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Trace anomaly for gravitons
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The trace anomaly for gravitons in an arbitrary background space-time is considered for four and six

dimensions. The integrated energy-momentum tensor is also computed in six dimensions which allows the

single-loop divergences to be calculated.

I. INTRODUCTION

In view of the large number of recent works' on
the so-called conformal trace anomaly it would
seem justifiable to complete the set of known re-
sults by considering the graviton anomaly. Since
the graviton Lagrangian is not conformally in-
variant we will have to differentiate between the
trace of the full stress tensor and the anomalous
part. '

A similar situation occurs for the minimally
coupled scaled field, and it may be enlightening
to consider this situation before moving on to the
graviton case.

Starting from the Lagrangian

2 = —g Q. ~Q'" —pm Q + pfRQ

(where r. is a constant) we can take the variational
derivative to compute the trace of the stress ten-
sor T„". We find

p 2 4
Tv =

( )i/2gvv 6 ( g) Zdx
+pv

(2)

= —(1 —6t)(g. „Q'"+m'Q' —gRQ')

+6tp(Q ,' —m'.+t'RQ) —m'Q'.

In order to define the vacuum average we wil. l

follow the standard procedure (see, for example,
Christensen') and take the arguments of the (It) to
be at x and x', later we will take the coincidence
limit x- x'. We find that T„"has the vacuum
average

(T&")= lim [f(1 —6$)(V&V" +m' —rR)G(x, x')
x~x'

—f6'(C —m +)R)G(x, x')+im'G(x, x')),

(4)

(T„")= limi(1 —6$)(V„V" —&R)G(x, x')
x~ xl

(7)

and is formally zero only for the value (=~6. For
the minimally coupled scalar field (T„")is not

formally zero and we might expect the regularized
(T„")to contain a nonzero term, even if there
were no anomalous part. Such an expectation is
borne out by the work of Bunch and Davies. ' In
the massless (minimally coupled case) they find a
OR lnR term as well as the standard anomaly.
For the conformal scalar field (/=~6) the extra
term vanishes. This is circumstantial evidence
for the I:R lnR term arising from the term in Eq.
(7) rather than, say, in the 6-function term in

Eq. (4).
The anomalous part of (T„"), denoted in the

text by (T„")„„canbe found in several ways. The
method of 'Isao' is to take the variational. deriva-
tive of the one-loop counterterms, whereas
Gibbons, Hawking, and Perry' use the &-function
method of regularizing. In the method of this
paper we will allow the massless field to have,
initially, a small mass. For the scalar fiel.d hav-
ing the Lagrangian (1) we can compute (T„")[Eq,
(4)]. If we consider only the contribution due to
the third term in Eq. (4) denoted by (T„")then we

have

(T„")-(T„")= lim i m'G(x, x'),
x-&r'

(8)

Not knowing how to define the coincidence limit of a
6 function, we prefer to avoid this issue and equate
it to zero. This will mean that we will drop the
second term in Eq. (4) since by Eq. (6) it is zero
modulo a 6-function singularity. In the massless
limit (4) becomes

where the Green's function is defined by

i (out [ Tf@(x),@(x')]lin)
(out ~ in)

and satisfies the equation

(CI —m + &R)G(x, x') =—

(5)

which is formally zero in the massless limit. The
description of the trace anomaly that we will take
i.s that of Ref. 7. We expand the Green's function
in terms of I/m', the coefficients being linear in

the Minakshisundaram coefficients, a„, defined

by the asymptotic expansion of the quantum-me-
chanic al propagator
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(x'(s) ~x"(0)) = 5, , e "~"Q a„(x,x')(is)".
tt= 0

The trace of the stress-tensor contribution can
similarly be expanded by Eq. (8). Absorption of
terms up to a, into the renormalization of the
cosmological constant, Newton's constant, and of
the %'eyl terms can be done and should leave a
finite renormalized trace (T„")which contains
no term proportional to a, . However, it might be
thought that, since an asymptotic expansion in
terms of I/m' was made, the calculation cannot
be applied to the massless theory. The opinion
of the authors of Ref. '7, and, recently, Bunch
and Davies, a is that the g, term should be re-
moved even in the strictly massless theory. If
we do this we find the trace anomaly

field h„„. According to Ref. 10, for example, the
quadratic part of the Lagrangian is given by

2 = (-g)'i'[- ,'(D-„h 8}P e("(D„h,)
+a(K, ) ~'h Bhp, +2(h„—gD„h}'j.

In Eq. (13) D, is the covariant derivative, h„
=D"h», and all indices are to be raised and
lowered by the background metric tensor g»,
P s~' and (X,) s" are defined later in the text.
Standard theory states that it is not possible to
derive the graviton propagator directly since the
Lagrangian is singular. To obtain the propagator
we have to add a gauge part and a compensating
ghost part, the ghost term being related to the
gauge-breaking term by

(T„")„„-(T„")=, a, (x, x). &Nh.„= Z 0*'s
a, I=1 4

(14)

For &=~ we expect this to be exact, but for
other values we might expect other contributions
to the trace due to the first terms in Eq. (4).

In Sec. II, as a preliminary to our calculation
of the anomaly, we will consider the existing
literature on one-loop graviton processes in an
arbitrary background metric. %'e will write down
the Green's function satisfied by the gravitons
and ghost particles.

with the gauge term being given by

—BC' (15)

Here Q' are the gauge fields and 0( is a'variable
introduced by a coordinate transformation. Ac-
cording to Ref. 10, if we make the transformation

II. THE METHOD OF THE BACKGROUND FIELD

In this section we make use of the work of
't Hoof t and peltman, 9 Deser and van Nieuwenhuizen, '0

and Deser, Tsao, and van Nieuwenhuizen. " These
authors consider an expansion of the Einstein-
Hilbert Lagrangian about a fixed background met-
ric and use the quadratic part in the fields to
compute the form of the single-loop divergences
via an algorithm. %e will need the quadratic part
of the Lagrangian in order to compute the Green's
function equations for the fields and so our cal-
eul. ations wil. l diverge from those of the previous
authors after Eq. (20).

For a pure graviton field we take the graviton
Lagrangian

Z = —(- g}'~'R(g „„).
The standard procedure is to split the metric
tensor into two parts, i.e. , a fixed background
g„„and a field part h„which satisfies the lin-
earized graviton field equations. %'e write, using,
the conventions of Ref. 10,

then the field h&, transforms as

h q p - h „„+(gq +Kk „~}h p + (g~ „+hK~„h}
+ 7/ (g((p +K&((p)

where

x —5 =Kg

and the comma stands for an ordinary derivative.
These last few equations allow us to determine
the form of the ghost part for any gauge-breaking
term. The most convenient choice of gauge is

,'C „C"= ——,'—(-g)'~'(h„——,'D„h)',

which corresponds to having

C„=+( g)'~'e'„(h-„——,'D„h), g""=e'"e,".

Substituting into (14) gives

=( g)"((D,4v)(D-" @"}+0,*&""4vj.

Equation (11) is then expanded in terms of the
Thus the Lagrangian becomes (with the addition
of mass terms)
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g'1 /2 total

Before proceeding further we can put Eq. (21)
into the form

—-m'h h + ~'h'+m'f*
+ (D„rip„*)(D"P') + &*„R"'P,. (21)

with

O'S - i 5 S
a8 lflpl %86ay

0- 0 -m'. (22)

ff we wish, we can put Eq. (21) entirely in real
form by writing

1 . 1
(a„+ia„); Q,* = (a„—ia„),

(23)
= s(ava +ava ) .

Thus the ghost term becomes equivalent to two
real ghosts and this is the form we will use in our
calculations.

The exact form of the mass terms is chosen so
that the equation satisfied by the massless Green's
function becomes modified by the replacement

S = g„t~ dx.

Taking the vacuum average gives

A g 5S
(5S)= ——5 (Gs).».„.

.Oh' 86h~lp l

i 5S
2 5 5as~a„,

Here the Green's functions are defined by

(Gs) 8„.„=i(h 8~h„„),
(G„)8&,=i (a8 la&) .

The second derivatives are easily found to be

(24)

(25)

(26)

5S
gp agv8 rl5(X X s) gn 8gpv rI5(X X s)a

5h p„5h a»s»

+Xs 8 ""5(x, x ") ——,'m'g" g 5(x, x ') —sm'g" g""5(x,x )

(where CI" means that the derivatives are to be taken with respect to x") and

AS 2[g8Y~ 5(xrxr) Itslt5(x xr) m&g815(x zx)]
Oasbay l

The next step is to obtain the inverse of Eqs. (27) and (28). We define the inverse by the equation

(27)

(28)

(Gs) „„,...= —I, ~ 5(x, x'),
&ha 86h„»p ll p»V

Substituting Eq. (27) we obtain

where I „,.=8(g "r.g s. +g", g „). (28)

(3O)

Integration by parts gives

(Cl —m )(Gz)""r s —sg""(0—m')(G8)" «.s +2(X ) ""(Gz)~8ris. = —2I""„...5(x, x').

By taking the trace of Eq. (31) and substituting the resulting expression back into the equation we find,
in d dimensions,

&(Gs)"'„... +2(Xs) ""(G8) 8,...—m'(G8)""... g"'(G8) 8„...= —4(P ')""„,5(x, x'),
d —2

(31)

(32)

with

( )""rs = g' "rg"s+g' "sg''r
d 2g' ""g'rs

and is the same function as appears in Eq. (25).
The calculation for the vector ghost is more

straightforward and leads to

and

gaS ~a8 &ga&g

Q2
= —2[(G.)-']"

&a s&a&.
(33)

Here, (G8)""... is the graviton Green's function where G~ satisfies
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Cl(Gv)P„—R" (Gv) „—m'(Gv)„" = —g„"5(x,x'). (34)

Thus,

(M) = ——tr5(Gz) 'Gz+itr5(Gv) Gv
2

= ——tr5ln(Gz) + i tr5ln(G v)
2

(35)

where we have written everything in matrix no-
tation. In Eq. (35), tr denotes the trace over both
space-time and continuous indices. N" ' is the
effective action. If required ln G can be inter-
preted by using the Schwinger-DeWitt formalism. "
If this was done then Eq. (35) could be used to
define a finite regularized effective action. We
will not consider this problem but will deal di-
rectly with the stress tensor.

introduction. We can find this by using the well-
known result

2
Tp

( )iy2gpv 5 Zdx,
gpv

(38}

and substituting the result (21). We note that the
variation is to be performed with respect to the
background metric only. All of the results that
we need have been given by DeWitt. " They are

5(-g)"=-'(-g)"g""5g
5R ars = pg [(5g pr);s a + (5g ps);ra

—(5g, s). p
—(n- v}],

5R„„=5R„„„"= —',g"[(5g„„).„+(5g„).„,—(v-;)),
5R = —R""5g„„+g""g'[(5g„,) .„—(5g„,),„].

III. THE ENERGY-MOMENTUM TENSOR

Our first priority is to find that contribution
to (T„")analogous to the (T„")introduced in the

The semicolon stands for a covariant derivative.
The contribution, for example, from the R
term in Eq. (21) is given by

( „),gpv Rars grsh h =2h h R arse —3h h Rarsv+sgh h] s —[.h h" J.,sj. (38}

The bracketed term is a total derivative and will not contribute to the anomaly. Equation (36) becomes

m'ph sh + ~mh'+2 'maa +2[(D„a„)(Dpa') +a„R"'a„+m'-a a ].
g)1 /2

(40)

Equation (40) is now formally zero as m-0. The equations satisfied by ~P 'Gz =Gz and Gv are

We note that, even with the neglect of the total divergences, 1„ is not formally zero. This is only to
be expected since the linearized graviton field is not conformally invariant. However, we expect that .he
anomalous part of the trace can be found by negl. ecting the 2„„,term and proceeding analogously to the
minimally coupled case as discussed in the Introduction.

On taking the vacuum average of (39) and with the neglect of 2„„,we find

(T„")-& T„")= -'im'[(Gz) s
' —2 (Gz) s —4(Gv) l

= ~s m'trP 'G~ —2am' tr 6& .

&(G,)p"..., +2(X,)"p'(G ).s..., -m'(G, }p"„... G""g„,(G ) s„, = —fp', , 5(x, x')I (41}

~ (Gv)", —R" (Gv), —m'(Gv)", = —gP, 5(» x )

(&+E —m')G(x, x') = —f5(x, x'). (42}

A propagator (x'(s)(x (0)) is easily defined by

v)*', *")=f e e-' '( IV)I*")o))

and has the coincidence limit

Equations (40) and (41) are sufficient for us to ob-
tain the trace anomaly. We note that Eqs. (41) are
of the form (in matrix notation)

Gilkey has obtained very general expressions
for the expansion coefficients of (44) for any sec-
ond-order operator of the form which acts on the
Green's function in Eq. (42). Of most interest for
our work is the coefficient E„which Gilkey"' "
shows to be given by

E4 —15, [I(—I CIR + „R —„pR „sR

l ~8M, v+—-Z saba )

(x'(s)
~ x "(0))= i Q E,„(is)" ')".

n=P
(44) —

p RE + ,' E ' + —„W;,' + p C1—E].



E,„ is what we would normally call (a„&,)/1688
where (a„&,) is the Minakshisundaram coefficient.

To compute our final result for the anomaly we
note that Eqs. (40), (42), and (44) bear a strong
resemblance to the analogous scalar equations
(8), (6), and (9), respectively, except that discrete
matrix elements are present in the graviton case.
The calculation of the anomaly is therefore vir-
tually identical to the seal. ar case and we ca.n
merely quote the result. We find

The only coefficients computed at the present
time are Eo, E„and E„and recently E,. Thus
only the anomaly in two, four and six dimensions
can be computed at the present time.

An alternative procedure for computing the
anomaly has been communicated to be by Stuart
Dowker. This method, which avoids the massless
l.imit and therefore might be preferabl, e, is best
illustrated for the scalar case. Instead of (8) we
h ave

which formally diverges. g-function regulariza-
tion replaces G by the complex power G'= r(s) so
that, if ~' = —G' ' is used,

(T„")„„=—i lim G' '(x, x')
x~x'

= —f g(0)

Qg g2
(48)'~' '

This method is easily adapted to the present ease.
The only differences are that there are two con-
tributions corresponding to the two terms in (46)
and that matrix traces must be taken. The result
(46) follows from the theory described by Gilkey
(Refs. 13 and 14 and the references therein).

IV. RESULTS FOR FOUR-DIMENSIONAL SPACE-TIMES

The only remaining part of the calculation is to
substitute (45) into (46). To evaluate (45) we need

to know ~q& and the values of E. We have from
Eq. (41)

(X )a Bvv & (Ra vBv +RBv nv) l(g a 8RBv +gBvRn v ++BvRa v++n vR88)

+L(g a BRBv ++8 vR a 8) + ~

(g a vgBv g a Bgpv +g nvg88)R

(this result is valid in any dimension d). Direct
calculation shows that for d =4

(Z, )"„(Z,)".8 =2R„„.BR""'-6R„„R8'+5R',
(50)

(EB)" a 8 = 6R; I n 8 = 10.

The spin curvature W~& can either be calculated
from W&& = —~R&& 8J, where J' are the gen-
erators of the Lorentz group, "or we can expand
the covariant derivatives of the fields as, for
example, "

Eh 8= P 8+2(n„), 8'"h,."+m 8 "hv, ,

~,=g 8~9g, (51)

@gy ls then defined by

(Zv),.=-R„, ,

(Z„)„"=-R, f.
(Z, ) ~.(Z„) „=R „,R v',

and, in 4 dlmensl. ons,

(II'u)"" =R""u

With the help of Eqs. (40)-(54) we can derive
the E„. We find [remember that Eq. (45) contains
the unit matrix I]

[(Z ),] '„,=, (24aR+28R„„.BR"""1

+42R„„R"'++R'), (55)

~]g = ~ ng —~gng +ng eg -ng n] .

We obtain

11 ))fv 6 8$R ~„gR

Substituting into (50) gives us our final result,

(valid for any dimension).
The corresponding quantities for the vector

ghost are, in four dimensions,

(T„")„„=,[212C' —298(R „„R"'—sR')

+12DR+45R2], (56)

where C' is the squared Weyl tensor defined as

c'=z z~" '+m
gpss 8 PU
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The result (56) agrees with Tsao' (he has ER =0)
and also Gibbons, Hawking, and Perry, ' ~ho set
R q~

——0.
We shouM point out that only the first term in

Eq. (56) is gauge independent. Furthermore, when

A» = 0 then there is a nonzero contribution, lin-
ear in the fields in the expansion of the graviton
Lagrangian, Eq. (11). inclusion of this term
would alter the coefficients of the last three terms
in Eq. (56). For a further elaboration of this point
see the article by Duff. "

In See. V rve briefly describe the result for six
dimensions.

Analogous to Tsao' we can put the anomalous part
of the trace proportional to t e divergent pa.rt of
the effective Lagrangian. We write

dx'(-g)'~'(T ") = ' dx'( g-)'~'X (62)d-6

Use of the relations (see Gilkey" or van Nieuwen-
huizen and Wu' )

Vg -g ~dx = — RER -g dx „

The coefficients (E~) and E„)6 are very compli-
cated and contain 46 possible different terms. How-

ever a considerable simplification is possible if
we evaluate all terms on the mass shell R„„=O.
With the definitions

(r - —.'x)(-g)'" dx'=O

implies

(64)

9
&e =

xsx2O

and the internal relations (derivable from the
cyclic reiation ff('~' 8 j=O)

we find fx'om Gilkey's tables, with the help of
Eqs. (53) and (54)

tr(Es), =, (237' VRf '+ 2384y
1

—64x+ 61 2(ft ff [)

(58)

This value differs from the value given in Ref.
16. It is possible to compax e va, n Nieuwenhuizen's
calculation to ours step by step, and the only dif-
ference is one factor of 2 which is missing in his
Eq. (41), but is needed when going from real to
complex fields. Multiplying therefore the first
five terms in his Eq. (63) by 2, and the first four
as well as the seventh term in his Eq. (80) by 2,
we get complete agreement. Apart from this
minor change the conclusions of Ref. 16 are cor-
x'ect.

It is interesting to note that the integrated trace
anomaly for sealax', vector, and graviton fields
has the form

40 ( x~-
4v'15120(n 6)

(66)

- ~+y -16[f1 f1[) . (58)

Henceq ln six dlmenslonsq

(T„")...=, (2007[vft['+4860(f1 nfl[

+ 17376y —120x) . (60)

A spin-off from Eq. (60) is that it allows us to
compute the form of the single-loop divergences
in six dimensions and hence find the value of the
coefficient z, of van Nieuwenhuizen and Wu."
These authors show that

(61)

Here j is the spin of the particle. The values
given above for the scalar and vectox" pax'ticles
corx ect values given by Dowker. "
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