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Thermal properties of Green's functions in Rindler, de Sitter, and Schwarzschild spaces
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The conventional massless scalar Green's functions in the Minkowski, de Sitter, and two-dimensional

Schwarzschild spaces are reinterpreted as finite-temperature Green's functions and the corresponding

averages of the stress-energy operator are calculated. The renormalization adopted consists of subtracting the

zero-temperature quantities. In all cases the averages give the stress tensor of a purely Planck-type perfect

gas.

I. INTRODUCTION

This paper is essentially a continuation of an
earlier one' where I considered the Green's func-
tions on manifolds that possessed a periodic coor-
dinate ranging from 0 to P. This coordinate could
be a real angle, as in a physical wedge, or it
could be an imaginary time, as in Rindler space.
In the latter case the periodic Green's function
can be interpreted as a finite-temperature Green's
function, and the present paper contains some
further elaboration of this fact. In particular I
wish to illustrate the theory with some exact and

explicit expressions. These will be associated
with the Rindler manifold, de Sitter space, and a
two-dimensional exterior black hole.

II. GREEN'S FUNCTION FOR MASSLESS PARTICLES:

RINDLER SPACE

For convenience I recapitulate a little of the for-
malism of Ref. 1. Space-time is represented
either by standard Cartesian coordinates

ds = dt' —dx' —dy' —dz'

or, in a certain region, by static Rindler coor-
dinates

ds = Z'dv —dZ —dR = g „„dx"dx",

where R stands for a two-dimensional Euclidean
vector R=(X, Y'). (It is possible to work in more
than four dimensions. R could be extended to an
n-dimensional vector allowing the use of a dimen-
sional regularization, if needed. )

As discussed in detail in Ref. 1 the Green's
function, which is periodic in the imaginary Rind-
ler time difference i(v —v'), is given by the contour
integral

i 1
G„(x,x )=- (4)

and a straightforward evaluation yields

where the point x is labeled, equivalently, by

(t, x, y, z) or (v, z, R), and similarly for x'. The
(complex) points x and x' have the same spatial
(Z, R) coordinates as x and x', respectively, but
have Rindler times which differ by i&'. The con-
tour A' has two branches (these could be com-
bined): One is in the upper o. ' plane starting from
and returning to imaginary infinity but passing
beneath the point a'= in„where

cosh&, = (Z'+Z" + ~R —R'~')/2ZZ'.

The other part of A' is obtained from the upper
one by reflection in the origin n' =0.

G„(x,x') is the ordinary Minkowski Green's
function and is a function of only the (complex)
space-time separation o'' between x and x"

o' = 2ZZ' cosa' —Z' —Z" —
~

R —R'
~

'.
All the GB satisfy the same differential equation

(V,V~ + ~')G, (x, x') = g(x, x')

and are distinguished by the boundary conditions
(periodicity requirements) they obey. Note that
only for p=2~ is GB a function of the space-time
separation of x and x'. In other words the boundary
conditions violate Poincare invariance, in general.

The singular points a' = +ta, of G„(x,x') corre-
spond to the light cone 0'=0, and for massive
particles are branch points (corresponding to the
propagation of fields inside the light cone), but
for massless particles they are just simple poles
and the integral can be evaluated very easily
in terms of the residues of G„. For massless
fields

G, (x, x') = G„(x,x')
A'

2iria' /8rQ

~I
2r 4' /8 -2~(u-tp') /8e

' —e
(2)

G, (x, x') =
4mPZZ' sinha,

X
sinh(2va, /tl)

cosh(2n'a, /p) —cosh[2v(v —v')/tt]
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mhich has the characteristic fox'm of a thermal
Green's function of temperature P' .An alternative
mRy of expx'esslng GN 18 R8 the LIlflnite perlodiclty
sum"

G» (x, x') = g G„(.. . , o —v' im—P),

where G is the zero-temperature Green'8 function

4»' ZZ' sinho. ', (v —v')' —a,'

(not a function of &r').

C& ean nom be used to evaluate the vacuum aver-
age of the improved energy-momentum operator
T„„asthe coincidence limit

(T„„)»= = firn (4&„V„.-g„~O'V, ,
g ~g

(T )» ———lim (38 S +V, V, +V V
X ~X

where S, = S/Se.
I have not been too careful. to say exactly horn

the eoincidenee limit is to be taken. This is be-
cause G~ is to be thought of as having been re-
gularized, in some may, so as to make the coin-
eidenee limit finite. It should not then be neces-
sary to specify horn x' approaches x. Aftermards,
in principle, the regularization is relaxed and the
lnflnltles then exhibited are renormRlized Rw'Ry.

In practice I am simply going to subtract a term
from G to render the limit finite. For the mo-
ment consider this a pure ansatz, the significance
of mhieh should appear later.

The interpretation of G& as a finite-temperature
Green s function suggests that the same procedure
Rs ln eonventlonRl finite-temperature theory 18
adopted. That is, the infinite part of the zero-
temperature expression, coming from the m =0
G„ in (6), is to be removed. Examples of this
procedux'e can be found in Domker and Critchley'
and Brown and Maelay. ' In general one does not
subtract the entire zero-temperature expression;
othermise one mould obtain a zero Casimir term,
for example. Rather one has the problem of ex-
tracting the finite part of G (x, x). However, in
the present instance it seems most natural to
delete the whole of the m =0 term in (6). The jus-
tification for this is, basicaQy, the same as that

X» X
G~'

F» eF
, Z»aS

(Z2~ )-1»
8

(lib)

To obtain (lla) I set F'=F after X'=X and Z'=Z,
and similarly for (lib), interchanging X and 1'.

The calculation of (S/SZ')(S/SZ)G» is slightly
more complicated. There are three contributions:
one purely from the ZZ' in the denominator,
anothex purely from the a, dependence, and a
third from both these dependences (a cross term).
Since it is only the Z'8 that are of interest here
it is convenient to set X' =X and F' = F immediate-
ly. From (3) it is easily found that

= Z RndX.X
F» ~F

and the quantity me require
8 8

is given by

Z-2 8'CB

8a, +0,

for removing the corresponding direct term mhen

dealing mith the Casimir effect by the image meth-
od."' Equation (6) expresses G» as an infinite
series of images in imaginary time. Both acts
stand or fall by their operational significance,
that is to say by eompaxison with experiment.

The subtracted (T„„)»is thus defined by

&T,.&'...=- &T,.&»
—&T,.)., (10)

and an immediate consequence is that for P = 2&

Poincard invarianee has been violated. This al, -
loms a nonzero trace1, ess average, mhieh can be
interpreted as a thermal average of T„„.

When P=2v, (T„„&&is the T@„' of Christensen
and Fulling' while (T„„)„is their T„'"„' An e.xten-
sive discussion of the various vacuum states has
been given by Fulling. '

The calculation of (T„„&»„~is straightforward
but I give some of the details as they may be of
some interest. lt is sufficient to consider (T»&».

The procedure is Rs folloms. Firstly a "par-
tial." coincidence limit of the right-hand side of
(9) is evaluated. That is, (X', F', Z') are set equal
to (X, 1', Z) but e' is not equated to e until after
(T„)„hasbeen subtracted. Also, since o'0 v in
the intermediate quantities, any or all of X', F',
and Z' can be set equal to X, F, and Z, respective-
ly, in order to simplify the algebra. Note that
0.', = 0 if and only if X' =X, F' = F, and Z' = Z.

Direct differentiation then yields the folloming
partial eoineidence limits

8Q
(Z2~ ) 1»

X» =X 8™&
g» ~p
gC g
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where the first term comes from the ZZ' and the
second from the n, dependence. The third (cross)
term vanishes.

ln order to evaluate (lla), (lib), and (13) it will

be sufficient. and convenient, to give the expan-
sion of G~ in powers of Qy up to Qy This is, from
(5),

if ' ' n, ' 4w'(3 f) f '-
8 2p2ggI 6 p2

+O(n, ')

with

f= 1 —c os—.h[2w (v —v')/P] .

The final. partial limit that is needed is

9 9 2w2j(3 f)f -'
~v Bv g x P Z

I YwaY
)gw g

and (T„,)2 can now be found by substituting into
(9), Eqs. (lla), (lib), (13), and (15) where (14)
gives G~ as far as is necessary. It is important
not to forget Christoffel. symbols in the Vo and Vo,

and the result is

energy density for a gas of scalar "photons" and,
if P =2m, is precisely the four-dimensional analog
of the result obtained by Davies' in two dimen-
sions using Bogoliubov transformations and a
Hawking-type mode analysis.

The Rind)er manifold is flat. For a curved
space-time it might be imagined that non-Planck-
type terms would arise in (T«},~„2. To investigate
this possibility I turn now to the case of de Sitter
space.

IV. de SITTER SPACE GREEN'S FUNCTION

Again I consider the massless conformally in-
variant scalar fieM and also write the metric in
the static form

ds' = [4a'/(1+Z')'] [Z2d(t/a)2 —dZ']

—a'[(1 —Z')/(1+Z')]' (d8'+ sin'8 d422)

which corresponds to the Hindler metric (1).
The massless Green's function is'

G„(x,x') =- i(8w'a') '[P(x, x') —1 —ie] ', (16)

where P(x, x'} is given by

(T„}2= ——limoo8 6

10iw'(3 f) f '—
p/4p2

a2p(x, x') = [ (a' - r ') (a' —r")]
'

2 cosh[ (f- f ') /a]

-[(H - H'1' r' r "-]/2-.

9

o

lim [2w'(3 f)f-'/P'Z'] -. (16)

The only divergent terms are those independent
of P so that they cancel on subtraction of the
p =~ term. This 1.ast act produces the final re-
sult

(To ),'„„=w'T4/30,

where I have put g ' = To, the constant tempera-
ture, and have introduced the local tempera-
ture T by T = T /g ' ' = T /Z

Equation (1'l) is the correct form for the planck

It can be seen that terms of order p ' cancel. The
two contributions to this order, one from G& and
the other from a part of 3(S'Gw/Bn, 2) are of equal
magnitude but opposite in sign.

In order to effect the final limit v'-v, we must
".irst subtract the value of (Tow}2 for P =~. This
is most easily accomplished by expanding Eq.
(16) using

(2+ coshx)(l —coshx} ' = 12x '+, + O(x') i

(1 —coshx) ' = —2x '+-'+O(x'} .

It is found that

(T„)2= lim $[6w2Z2(v —v')4] '+w'/30Z'P']

The variable x is the usual static radial coordinate
related to Z by Z' =(a r)/(a+r-), a being the radi-
us of the de Sitter sphere. R and R' stand for the
spatial points (r, 8, 42) and (r', 8', y'), respective-
ly, and (H —H')' is the usual Euclidean distance
between them.

Evaluation of Gw(x, x') from an equation exactly
like (2), with v —v' replaced by (f- f')/a, pro-
ceeds as before since G„(x,x') has simple poles
at p(x, x') =1, i.e. at n' =+ in, where

coshn, =[(a' —r')(a' —r ")]
x f a' —rr'[ cos8 cos8'

+ sin8 sin8' cos(y —rp ')] } .

Then

[(a2 r2)(a2 r t2)] -1/2
G (x, x' =i-

4wP sinhn,

sinh(2wn, /P)
cosh(2wn, /p) —cosh[2 w(t —f') /ap]

which we can again interpret as a finite-tempera-
ture Green's function,

The evaluation of (T „)2„2follows the same pat-
tern as for Rindler space. I omit intermediate
details except to note that in this case it is nec-
essary to include the R terms in the improved
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stress tensor. These cancel against the Christof-
fel symbol terms and the final x'esult-is again com-
pletely Planck-type:

(ro & a„,= v'T'/30, (20)

mith T again the local temperature equal to
(oP) I(g~} '»', the usual value. '

V. TKO-DIMENSIONAL SPACE-TIME

Unfortunately the most interesting case, the
Schmarzschild black hole, is intractable in explicit
texms in four dimensions. Homevex, a great deal
can be learned from the tmo-dimensional analog'"
to mhich I nom turn.

First consider the simpler Rindler case again,
the metric for which is given by (1) afte~ exct»ng
the dTP. The p-periodic Green's function is still
given by (2) with G„ the usual two-dimensional
Feynman Green's function

G„(x,x') = -,' I»I2'( x(o'- ic)I»'),
mhere x is the mass of the scalar field. %'e mant
I»". =0 and then there arise the usua, l problems as-
sociated mith potentials in tmo dimensions. These
are not serious. They simply mean at most that
one has to carry around an infinite constant in the
Gx'eeQ s fuQctlon fol convex'gence. This constant
is of no importance when calculating {T„„&since
lt goes out oQ dlffex'eQtlatlon.

Then me have

G„(x,x') =- —ln(&r'- ic)+C„g

Ga(x, x') =- —ln (ZZ'f cosh[2II(v —v')/p j

—cosh(2IInI/P) })+ Ca, (21}

which can be expanded in G„, if desired [see (6)].
For {T„„&8we have

(T„„),= illm (S„S„,—-—,'g.„.3"S.)G,(x, x'),

{r ), =-- lim(S„S~+Z2S, S,, )G,

and I quickly find

{T„&~=IIp ' itm f
If the P =~ term is subtracted there results

{~&:„,=( /6»i )g-=( /6)T',

mhich is purely Planck-type, as expected.
When P =2II, (23) is effectively just the result

of navies' referred to before. It is also equiva-
lent, mathematically, to a calculation of Candelas
and Raine. " They actually evaluate (T„&„
—(T„„)„in our notation. That is, {T„„&„is the
RIndler average (G„ is the Rindler Green's func-
tion) and Candelas and Raine renormalize this by
subtracting the Minkowski expression (p=2II).
My procedux"e is exactly the reverse. I renor-
malize the Minkowski average by subtracting the
Bindler one. Hence the finite expression is minus
that on page 2104 of Ref. 11.

The Schmarzschild model is virtually identical
to the Rindler theory, if the metric is written as
conf ormally Rindler:

ds' =32M'I 'e "»'"[Z'd(»/4M)' —dZ'),

where Z =exp(r*/4M) Th.is is basically the
Kruskal coordinate system. Then the Feynman
Green's function is precisely that of the Rindler
theory (using the conformal invariance of the equa-
tions) and G~ will be identical to (21) if (v —v ) is
interpreted as (» —»')/4M.

The evaluation of {T,'&a„, yields no surprises.
The answer is just (23) with T defined now by T '
=4Mp(l —2M/I) and the eIluivalent scalar gas is
again one mith a thermal-equilibrium Planck-type
spectrum.

The results (17), (20), and (23) have been ob-
tained on the basis of EIl. {10)as the definition of
the subtracted stress-energy tensor. That is the
entire zex'o-temperature quantity has been sub-
tracted. Such a process is pure assumption. It
is not valid in the cases discussed in Refs. 2 and
3 which axe conventional field theories at finite
temperature. There, only a part, the infinite part,
of the zero-temperature expression mas removed.
This corresponds to the conventional renormaliza-
tion of the zero-temperature theory, for which it
is the G„of {4) or (18) that is the Green's func-
tion. The situation in the present paper is dif-
ferent. The conventional Green's functions G2, are
reinterpreted as thermal ones and one really ought
to consider the standard renormalization of the
corresponding zero-temperature theory, for which

C„ is the Green's function.
For this xeason it is probably incorrect to call

(T~„)~„b a I'880I'I II»»Bed eflel gy-momentum»elisor
and I have tried to avoid this particular term, al-
though I have referred, somewhat loosely, to the
subtraction (10) as a "renormalizaiion. "

Possibly the more conventional view, mentioned
previously, and used by myself on occasion, is
best illustrated in the Rindler case mhexe one ob-
viously (?) renormalizes by subtracting the Min-
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kowski (P =2zz) expression to make the renormal-
ized (T „)~„„"zero. The (T„„)e„„couldthen be
considered as tfze (observer-independent) re-
normalized energy-momentum tensor. Such is
the attitude taken by Candelas and Raine" and

by Candelas and Deutsch" in a four-dimensional
flat calculation of the stress-energy above an ac-
celerating plane conductor. I do not wish to
quarrel with this procedure. However, it is not
yet clear to me that the subtraction (10) does not
have an operational significance.

This is clearly an important issue and will be
considered elsewhere. In any case what has been
calculated in (10), for P =2zz, is the difference'
of the averages of T„„taken in the q and v vacu-
ums' and (20) confirms that this difference is
purely Planck-type. (To obtain the remaining com-
ponents of (T „)8„~it is only necessary to remark
that (T",)e„, is traceless, due to its construction,
and that the subtraction of (T")„does not destroy

any spatial symmetry so that (Tz&)e„b is propor-
tional to gz&.)

This result is due to the conformal invariance of
the field equations and the conformal flatness of
the space-times considered. For four-dimen-
sional Schwarzschild space the difference is not
purely Planck-type. This can be attributed to the
more complicated analytic structure of the
Schwarzschild Green's function G„, the Hartle-
Hawking Green's function. "

The calculations of the present paper can be ex-
tended in several ways. It would be only a techni-
cal problem to consider higher-spin fields, for
example. Also a more determined attack on more
interesting manifolds such as Schwarzschild,
Kerr, or Taub-NUT (Newman-Unti- Tamburino)
should yield valuable results. In fact for a self-
dual Taub-NUT space the wave equation is again
exactly soluble being virtually a repulsive Cou-
lomb equation.
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