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The vacuum expectation value of the renormalized stress tensor for a conformally coupled massless scalar
field propagating in an arbitrary hyperbolic Robertson-Walker spacetime is calculated. The vacuum state
used is that obtained by conformal transformation to the static hyperbolic universe. The result differs from
calculations performed using the vacuum defined by conformal transformation to Minkowski spacetime, and
is also different from earlier results obtained using the conformally static vacuum which are shown to be

incorrect.

I. INTRODUCTION

In the semiclassical theory of gravity, in which
all fields apart from the gravitational field are
quantized, the calculation of expectation values,
<T,,>, of the stress tensor of a quantum field is
of considerable importance. In the Robertson-
Walker spacetimes, which are conformally flat,
it is possible to obtain exactly the vacuum expec-
tation value of the stress tensor for conformally
invariant fields.!™. This can be done either by
the direct application of regularization? or by
using arguments based on conformal invariance
and the existence of trace anomalies. !*>* How-
ever, the result obtained by the methods used in
Refs. 1 and 2 is not entirely correct. While it is
correct for the spatially flat and closed universes,
it requires modification for the open (hyperbolic)
universes. In this paper, the correct expression
for <7',,> in the open Robertson-Walker universe,
which replaces that of Refs. 1 and 2, is derived.
The expression obtained differs from those of
Refs. 3 and 4 and this is shown to be the result
of a different choice of vacuum state. There is
no disagreement in the results.

In Sec. II, the vacuum expectation value of the
renormalized stress tensor of a conformally cou-
pled massless scalar field in the static open uni-
verse is shown to be zero. The vacuum state used
is the natural one obtained by decomposing solu-
tions of the covariant wave equation into positive-
and negative -frequency solutions with respect to
the timelike Killing vector field which is globally
defined in this spacetime. In Sec. III, <7,,> is
calculated for all open universes by using the
trace anomaly coefficients and the result derived
in Sec. II: the vacuum state used is formally the
same as that used in Sec. II and is obtained by
applying a conformal transformation to the posi-
tive- and negative-frequency solutions defined
with respect to the aforementioned Killing vector
field.

A short discussion of the relationship between
the results obtained in this paper and those of

Refs. 3 and 4 is given in Sec. IV. The sign con-
ventions used are the same as in Ref. 6.

II. THE OPEN STATIC UNIVERSE

It is well known that the vacuum expectation
value of the quantum stress tensor is in general
a divergent quantity and must be regularized to
give a finite, physical result. The method which
will be employed in this section is covariant point
separation® !’ and the renormalization ansatz is
that of subtracting from the regularized <7',,>
those terms obtained by Christensen’ which con-
tain no more than four derivatives of the metric.
This renormalization ansatz has been discussed
in some detail in Refs. 8-11.

The metric of the open static universe is

ds®=dt* - a*[dx® +sinh?x (d6? + sin®0d¢?)]. (1)

The general solution of the conformally coupled
massless scalar wave equation is

Gb(tyx,@, (P) =at J(; dq 12: (2q)-1/2[AE‘yi(;)e'iat/n

I A}ry.xf(;)e{qt/n] ,

(2)
where k=(q,l,m); 0sg<»; 1=0,1,2,...;
m=-1,-1+1,...,l-1,1; and yz(x)
=Z4(X)Y 1 x(0,0). Y,;,(6,¢) denotes a spherical
harmonic and Z(x) is a solution of

sinh?y ——dz—z— + 3 coshy _4__
d cosh®x d coshy

Z2+v1
—é(lmzx—) 1rqz‘Ll)qu(X)ZO . 3)

The operators Ay, AE are annihilation and creation
operators satisfying the usual commutation re-
lations and giving rise to a vacuum state, | >,
which is annihilated by all the A;. Consistency
with the canonical commutation relations is en-
sured if the basis functions Z;(x)Y;,(6, ) are
correctly normalized: This is guaranteed by
choosing the completeness relation to have the
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precise form given by Eq. (6) below. The pro-
perties of Z,,(x) are discussed in Ref. 12 in which
a wave equation of arbitrary dimensionality is
considered. The functions Z,,(x) correspond to

Z{,(6) in Ref. 12 for the special case f=3.

The first step towards obtaining (T,,) is the cal-
culation of the two-point function (¥ (x' ) (x”)),
where x’ and x” are taken to be two points on a
geodesic through x each a parameter distance
e from x. The tangent vector to the geodesic
will be denoted #* and will be unspecified ex-
cept that it is required to be non-null and is

normalized to unity. However, because of the
—

ey = [ 2 —igAt
W) = [ s (e (2

where At=¢' —t"” and the points x’ and x” have
coordinates (¢',x’, 6, ¢) and (t”, x”, 0, ¢), respec-
tively. From Eq. (21) in Ref. 12 one obtains

g sin(gax)

2 ZalIZ 5" Yin(®, O =50 "0 (©)

where Ax =x’ -x”. Substituting (6) in (5) gives

f exp(-igAt/a)sin(gAx)dg
sinh Ay

WE ) =i

and so

= YV (")) = ax
(4’3> =<¢(x )Zp(x » - 4ﬂzsinhAx(a2AX2 —Atz) . (7)

The geodesic equation has the simple solution,

t"=t(e)=t+et°

(®)
=x(€e)=x +et*,
where ° and ¢* are constant. The point x’
= (tly le 6, ¢) is given by
= - = - 0
t(-€)=t —et®, )

X' =x(-€)=x —€t*.
Substituting (4), (8), and (9) in (7) and expanding
(sinhAy)~! as a power series in € gives

(¥?) = - (167%°z)"*

+(2472Z) (tY)? - (3607%Z) " 1Te2(¢Y)*. (10)

The Ricci tensor R, has components Ry, =0 and
R,y =2 so that (10) may be written

1 1 %48
2 T o —— — ———
W*) = - Tn7ers * 35,7 Bt 3

7 %t Bpre®
" 142077 Reofys 37 - an
Equation (11) is the unique geometrical expres-
sion for (¢2). The renormalized stress tensor
(T 4p)een can now be obtained from (11) by first

homogeneity and isotropy of the spatial sections,
the coordinate axes can without loss of generality
be oriented so that the geodesic lies in a plane
of constant 6 and ¢. Then t* = (¢°,#!,0,0) and the
normalization condition is

guvtutyg(to)z —az(t')z=2, (4)
where

5=t 1 if t# is timelike
-1 if t* is spacelike.

Using the expansion (2), one obtains

O 2u )25 ¥in6, 0001 ], 0

-
differentiating (¢?) according to the method given
in Appendix D of Ref. 6 to obtain the e- and t¥-
dependent stress tensor (T,,) , and then by sub-
tracting the terms in Christensen’s expression’
for (T,,), which contain no more than four de-
rivatives of the metric. This procedure may be
expressed as

<Tﬂ")ren=(Tuv &’;x” » —(T‘ﬁ‘i,’(x',x")) N
where (T‘,,, (x’,x")) =Duu(xl,x”)<.¢(x')d)(x”» for

some second-order differential operator D,
acting at both x’ and x”, and{T*S (x’, x”) de-
notes Christensen’s expression for (T,,) calcu-
lated up to fourth order in derivatives of the me-
tric. The € and t* dependence of (T, (x’,x"))
and (T3 (’,x")) are the same, s0 that{T,) rn
is independent of these quantities: It is a function
only of the point x. Christensen’s expression is
for a massive field and is obtained by differenti-
ating those terms of a two-point function which he
calls %G“’(x',x”) which give rise to no more than
four derivatives of the metric in (T‘f,} (!, x"):

{ T(c) ll» DM" &r,x”)%c(l) (x/,xn)

+ %asz(l)(x',x”)gw ,

where D, is the same differential operator as
above, and a is a constant. There is some arbi-
trariness in the choice of D, since the scalar
field satisfies a second-order differential equa-
tion. However, it is usual to fix D, for the con-
formal scalar field by the requirement that it be
formally traceless: Then the constant a=13.
Hence,
_%G(l)(xl ,x”)]

<Tlll/>m. =Dy, G 2"l )pc”))

—$m2GY (x, x"),

where it is understood that the limit m - 0 is to be
taken at the end. Define
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(P en =V W) =5GP (7, x") .
Then

(pr> = limDuy (xlyx”)<w2>ren

ren m—0
- ég_{%mzc(l) (x',x”)gw .

This expression provides a simpler method of ob-
taining (T} ,)en : First renormalize ($?) by sub-
tracting the terms in 6™ (x’,x”) which on differen-
tiation give rise to no more than four derivatives
of the metric, and then differentiate {y?) .n, a
much simpler task than differentiating the unre-

normalized (¢?). Finally one must add a term,
-1 }nLngsz(‘)(x’,x” )g“y ,

which is nonzero since G (x’,x”) contains a term
involving four derivatives of the metric which is
proportional to m~2, This term gives rise to the
anomalous trace in(T,,).,. In the special case
of the open static universe the terms to be sub-
tracted to renormalize (¥2) areidentical to those
in (11); hence,

(¥*) ren = 0. 12)

Performing the differentiation and adding in the
conformal anomaly terms (which are zero in this
case) yields the result

<Tpu>ren =0. (13)

This result differs from that obtained in Refs. 1
and 2 where there appeared a nonzero result nu-
merically equal to that found by Ford® in the
closed static universe. The calculation of  Ty,) c,
given in Ref. 2 is based on an expression for
(Y")y(x") in the Einstein universe obtained by
Critchley.' It was assumed in Ref. 2 that this ex-
pression is also valid for the open static universe
but comparison of Eq. (7) above with Eq. (2.4) of
Ref. 2 shows that this assumption is false. The
differences arises because {$2) in the Einstein
universe is obtained by summing products of a
discrete set of modes whereas in the open static
universe, (¥2) is obtained by integrating products
of a continuous set of modes. The transition from
an integral to a sum gives rise to a nonzero re-
normalized stress tensor in the Einstein universe:
This is shown very clearly in Ford’s calculation.®

III. EXTENSION TO EXPANDING HYPERBOLIC
UNIVERSES

The metric of the expanding hyperbolic universes
will be taken to be

ds®=C@m)[dn® - p(r)dr? - r*(d6* - sin*6dp?)] . (14)

where p(r)= (1 - kr?®)~*! and, for the hyperbolic uni-
verses, k= —a~% Taking the metric in form (14)

enables the spatially flat and closed universes to
be considered as well, by taking 2= 0 or k=ag~2
respectively. Because of the symmetry of the
Robertson-Walker universes, the stress tensor
will have only two independent components, the
7m component, T ., and the r» component, T,,.
The other components are then given by

Too=7’P"'T,y, To4=8in*0Tge,
and
Taw=0, a#b.

For any such tensor, T,,, the conservation condi-
tion T,";, =0 may be written

Ton,n+3DT y+3DP™'T,, =0, (15)
where

D=C’'/C and C’=dC/dn.
But,

T*=C T gy =307 T,,) . (16)
Therefore,

Ton,n+DT 1n=3DCT%,. (17)

For a conformally coupled massless scalar field,
it is well known that!s™'?

To* = (28807%) 7} (= C***Capys ~ R**Rog+ 5 R2+0R),
(18)

where Casys is the Weyl tensor. For the metric
(14) one obtains

Cuﬁyb =0,
R**Rog=C"%3D"?+3D'D*+3D*
+6D'k+6D%k+ 12F%)

R=C"Y3D’ +3D?+6k),

OR=C"?33D™ -£D'D*>~6D'k).
Hence,

T.%=(2880n2C)~%(3D™ - 3D’ D?). (19)
Substituting in (17) gives

;—n(CT,m) = (28807243 D" D -% D' D),
and so

Ty = (28807%C)"*G D" D -3D'? -3 D*+A). (20)
A is a constant of integration which will be fixed

by using knowledge of (T ;) en in the static uni-
verse. Using (16), (19), and (20) one finds

T,, = (28807°C)~*p(~D" +5 D" D - { D'?
+D'D*-§D*+34). (21
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Note that since equations (15) and (18) do not de-
pend on the choice of quantum state the results
(20) and (21) are valid for any state having all the
symmetries of the spacetime. The constant A is
now fixed by considering the static universe, for
which D=0. Consistency with (13) requires that
A=0.
Now since (13) is state dependent, the final ex-
pression for (T,,) ., Will be. The state is the
vacuum state defined in the conformally-related
static hyperbolic spacetime by the decomposition
(2). In this state, the expectation value of the
stress tensor is

(T y)en = (28807%C)*(3D" D - 3D? =3 DY), (22)
(T,,)en= (288072C) ™2 p(= D" + 5 D"D
-iD*+D'D*-§DY).
(23)
These expressions are identical to those obtained in

thek=0universe.® Inthe closed universes, k=a2,
the constant A is??

A=6qg"*

and expressions (22) and (23) must be modified
accordingly. The tensor defined by (22) and (23)
can be written as

(T hen = (288012~ (=2V H
+9H,, -69H,,), (24)

where the conserved geometrical tensors “)H
and @H,, are

(‘)H,“, =ZR; uv —20Rg,, +2(RR,, -5 R%,,),
(3)H“u = —RaBRayBu *%Rzg‘w ,

and the conserved nongeometrical tensor ©H
has components

(s)Hnnza-q, (G)H :% -4,

(For the origin of the notation ®H,,, see Ref. 10.)
Note that if, as in Ref. 4, one assumes that the
coefficient of JR in (18) is zero, then one finds
that the tensor (‘)H“,, does not appear in the cor-
responding expression to (24).

Equation (24) is the expression which in the hy-
perbolic universes replaces that obtained in Refs.
1 and 2, namely,

(T )een = (288012 H(=5 PH,, +OH ). (25)

Equation (25) is valid for spatially flat (in which
®H,, =0)andcloseduniverses. The Casimir term
in the closed Robertson-Walker universes is pre-
cisely the nongeometrical tensor (48072~ ®H
Adding this to (24) yields (25).

The result (24) can be extended to massless

fields of spin 5 and 1 if one assumes that the re-
normalized stress tensor in the open static uni-
verse is zero for these fields as well. Expression
(18) must be replaced by

= (2880777}~ C**Cagys
-4 (R**Rop -3 K% +30R]

(spin 3),
= (288071%) 1 [13C**"*Copys

- 62(R*®R,5 — 4 R?) - 180R]

(spin 1) .
The result is

( Tl-‘ v)ren= (288011'2)_1[ _% (1)Hul/
+5 Oy, - $OH,,]

(spin 3), (26)
(Tyu) en= (28807%)71[3 WH

+62@H,, ~132@H ]

(spin 1). (27)

A particular hyperbolic universe of interest is
the Milne universe for which C(n)=¢e?". In this
spacetime the Riemann tensor vanishes so that
it is merely a patch of Minkowski spacetime. As
a result the usual construction of a Minkowski
vacuum can be performed and the renormalized
stress tensor with respect to this state will be
zero. The tensor (24) is not, however, zero be-
cause of the presence of the nongeometrical ten-
sor ®“H,,. Thus the state with respect to which
(24) is calculated cannot be the usual Minkowski
vacuum. A similar result arises in two dimen-
sions'® and it can be shown!®!! that the nonzero
energy density (T,,,,) ren Can be obtained as a
Planckian integral with a negative coefficient. An
analogous calculation for the four-dimensional
Milne universe yields

(T f k“dk __ 1 _ ©m
m/ren = zfc 2k _ 4807m2C ~ ~ 480n?
(28)

This is more conveniently expressed in terms of
the coordinate t=e",

1 3dq 1
f 21rqt == 480."2t4 . (29)

This shows that the “temperature” of the Planckian
distribution is T =1/2nt.

<Ttt>ren =

IV. DISCUSSION

The result (24) for the hyperbolic Robertson-
Walker universes differs from that obtained in
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Refs. 1-4, where the expression (25) was obtained
for all Robertson-Walker universes, although in
Ref. 4 the tensor PH,, was omitted since that
author considered the appearance of fourth de-
rivatives of the metric unphysical. As explained
at the end of Sec. II, the calculation of Ref. 2 is
not valid for hyperbolic universes. The deriva-
tion given in Ref. 1 is based on the assumption that
(Tyv)en is @ geometrical object in Robertson-
Walker universes so it is not surprising that the
tensor ®H ,, did not appear in that treatment.
This treatment was extended in Ref. 10 to allow
for the appearance of ("’Hw in <Tpu>rem but there
it was incorrectly assumed that (T ), was non-
zero in the open static universe and the result

(25) was obtained. All that remains to be resolved
is the discrepancy between (24) and the expres-
sions obtained in Refs. 3 and 4. In fact the results
in Refs. 3 and 4 are quite correct (modulo the am-
biguity about whether (I)H,,,, can appear in

J

(Tyy).er) —the difference arises because a different
vacuum state is being used. The vacuum used in
this paper is defined by making a conformal trans-
formation to the static hyperbolic universe with
metric (1) and defining a vacuum in that spacetime
by decomposing the field y into positive and nega-
tive frequencies with respect to the timelike Kill-
ing vector field 8/8¢, as in (2). The vacuum used
in Refs. 3 and 4 is defined by making a conformal
transformation to Minkowski space and making use
of the usual Minkowski vacuum. That the two vac-
uum states are indeed different can be seen by
considering the static hyperbolic universe with
metric (1): This can be case into the conformally
flat form

ds?=Q(1,7)[dT?~ dr? = r3(d6® + sin®0d¢?)| , (30)

for some function (7,7) whose precise form is
not important to what follows. The solution to the
wave equation are then taken to be

§(1,3) = @n) 2021, 7) [ @0)/e{agel (e Fm o =i x| (31)

where X= (x,, x5, x;) are Cartesian coordinates and
k=|k|. The decomposition (31) is clearly very
different from (2) and so the corresponding vac-
uums are also different. If one denotes the vac-
uum state defined by (31) by | 0), so thatag|0)=0
for all k, then the result of Ref. 3 when expressed
in the coordinate system defined by (1) is

(0| T | 0)=(480n%%)"", (32)
(0| Ty | 0) = (14407%a%)~*. (33)

Using the expression for (0|7, 0) . obtained
in Ref. 4 gives precisely half of these results. The
physical significance of the state | 0) in the static
hyperbolic universe seems rather obscure. It is
certainly not as natural a state as that defined in

—
Sec. II. However in the expanding hyperbolic uni-
verses it is much less clear which state is the
more physical. If the spacetime is initially static
but then undergoes an expansion, the conformally
static vacuum would seem to be preferred; how-
ever, in the Milne universe, the Minkowski vac-
uum has a clear physical interpretation.
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