .
But the Fourier coefficients to be interpreted as
matrix elements so that

H„=H(0)&„.

The dlRgonRllzRtlon of the Hamlltonlan ls equlvR-
lent to classical conservation of energy.

Having determined the function g(8) it must be
expanded in the Fourier series

g(8) = P &(e" +e " )
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to determine the matrix elements of x. But the e„
are still functions of 4E besides the mass and the
parameters required to specify the potential. This
is because the relation between 8 and t contains the
as yet undetermined ().E, and while g(t) satisfies
Newton's equation it is the Fourier coefficients of
g(8) that determine the a. To determine AE it
is necessary to use the commutation relation.

III. EXTENSION TO SEVERAL DEGREES OF FREEDOM

For a problem with d degrees of freedom there
are d coordinates, x~', x ', . . . , x " . The ma-
trix elements of an operator x ' will have 2d
indices, x,,'„,. . . , ,„„„,. . .„.In general the
indices will be represented by a vector a,

=(a». . . , a~) where the a; are integers. Using
these conventions the Heisenberg equations be-
come the collection

m [(E--E-)/n]'x-- =[F(x(') x(') x«)]--

The energy difference E-, —E& is given by

E, —Eb =(a —5) ZE,

where the vector 4 & has components ~ E». . . , 4E„.
Each of the coordinates matrices is approxi-

mated by

(x(&)) g &(()(() +()
') I

where r is a vector with integer components
r„.. . , r~. For each x ' the generating function

g given by

g('(() = g o(('i(exp(i[r AE)/h]t)+c c } (6)

is introduced. The entire discussion of Sec. II
can be repeated to show that the generating func-
tions satisfy the Newtonian equation of motion

(i)
F (()[g{x) g(n) ]

The clumsy theorem required to relate the
Heisenberg and Newtonian equations is for mono-
mials in the x'. If the matrix element

t »'j~~»'2. ..~«&8~]»- —Y p-rg-- -+gJa tl ~ Pr% a, b+r a, b —r) y

and if the product of generating functions g~'~

g(a)e~g(2)e2. . .g(&) g Q g [exp(i[(r .g E)/)f]()

+ c.c.},

The proof proceeds as in the single-degree-of-

freedom case provided that the components of
~E are irrational with respect to each other. Once
this result is established, the passage from the
approximate Heisenberg equation to the Newtonian
equation is straightforward and energy conserva-
tion is equivalent to the diagonalization of K

IV. COMMUTATION RULES

It is not possible to calculate the commutator by
the methods of the preceding two sections. If
these methods were employed the result would be
to calculate the Fourier coefficients of (mg)g
-g(mg). But since g is an ordinary function the
result would be zero. The reason that quantum
and classical mechanics are interchangeable so
far is that the matrices (2) and the generating func-
tions have the same multiplication rules.

A commutator has minus signs and the numerical
values are the small differences of large numbers.
A method to remove the minus signs is necessary
before the type of approximation used above can be
introduced. A satisfactory approach is to sum
parallel to the diagonal to produce sums in which
each term is positive. It is possible to make ap-
proximations in these formulas without the danger
of making the type of errors associated with ap-
proximations in sums that contain both positive
and negative numbers. The commutator formula
is given first for a single-degree-of-freedom
system where everything can be carried out ex-
plicitly. For a system with more than one degree
of freedom the ordering of the energy levels is a.

mysterious phenomenon' and implicit results are
del ived.

The momentum P is given by

()-/mi» =[H, x],
so that the commutator relation is

[H, [H, x]]=(If/mi)[p, x] =-(f)'/m) .
The diagonal matrix element of this relation is

Q(E~ —E,)x„2=g'/2))(.

If the system is one-dimensional, a and b are just
non-negative integers and the sum can be changed
by setting b =a+r,

g (E.,„E.)(x„,„) =g /2)n.
r ~-a

Now the terms with positive values of r are all
positive while those with negative values of r are
negative. If the above equation is summed on a
from a =0 to a =A it turns out that the negative
terms will all be cancelled by a subset of the posi-
tive terms. To see this divide the sum into two
partsq
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s=Z Ea+„-E, x, „,2 & 0,

so that

Ea -E, X a+
r=-a

S, +S, =(r 2/2-m) g 1

=(a'/2m)(A +1) .
Consider the term 8, and change the sign of r,

a=O &=O

+a —r ~a +a,a-r

Interchange the a and r sums and use the sym-
metry of xto give

The result for ~ I- is not as explicit as it appears
since the e's are dependent on 4E. Because of
this dependence the e's also pick up the previously
neglected dependence on the matrix index parallel
to the diagonal.

In a problem with d degrees of freedom a1rnost
the same derivation can be given, but because the
matrix indices are now d-component vectors the
order relations are confused. Two types of order
will be distinguished. If each of the components
of a, a;, is smaller than the corresponding com-
ponent b; of b then a will be said to be less than
b. It is not necessary with this definition of
greater and lesser than for each pair of vectors
one is greater than the other. To each index a
there corresponds an energy I -„. An index b is in
the set D= if Eb ~E-„and the index b is in the set
D-' if E;& Eq. If a&D& then b~D,' unless F.t, = E;.a

The commutator equation is

S, =- g g (E.-E. ,)(x. „.)'.
Next let the a sum run from a =0 to A —r to give

P P (E„„—E,}(x,„,)'.
r=() a=a

Finally, interchange the order of the a and r sums
again to give

Q (Er, —E-, )x -, t~ = k '/2&n .
b

Replace b by a+ r which gives

g (E- - E-)(x- - -}'=if2/2m
&+r «0

Instead of summing over a from a =0 to a =A the
appropriate domain of summation is a&D=„. The

commutator equation summed over this region is

A A-a

S, =- g P(E.„-E.)(x. ..„) .
a=0 r=o a~D

A

a+r «p

(E- -- E-)(x- - -)' =(0'/2m) Q

The two sums Sy and 8, may be combined and the
result is

=(ig'/2m}(A +1) .

Each term in the sum is positive since E„„&E,
and x, „„is real. The approximations of the pre-
ceding sections may be introduced into this
formula with impunity to give

h
r6Eo.,' = (k'/2m )(A + 1) .

a=O y = h-a+ y

Again invert the order of summation to yield

QynEa„' Q 1=(h'/2m)(A+1).

The a sum can be done and the final formula is

The sum on the right-hand side cannot be done at
this stage since the distribution of energy levels
is not known. The left-hand side can be separated
as before into a positive portion S, and a negative
portion S,:

a~ D a+re D~
p 3

ag D 0~a+ r~=- D
A

As before, the sum 8, will be manipulated until it
cancels a portion of the positive sum 8,. The first
step is to replace r by —r,

(E- E- -)(x- - -)'
as- 8 0 ~ a - r t- D~

A

The interchange of the a and r sums gives

(g E)p ~ ~ o ' =(h /2m)(A+1). r&= D
A

(E--E- -)(x- --)'

As a consequence of this formula (& E) becomes a
function of A. , the index parallel to the diagonal.

This is symbolically the same result as in the one-
dimensional case. That r can vary over all of
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D= follows since if a. is any point in D: choose r
A

= a so that r —a =|}and 5 exists in D=, so that r
takes on each value in D=. Conversely if r E D'-

A A

then since aR D=„, a, —r cannot be positive, at
best it can be undefined Kith respect to zero. The
limits on a reproduce the limits in the previous
sum.

As before the next step is to replace a- r by a

to give

(E- - —E-)(x-- -)'
r t=' D 0~a a+ f'+- D~

A ' —
p,

As in the one-dimensional case the sums are
again exchanged to give

(E- - E-)(x-- -)'
3+DA Q —T, B+ f C D~

A

This sum can be combined with 8, to give the
expression

The solution for the generating function is

g(t) =o. ,(e' '+e '~').

In terms of 0 this becomes

g(8) = u, [exp(i k 8&v/aE) +c.c.].
There is only one nonvanishing matrix element,
a=x, „,=x„,, The commutation condition is

k2 a+1
m(~E) 2

Since the generating function must be of the form

g(8) = u, (e' +e ' ),
it follows that

(a+1) .2

2W (d

These are the well-known results.

=(a'/2m) P 1.

aED a+r~= D~
A A

(r ZE)~ =(g2/2m) g l.

Further simplification can be achieved by in-
verting the order of the sums to give

1=(h'/2m) Q 1.
+

a& D~, g+rgD
A

'

As before the summands are all positive and it is
safe to use the approximation to give

Example 2: The particle in a box in one dimension

A particle of mass ~ is confined to move be-
tween x=0 and x=E. Its velocity is &. The gen-
erating function g(8) has a nonvanishing value for
8=t=0 while g(t) and g'(8) are zero for t = 8
=0. The correct solution for g(f) is then the
cosine-type solution

E
Ough(

E

The same remarks apply here and further em-
phasis must be placed on the necessity of knowing
the energy spectrum before the formula is useful.
There are d canonical pairs in a d-degree-of-
freedom problem so that there are d equations to
determine the d unknowns &E.

V. EXAMPLES

A number of simple examples are treated to
show how these techniques work out in practice.
The first three are in one dimension: The simple
harmonic oscillator, the particle in a box, and
the x'+&4 oscillator. The last example is a pa, rti-
cle in a central potential in two dimensions and
in particular to a particle in a circular box.

Example l: The harmonic oscillator

The equation of motion ls

x + u'x=0.

The Fourier expansion of g(8) is given by

g(8) =—,~, exp (2m+1) i 8
2l ~ ~rvh

'Eh F

+ C,C.

Because of the nature of the potential, the solution
for e is given without use of the commutator,

I 2E

(2r+1)' v2 '

The commutator condition is

2E 1 A' a+1(""'—"(2r+1P =
m~E

If the sum is done this becomes

n2 8 m~F.
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so that AE=(s /4)(k'~/ml )(a+1).
Yhus the solutions for &,~ and P,& are given by

a,a+2' =Pc,a+2' =0
y

1 2l
a,a 2+r+1 (2~ + 1)2 s2

2ik a+1
Pa, a+28'+ j

g

These can be compared with the exact answers
which give for the nonvanishing matrix elements

1 1 2l"+'"" (2r+1)' (2a+2x+1)' v' '

4l g a(a+2r+1)
l (2a+2r+1)(2r+1) '

These agree in both cases for the leading terms.

Example 3: The quartic anharmonie oscillator

The Newtonian equation of motion is

mg +m&2x+$Axs =Q.

The solution with the cosine behavior is

g(8) =Gcn(g8, k),

where cn is a Jacobi elliptic function. ~ The con-
stants G, g, and k are related to the parameters
m, ~, and ~by the relations

mk'~'+2&'G' =rl'(1-k'}(dE)'
k'&u' =(1 —2k')rI'(b E}'

2XK2G =mkng2(n, E}2

Only two of these three relations are independent.
These can be used to calculate G and g2 which are
given by

k2 m~
1-k 2~

2

1-2k2 ~8
Since g(8) must be periodic in 8with period 2n,

the period of the elliptic function cn must be ad-
justed to satisfy this condition. The period of
cn(q8, k} is given by 4K where

w/2
E= (1-k'sin'P) ' 'dP.

0

Thus since 2~q =4K, it follows that

1-2k2 (~E
so that

w &e~
(1 2k2)»2 = (1 k2 sifpy)

2 ISE

is the third equation that permits the calculation
of the parameters of the elliptic function G, g, and
k in terms of the parameters m, ~, and ~ of the
problem and 4E. Notice that if k =0, the elliptic
function becomes an ordinary cosine and the prob-
lem reduces to the simple harmonic oscillator.

The elliptic function cn may be expanded in a
Fourier series,

2~G q&+ & /'2

Gcn(q8, k) =
k g „„cos[(2r+1)8].1+q2""

The new para, meter q is related to k by

The quantities cr „are given by

&~+ j ~2

1+q2" -&

From the earlier formula it can be seen that k
must be quite large before q differs appreciably
from zero so the n„are very rapidly decreasing
functions of r.

The commutator relation is
q2~+' E' a+1

ii Ek ) (1+q"-')' m(aE)

This equation provides a fourth relation which
permits the determination of the elliptic function
parameters G, g, k, K, and q and the energy dif-
ference 4 E in terms of the problem parameters
m, &, and & and the quantum number a. The ma-
trix elements e„are then readily determined. The
solution of these four coupled equations is a non-
trivial numerical problem and it has not yet been
carried out.

Example 4: Particle in a central force in two dimensions

The equations of motion in classical mechanics
a,re

BV
mi -f,2/mr'+ =0

ay

8 =f /mr2.

The solutions give r as a periodic function of the
time with a period T,. Since the angular velocity
8 is determined by r it has the same period T,
However, 8 which is found by integrating (nj will
have a periodic part but in addition may have a
portion of the type ct where c is a constant if- 0

has a nonvanishing average value c. The ct part
of 8 introduces a second periodicity into sin8 and
cos8 with a period T, =2m/c. The coordinates x
and y will have terms of the form e" 2' where
e, =2w/T, and no other T, dependence. Thus the
selection rule that x and y have nonvanishing ma-



trix elements only between states of adjacent
angular momenta is derived in the present forma-
lism. The radial portion of the matrix element
depends of couFse on the explicit form of the po-
tentia1.

VI. CONt"LUSION

The approximation that the matrix elements of
the coordinates .~„may be treated as independent
of a+& leads to a reduced problem. The matrices
in the reduced problem (6) have the same multi-
plication rules as a set of generating functions
(6). The generating functions satisfy the Newtonian

equations of motion so that the reduced problem
may be solved if the corresponding classical prob-
lem is soluble. To recover the full quantum-
mechanical problem from the reduced problem the
commutation relations are introduced by means
of (7).

The technique is a development of earlier efforts
to solve the matrix equations of anharmonic-
oscillator problems as sets of coupled algebraic
equations. ' The results are r elatively independent
of the size of the anharmonic term for one-degree-
of-freedom systems. In the single-degree-of-
freedom systems the v' in (4) suggests a rapid
falloff in e with r. This expectation is borne out

by numerical calculations and the examples. The
analogous equation for a coupled system would in-
volve (r ZE)2, and r ZE is not necessarily an

increasing function of r as r gets fa.r from the

origin. This suggests that there are resonance
phenomena. that allow energy to be shifted between
different modes. Numerical calculations for a
system of two coupled anharmonic oscillators
show that the ma.trix elements x„„»,and

y„, »„can become quite large, approximately
equal to Y,&,+» and y, &,t, +, whale x',&,+»+, and

g,~„,~„ar small. No general insights into this
resonance phenomenon have been available from
the numerical studies. PresUmably the Fourier
coefficients in the classical solution to a coupled
problem will show similar resonance phenomena.
The identification and classification of large ma-
trix elements and the equivalent Fourier coef-
ficients which should make the understanding of
the behavior of coupled systems possible.

If the Newtonian equation of motion is solved and

this solution is expanded in a Fourier series as is
done in the examples, approximate expressions
for the coordinate and momentum operators can be
produced. To achieve more accurate numerical
results these can be used as the starting point for
a perturbatlon pl ocedul e based on the require-
ments the oper ators satisfy, the canonical com-
mutation relations, and that the Hamiltonian is
diagonal. My very limited experience is that this
perturbation procedure is always rapidly con-

vergentt.
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