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Constraint formalism of classical mechanics
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The constraint formalism for classical mechanics is developed with an eye toward facilitating a manifestly
covariant relativistic quantization of classical mechanics. The very close relationship of this formalism to the
more familiar Hamiltonian formalism has long obscured its independent status. In this paper, after defining
the concept of a classical trajectory in a particularly natural and intrinsic way (that is, without reference to a
special parameter such as the time), we prove that the trajectories satisfy the Hamilton equations of motion.
In the following paper, the power of this formalism is demonstrated, when as an illustrative example it is

employed to solve the nontrivial relativistic two-body problem, both classically and quantum mechanically.

I. INTRODUCTION

The various formalisms of classical mechanics
each have their own specialized advantages. Thus
the Lagrangian formalism is particularly suited
to exhibit the symmetry properties of a theory,

pa t c la, t clat 'st' c a ance, and th
relationship of these symmetries to the constants
of motion. The Hamiltonian formalism, while not
readily adapted to manifest relativistic covariance
due to the singling out of a preferred time vari-
able, is ideaQy suited for the transition to quan-
tum mechanics. The Hamilton- Jacobi formalism
has the unique attribute of exhibiting the classical
analog of the quantum state.

In an earlier paper' we discussed various formal-
isms of classical physics and showed to what extent
they can be regarded as giving equivalent descrip-
tions of nature, namely, that their respective alge-
bras of observables are homomorphic. In that
paper we described a less familiar classical for-
malism which we called the constraint formalism
and developed some of its properties. In the pres-
ent paper we shall devel, op the constraint formal-
ism somewhat further. Our particular interest
in this formalism stems from the fact that it com-
bines many of the virtues of the Lagrangian, the
Hamiltonian, and the Hamilton- Jacobi formalisms.
That is, it facilitates a manifestly Poincare-co-
variant transition to quantum theory. The problem
of a nontrivial relativistic system of interacting
particles is most naturally handled in this formal-
ism. However, since this problem has long and
intricate antecedents, we wi11 present this import-
ant appbcation of the constraint formalism in the
following paper, rather than relegating it to the
concluding sections of the present paper. %e
should note that our long-term interest in the con-
straint formalism derives from our desire to ob-
tain a manifestly covariant general-relativistic

quantum field theory. That generalization will not
be treated in the present paper.
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and more generally
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where A and B are arbitrary scalar fields defined
on phase space, and we employ a summation con-
vention on repeated indices. (We employ the iden-
tity equality at this point to emphasize that such
relations are to hold everywhere in the phase
space, that is, including those regions which will
subsequently prove to be nonphysical. ) Since the
machinery of phase space is quite familiar to us
from the Hamiltonian fromalism, there is no need
to repeat the proofs of well-known results. The
reader need only refer to any standard text in
classical mechanics. 2 In this spirit, if by a canon-
ical mapping we mean a curvilinear coordinate
transformation which preserves the given symp-
lectic form, we note that any function of the coor-
dinates of the phase space A(q", p„) may be re-
garded as the generator of an infinitesimal canon-
ical transformation via the relations

II. KINEMATICS

The arena of the constraint formalism is a phase
space, that is, an even-dimensional space with a
symplectic form. If we adapt a set of coordinates
to the symplectic form we may define a set of
Poisson brackets in the usual manner. Thus we
obtain



It is a consequence of Eqs. (2.2) and (2.3) that un-
der an infinitesimal canonical transfor~ation gen-
erated by A, any other function B{q",p„) defined
on this phase space will txansform accordingly:

(2-4)

III. DYNAMICS

The distinguishing feature of the constraint for-
malism is the manner in which the dynamics is
stated. Let us be given a set of 4 functions over
the phase space K,.(q",p„), i =I, . . . , k, which sat-
isfy the set of relations

(3.1)

(where X,, are totally arbitrary, and need not be
constants). That is, the functions K,. form a first-
class system in the sense of Dirac. ' %6 define
the set of 4-constraint equations as follows:

(3.2)

These relations define a lowex-dimensional surface
in the phase space, the constraint hypersurface.
It is an evident consequence of Eqs. (3.1) and (2.4)
that this hypersurface is invariant under infinites-
imal canonical transformation generated by func-
tions E;.

Thus if we start with any point lying within the
constraint hypersurface of Eq. (3.2), and map lt
via iterating the infinitesimal canonical transfor-
mations generated by the functions K, , we obtain
an equivalence class of points lying entirely within
the collstI'Rlllt llypeI'sul'fRce. We defI'se sglcfl gs
equivalence class to be a genera)ized dynamical
tractory. (For the case where k =1, it will be a
trajectory in the ordinary sense, namely, a one
dimensional path. ) The virtue of this manner of
cleflnltloQ of R tra]ectory 18 thRt lt, makes Qo ex-
plicit reference to a time parameter, and thus can
be made in a manifestly relativisti. c covariant
manne x".

As a guide for the reader's intuition let us brief-
ly exhibit two simple QOQx'61Rtlvlstlc examples:

(i} The three-dimensional simple harmonic os-
clllRtol . Let us conslclex' RQ eight-dimensional
phase space labeled by the canonical coordinates
q', q, P', p. The constraint hypersurface for this
physical system is seven dimensional, and is given
by the single constraint equation

(3.3)

The usual six-dimensional. phase space of the Ham-
iltonian formalism is obtained by factoring the
constraint hypersurface modulo the one-dimen-

sional equivalence class of trajectories generated
by Ks„o.

(ii) Two particles interacting via a, Kepler force.
This physical system is particularly instructive
for there is more than one natural way to treat it.
Analogous to the previous example we can con-
sider a 14-dimensonal phase space labeled by the
canonical coordinates q, q„q„p, p„p .
constaint hypersurface for this system is the 13-
dimensional surface given by the single constraint
equation

na p2
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(3.4)
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The equivalence class of generalized tx'ajectories
generated by Ej RIld K2 18 now two dlmenslonal, .
Thus by factoring the constraint hypersurface mod-
ulo the trajectories, we again recover the 12-di-
mensional phase space of the Hamiltonian formal-
ism. (We leave it to the entertainment of the in-
terested reader to verify that these two radically
different ways of treating the Kepler problem are
equivalent in the sense of Ref. 1.)

%6 see from this latter example that the con-
straint formalism is really not one formalism,
but rather a family of related structures which can
be adapted to give equivalent treatments of a given
dynamical system. It is this fx"eedom to modify
the components of the structure (such as the di-
mensions of the phase space, or the number and
functional form of the constraints) which gives
this formalism its power. For we are now free to
introduce other desiderata, in particular, mani-
fest covariance Rnd facility for quantization.

IV. OBSERVABI.ES

In order to relate the present formalism to the
more familiar descriptions of physical systems
we introduce the concept of obsexvables. We de-
fine an observable Q(q~, p„) to be R function over

As in the px"evious example, the usual 12-dimen-
sional phase space is recovered by factoring the
constraint hypersurface modulo the one-dimen-
sional equivalence class of txajectories generated
by K. Howeve1' R Illuch 11101'e interesting, Rlld In
many ways, a much more powerful treatment of
this dynamical system is obtained by considering
a 16-dimensional phase space labeled by the can-
onicRl coordinates q, q, q, q, p, p, p, p .
The constraint hypersurface for this system is now
the 14-dimensional surface given by the following
two commuting constraints:
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the pha, se space which generates an infinitesimal
cRIloD1cRl transformation which leaves 1nva, r1Rnt
the constraint hypersurface given by Eq. (3.2).
Thus, from Eq. (2.4), we see that a necessary and
sufficient condition that a. quantity Q be an observ-
able is

(4.1)

where the OxChnary equality sign is employed
throughout this paper whenever the relation need
hold only modulo the constraint equations (3.2), and
not necessarily everymhere in the phase space.
With this notation, it is a consequence of Eq. (3.1)
that

include the constraints K, Let us assign a set of
constant values to this set of observables such
that

(5.3)@R 8'

[Of course, those constants C~ which are associ-
ated with constraint observables must be assigned
to vanish, in view of Eq. (3.2). J

In view of the completeness condition, Eq. (5.2),
we may regard Eq. (5.3) as defining the canonical
momenta p~ as implicit functions of the canonical
coordinates q~, and the constants C„. Differen-
tlatlllg Eq. (5.3) with respect to tf we therefore ob-
tain

(4.2)

It is evident from our definition, as mell as from
this relation, that the constraints themselves a.re
observables. We distinguish between the con-
straints and the remaining observables in so far
a,s we employ the constx'RlQts to def1De trRjector-
ies. The remaining observables then generate
canonical mappings which preserve trajectories
intact, merely permuting them mithin the con-
straint hypersurface. We should emphasize, how-
ever, that there is no requix'ement that the observ-
ables (other than the constraints) mutually com-
mute.

As to the actual construction of observables, it
can be accomplished in a number of mays. One
particularly convenient procedure is to introduce
as an additional set of constraints quantities mhich
Rx'6 cRQonlcRlly conjugate to the glveQ constx'Rlnts,
Eq. (3.2). The combined set of relations then forms
a second-class system in the sense of Dirac. ' The
observables can then be constructed via the Berg-
mann-Komar starring procedure. ~ %6 shall not
be concerned mith this construction in the present
paper, since, in effect, it amounts to the reinfro-
duction of preferred "timelike" parameters into
the formalism thereby vitiating much of the im-
petus for its construction.

V. HAMILTON-JACOBI THEORY

(5.4)

If we multiply this equation by sq~/sp", anttsym-
metrize with respect to the indices R and S, and
refer to the definition of the Poisson brackets
Eq. (2.2), we find that

jq q }+'qe 'qR 'pal 'ps = oR& 8 gp gp gq& gal%
(5.5)

As a consequence of Eqs. (5.1) and (5.2) we obtain

We therefore conclude that there exists a, function
S(q"}, such that

Since the set of constraints K,. mere assumed to be
included among our complete commuting set of
observables, we may substitute Eq. (5.7} into the
constraint equations, (3.2), thereby obtaining the
(generalized) set of Hamilton- Jacobi equations.
We conclude therefox e that the Hamilton-Jacobi
function is determined uniquely up to an arbitrary
additive constant by the values C~, assigned to a
complete commuting set of observables.

j~@~ ~
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PNI

(5.2)

Such a complete set of observables mill in general

I et us for the moment considex' a complete com-
muHng set of observables. That is, consider a
set q„, which in addition to satisfying Eq. (4.1),
a,iso satisfies

(5.1

The completeness condition is in this case under-
stood to be given by the inequality

%6 shall Dow consider a. phase spRce fox' k pa.x'-

ticles, coordinated by the 4k canonical variables
q,". , p, „, i =1, . . . , 4, p, =O, . . . , 3. Even though we
axe for the most part confining our considerations
to nonrelativistic mechanics, it is convenient to
assume a Minkowski signature (+,—,—,-) for
raising and lowering Greek indices. For heuristic
reasons it will be convenient in the sequel to sep-
arate the space Rnd time variables. The express-
ion for the poisson brackets, Eq. (2.2), may now

be written as
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BA BB BA BB9»}= 0 o- o o- [~~H]~
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(6.1)

where the square brackets are the standard Pois-
son bracket expression of the Hamiltonian formal-
ism. ' (The negative sign is merely due to our
utilization of the Minkowski signature in raising
the spatial subscripts of the momenta. )

As we have indicated in the second example of
Sec. III, there are many ways in which we can
introduce the constraints. We now find it instruc-
tive to consider the k constraints as follows:

K, —=p;- H, (q, , q, , p,.) =0, i,j=1, . . . , k. (6.2)

While, at present, the reader may view this as an
alternative form for treating a system of many
particles, in fact, this form of the constraints is
in part motivated by our intention ultimately to ex-
tend the formalism to field theories, in which case
several free parameters are needed to label points
of trajectory. The expressions for B,, the gen-
eralized Hamiltonians, are not arbitra, ry, but a,s
a consequence of Eq. (4.2) must satisfy

; —[H, , H, ]=0.
Bq,. Bq&

(6.3)

—,+ —«+ [Q, H, ]=0.BQ BQ Bg)
Bq BP Bq

(6.4)

Let us now define Q*, the restriction of Q to the
constraint hypersurfa, ce:

In our present notation the condition for an observ-
able, Eq. (4.1), now becomes

(Q., Q.}=-IQ*., Q.*). (6.9)

Thus in order to determine whether observables
commute on the constraint hypersurface it is suf-
ficient to consider- the usual Poisson brackets of
their respective restrictions.

VII. GENERALIZED HAMILTON EQUATIONS OF MOTION

We have shown that observables are constant
along each trajectory. If we have sufficiently many
observables at our disposal we can employ them
to specify the trajectory uniquely. The trajectory
specified will satisfy dynamical equations of mo-
tion. With this in mind, let us define a set of ob-
servables to be complete if it satisfies the inequal-
ity

sQ g

(i =1, . . . , 6k;j =1, . . . , k).
Bq. Bp.

show how the more familiar expression for the
constant of motion in the Hamiltonian formalism
can be recovered. [We chose to accomplish this
in a slightly more general scheme than the usual
single-constraint Hamiltonian formalism in order
to illustrate how one can handle multidimensional
trajectories. If the reader prefers, he may in-
stead refer to our first treatment of the Kepler
problem in Sec. III, with the single constraint giv-
en by Eq. (3.4). ]

We note that the same set of relations and manip-
ulations which led to the derivation of Eq. (6.8),
can also be employed to demonstrate that

Q*(v', , q, , p, ) =Q(q,',p;) ~,0 „.
It therefore follows that

(6 6)

(Note that in the present case we cannot employ
the constraint observables as their restriction
vanishes identically, ) Consider the trajectory de-
termined by assigning constant values C,. to such a
complete set:

BQ* BQ BQ BB

BP
(6.6) ,

*=C, ) i = 1, . . . , 6k. (7.2)

and

[Q *,H ] = [Q, H) ) + —[H, H, ]. .

m

(6.7)

Substituting these last two equations into Eq. (6.4),
and employing Eq. (6.3), we obtain after some
manipulation the following:

0 + [Q ~, Hq] = 0. (6.8)

It was evident from our original definition of ob-
servables as quantities which commute with the
constraints, and from our definition of trajector-
ies a,s the orbits generated by the constraints,
that observables are constant along a trajectory.
The purpose of the demonstration of Eq. (6.8) is to

The canonical variables q, , p, , thereby become
implicit functions of the q', Since the definition of
the trajectory is not at our disposal, the equations
of motion of these canonical variables are fully
determined. Differentiating Eq. (7.2) with respect
to q~ we obtain

Bq. Bq Bq. Bp Bq .
(7.3)

Since each of the observables Q~ must satisfy
Eq. (6.8), we find by comparing with the above
equation that

BQ,*. Bq BQ,*. Bp BQ,*. BJI, BQ,*. BA,.

p Bq; q Bp p

(7.4)
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By virtue of Eq. (V.l) we can now conclude that

Bq, BB~
eq'. ep,. '

ables q", p„) by the constraint

~2
K=P ——=0,p

2m
(8.1)

op,. aa&

Bq;

We have thus succeeded in deriving the general-
ized set of Hamilton equations of motion. (Again
if the reader prefers to confine himself to a single
constraint treatment he readily recovers the stan-
dard Hamilton equations of motion. )

In this process of having established the full
equivalence of the constraint formalism with that
of Hamiltonian mechanics, we learn the manner
by which a functional dependence is established
between what were initially independent canonical
coordinates of the phase space, namely, q', , and
the remaining canonical variables. The power of
the constraint formalism, however, lies in our
never having to impose such a dependence; the
definition of the trajectory is determined by the
constraints alone. In fact, when we look ahead to
the quantization of such theories we see that the
ability to parametrize the individual points of a
classical trajectory is neither very useful nor in-
deed particularly meaningful. It will be seen that
the critical feature of the mechanical system is the
algebraic form of the constraints. In fact, the
essential virtue of the constraint formalism, which
makes it particularly convenient for quantization,
is that it is totally algebraic —not even "time" deri-
vatives need enter into its statement of the dy-
namical laws.

VIII. CONCLUSION

In this paper we have established the constraint
formalism as an independent formalism of classi-
cal mechanics, although it is frequently confused
with the superficially similar Hamiltonian formal-
ism. We have also shown how to relate it to the
more familiar Hamiltonian and Hamilton-Jacobi
formalisms. In view of the fact that most of the
results are quite familiar and certainly none of
the physics, up to this point, is new, the reader
may well question the point of this exercise. The
value of a new approach ultimately rests on the
increased insight it may provide toward the reso-
lution of outstanding questions. We shall briefly
allude to several such areas.

From the perspective of the constraint formal-
ism, the natural definition of a symmetry group
is a I ie group generated by a closed algebra of
observables. Thus, to take the trivial case of a
free particle, defined (in an eight-dimensional
phase space represented by the canonical vari-

it is easy to see that a complete nonredundant alge-
bra of observables is given by the ten quantities
p', p, q x p, mq —q'p. It is also easily confirmed
that the algebra of these ten quantities is that of
the Galilean group. We ean thus assert that the
Galilean group is the symmetry group of the free
particle. Although this seems quite natural and
even obvious, the reader should be cautioned that
it is not the existing practice in the Hamiltonian
formalism. In that formalism, the Hamiltonian
p'/2m does not commute with the Galilean boosts
mq —q'p. The Galilean group is thus not regarded
as an invariance group of the theory and is rele-
gated to the puzzling category of being a noninvar-
iance group. ' Even in this trivial example we see
a new perspective being made available for the
understanding of so-called noninvariance groups
and their associated spectrum-generating algebras.

The constraint formalism provides a unified per-
spective for understanding symmetries of a phys-
ical system in another respect. For mechanical
systems, as well as for most field theories, the
space-time symmetries, such as the Galilean
group, or the Poincare group, are generated by
the nontrivial observables of the theory, such as
the energy, the momentum, the angular momen-
tum, ete. For gauge theories, such as general
relativity, the principal symmetries, frequently
including the space-time symmetries, are gener-
ated by the constraints themselves. It thus be-
comes difficult to identify the familiar observable&
in such theories, and in view of the fact that their
values are constrained to vanish, they are of no
value in identifying trajectories. The constraint
formalism provides a unified view point for iden-
tifying symmetries: Whether or not the associated
observables are constraints, their hallmark is
that they leave invariant the constraint hypersur-
face. That is, the algebra of the constraints forms
a normal subalgebra of the total symmetry group
generated by the observables. In order to identify
trajectories by means of observables, we are re-
quired to examine and identify the elements of the
factor algebra.

The most important application of the constraint
formalism to date will be presented in the follow-
ing paper. Within the context of the Hamiltonian
formalism there is a "no interaction" theorem'
which asserts that it is impossible to have a sys-
tem of particles consistent with the principles of
special relativity whose laws of motion may be
described by means of the Hamilton equations of



motion, and whose trajectories transform correct-
ly under Lorentz transformations, except for the
sole case of a collection of free particles. It is
this theorem which has impeded the development
of a relativistic quantum theory of interacting par-
ticles. We shall demonstrate in the following paper

that the constraint formalism does not suffer from
such a pathology, and in fact provides the natural
forum for quantization. If there were any linger-
ing doubt that the constraint formalism differed
in essential ways from the Hamiltonian formalism
this example should lay it it rest.
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