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Affine geometry, implemented by a "Lorentz connection" for accelerated frames of reference in pseudo-

Euclidean space-times, a "Fourier connection" for abstract Hilbert spaces associated with classical Fourier
analysis, and a "quantum connection" for quantum-mechanical Hilbert spaces, gives new perspectives on
special relativity, where affine connections are usually interpreted phenomenologically, in a manner which

obscures their geometric significance. The connections are determined by "absolute constants, " whose

covariant derivatives, expressed in terms of the connection coefficients, vanish identically. In the
deterministic theory of prequantum physics, the space-time connection is expressed in terms of "local
Lorentz transformations, " which represent the motion of accelerated frames relative to inertial frames. In
quantum theory, relative motion is not well defined, but local Lorentz transformations, represented by
locally isomorphic symmetry groups, remain well defined, and become the basis of quantum field theory.

I. INTRODUCTION

It is well known that the affine-connection for-
malism of general relativity can be used in special
relativity, but the existence of inertial frames
makes its use optional. However, there are ways
in which the connection concept can be even more
useful in special relativity, where its physical sig-
nificance is more readily interpreted for problems
of practical importance.

Relativistic dynamics can be formulated on a
nonholonomic basis (see Ref. 1, Misner et al. , p.
210, and Weinberg) on which the space-time metric
remains the Lorentz metric yI 8 (the pseudo-Eu-
clidean metric of Minkowski space), and the space-
time connection is expressed in terms of an ortho-
normal tetrad or vierbein eK where a, P (=0, 1, 2, 3)
are Lorentz tensor indices, ' while g (=0, 1, 2, 3) is
a coordinate tensor index subject to general coor-
dinate transformations which do not affect n or P,
whereas a and P are subject to local Lorentz
transformations which do not effect p. .

The e" have vanishing covariant derivatives,
e".,=0, with respect to any space-time coordinates
x" for which the ordinary partial derivatives are
e" „-=Beg/Sx", and

ea, v=ea, v+I vixen
—nveg y

u

relating the Christoffel symbols 1"&, (connection
coefficients on a holonomic basis) to the connection
u on the nonholonomic basis (summation convention
is assumed for repeated indices).

In this respect the e" have a useful role as "ab-
solute constants" whose 16 components represent
the 16 degrees of freedom emphasized by Einstein, '
and whose transformation properties illustrate the
principles of general covaxiance and local Lorentz
covariance, which are the basic symmetries of
Einstein's relativity, and are equivalent according

to the equivalence principle (see Ref. 1, Misner et
at. , p. 386), which allows the laws of nature to be
formulated on a holonomic or a nonholonomic basis
with equal validity.

Under a general coordinate transformation dx"
—

A,,"dx", where the A.," satisfy the integrability con-
dition (a„",= A", „), together with a local Lorentz
transformation A, whose components A~ are not
constant (and do not satisfy the integrability con-
dition), the e"undergo the combined transform-
ation

e"-A, "A e'a v n (1.2)

(dye K gA
')

(Glypt

A pKy' p) (1 3)

indicating how e differs from a tensor when K8

g0.
In special relativity any problem can be analyzed

relative to an inertial frame in which e" = 6" (the
4-index Kronecker 5), and I'=co =0. The x" are
then the Cartesian coordinates of a global Lorentz
frame, and the resulting formalism is Lorentz
covariant, i.e., form invariant under constant K

and space-time translations of the 10-parameter
Poincare isometry group of Minkowski space. '
Equivalently, the formalism is covariant under

linear coordinate transformations for which the

which can impose up to ten constraints because A,

is defined in terms of four functions, and A is de-
fined in terms of six functions (six Lie parameters,
generalized to six functions of the x"). The re-
maining six independent e" represent the six com-
ponents emphasized by Rindler, ' indicating how the
vierbein serves in lieu of the usual ten-component
metric.

Under the coordinate transformation X the &&„
transform as a covariant tensor on the subscript

However, under the local Lorentz transform-
ation A (with inverse K=A '),
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constants A.,u are Lorentz transformation coeffi-
cients.

For the transf or mati*on to an arbitrary frame of
reference, Eq. (1.2) then gives

5"-e"= x"A' .C I) a (1.4)

If comoving coordinates are chosen for an accel-
erated frame, the e" cannot reduce to Lorentz-
transformation coefficients, because A, must sat-
isfy the integrability condition, whereas A cannot.
The same restriction applies to the reciprocal
tetrad f„, which satisfies the conditions f „eus =58
Rnd e"f„=5,", and in terms of which the metric of
the accelerated frame (expressed on a holonomic
basis) has the form

a
guv =@+sfuf. .

Hence, g„, cannot reduce to g„,. Conversely, if
g„, is erroneously assumed to reduce to q„„ then
this false assumption leads to a contradiction
which is associated with the "clock paradox. "

If there is no coordinate transformation, i.e., if
then Eq. (1.4) implies e„"=A", Eq. (1.5)

implies g„„=q„„andEq. (1.1) implies A",, =0,
where

u—~a.As (1.6)

A+ 8 Af)i s G+sAy

(1.6)

noting the identity A".8
——A".,A 8, which is a con-

trRVRriRnt coordinate vector, Rnd R covariRnt. Sec-
ond-rank I orentz tensor.

Sineegu, =q„„ for the combination of x" and e"
used here, Gys can be regarded as the I.orentz
connection, which is essential for analyzing prob-
lems relative to accelerated frames in special rel-
ativity.

Defining G 8„—= q &Gs~„, and noting that II„s.y =0, it
follows that

noting that the xu are comoving coordinates for the
inertial frame (characterized by I'=0), and the Ag
are R eomoving tetrad for the accelerated frame
(characterized by ~a 0). Equation (I.3) is equi@a

«««Eq. (1.6), «d qu«»fie»&e equiU«««
princiPle, uA. icA, relates acceleration to inertia
»a tocat f.o«n««&art««(see Ref. 1, Misner
et al. , 386).

A . , is a generally covariant derivative, in ihe
sense that v is a coordinate tensor index. It is also
possible to define the locally I.orentz-covariant
derivative:

(1.10)

This is different from the symmetry I",u = I""„of
the Christoffel symbols.

Because of the asymmetry of 6, the relation be-
tween an electromagnetic field tensor I" 8 and a
4-potentials, expressed relative to an acceler-
ated frame, must be kept in manifestly covariant
form:

q»a
t

8+G ~ys +Gs T &y cJs.8 ys y8 8

(1.13a)

(1.13b)

using geometrized units (see Ref. 1, Misner et al
p. 36) withA -=q BAe. If a "proper frame" exists,
it can be defined by the conditions J =J 5, , 7' 8

= T "5,5t, T se = 0, for which Eqs. (1.13) give a
balance of electric and inertial forces, equivalent
{in the sense of the equivalence principle) to the

+as +e;s @s;a++a,s +sn
because G does not drop out as I" does.

For a particle having one unit of eleetrie charge
and one unit of proper mass with a proper time el-
ement dv = (q» dx"dx')')', the 4-velocity, Y"
= (dx"/dr)z„, relative to the accelerated frame,
satisfies the Einstein-Lorentz equation

(1.12)

where 5'e = Fe„q't-. The E term (the tensor force
of electromagnetism) is the 4-acceleration, while
the G term (the nontensor force derived from the
connection) is the effective gravita, tional or iner-
tial aeeeleratibn, including centrifugal and Cori-
olis terms, which, although indistinguishable from
gravity (according to the equivalence principle),
cannot be attributed to the metric since g„, =g „,
here.

Thus the Lorentz-covariant forma, lism of inertia, l
frames is replaced by a locally Lorentz-covariant
formalism for arbitrarily accelerated frames, in
which the dynamical equations are form invariant
under local Lorentz transformations, which pre-
serve the Lorentz metric q but transform the Lor-
entz connection G, without entailing any coordinate
transformation. Hence the x" can be the Cartesian
coordinates of any convenient inertial frame, and
the A", which are functions of the x", define the
accelerated frame (and determine G) completely.

Defining the second covariant derivative A. .sy
=(A.e).z, it follows thatA. e„=A'.„8 because the
space-time (i.e., the idealized model of special
relativity) is intrinsically flat, and hence the cur-
vature tensor vanishes.

For a, charged-matter distribution of eleetrie
4-current J, Rnd energy-momentum tensor ~s
the accelerated-frame dynamics can be expressed
by generalized Maxwell-Lorentz equations,
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balance of gravity and electromagnetism which
maintains equilibrium on the surface of the earth.

This approach can be useful for analyzing formal
relationships, but does not necessarily simplify
the mathematical problem. Other approaches are
investigated here for that reason. In particular,
the Hilbert-space connection, ' useful in general-
relativistic quantum theory, can also be useful in
special relativity for a geometric interpretation of
classical physics and quantum mechanics.

II. FOURIER CONNECTION

pep KggU y (2.2)

where & is the loonier connection, i,.e., the affine
connection of the Hilbert space spanned by the f",
which are assumed to have a reciprocal set f„,
with reciprocity relations

(2.3a)

x) "xd'x=1", (2.3b)

where the integral is taken over all values of the
x" (symbolized by x and y), 5(x —y) is the 4-di-
mensional Dirac 5 function, and I" is the Hilbert-
spaee identity operator, which reduces to the Kro-
necker 5 for discrete indices, and the Dirac 5

function for continuous indices,
The f" and f„, like the e„" and f„, have vanishing

covariant derivatives, f".„=0, wher e

(2.4)

Equations (2.3) and (2.4) then determine K, which,
like A"„, can be complex, but which, unlike cu, is
not a function of the x". Thus the Hilbert space has
a well-defined affine structure with a relativity and
an equivalence principle analogous to Eq. (1.6) even
though the transformation is not relativistic in the
Einsteinian sense.

Maxwell's equations (1.13a) can be written in the

When the problem is analyzed relative to an in-
ertial frame, with ee =5~~, it can often be simpli-
fied by Fourier expansion,

(2.1)

equivalent to Hilbert-space superposition, where
the summation convention over n (the Hilbert-space
index) implies Lebesgue-Stieltjes integration
which reduces to summation over discrete indices
and Riemann integration over continuous n, noting
that n is a real variable, A& can be a complex
variable (but not a function of the x"), and f" can
be a complex function of the x".

Since A "„,= 0, the covar iant derivative has the
form

K„,K' (q"A" —q"'A') =4v J" (2.5)

where Z" =J"„f"and, to avoid extraneous terms, it
is assumed that the f" and f"„vanish on the bound-
ary of the integral (2.3b).

Radiation modes (which carry the photon mo-
mentum)" satisfy the homogeneous Maxwell equa-
tion f(2.5) with J"„=0], which gives an abstract
geometric interpretation of radiation states and
their characteristic parameters (frequencies, an-
gular momenta, etc. ).

Radiation reaction is due to the interaction of a
particle with its own radiation field, which carries
off momentum and causes a reaction in accordance
with Newton's third law. The theory of this phe-
nomenon remains problematical (Marx, and Mo
and Papas)" because the results depend on the as-
sumptions which are made in deriving the reactive
force. The total 4-acceleration is given by Eq.
(1.12). The reactive 4-acceleration is derived
from a modified potential,

(2.6)

where the asterisk indicates complex conjugation,
andh is Hermitian with inversed "=(6" )*.

The f" and f„are related by the condition

where P is a Hilbert-space projection operator for
selecting radiation modes emitted by the particle, re-
jecting radiation modes not emitted by the particle,
excluding the particle's nonradiative field (which car-
ries no momentum), and excluding Coulomb fields due
to external sources. Radiation reaction depends on
the definition Qf P, which in turn depends on the char-
acteristic modes n of the entire system as a whole.
Hence the reactive force depends not only on the
particle's motion, but also on its surr";endings (on
how the environment echoes the radiation). A par-
ticle radiating in a laser cavity experiences a dif-
ferent reaction from one aeeelerating through in-
terstellar space. In this respect, rather than con-
forming entirely to Newton' s third law, the effect
has some analogy to Mach's principle, "which at-
tributes natural laws to the entire state of the uni-
verse as a whole, thereby giving nature a coher-
ence which is quantified by Einstein's theories.
Radiation reaction, like friction and dispersion,
can be treated approximately with phenomenolog-
ieal formulas, but its exact treatment requires de-
tailed knowledge of the entire system. of which the
particle is a part.

The identity operator I" is the mixed form of the
Hilbert-space metric,
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Kmnp = Knmp (2.9)

a consistency condition on K which is skew-Hermi-
tian on the Hilbert-space indices.

For any Hilbert-space operator, such as the
projection operator P, it is convenient to define an
adjoint P, such that

Pm I mt(pe) gI (2.10)

The identity operator is self-adjoint, i.e., j"=I"
Equation (2.9) implies g &

=-K„"» i.e., IC is skew-
adjoint.

A linear automorphism (a mapping of the Hilbert
space onto itself) is defined by the transformation
f —U" f„, where the U"„are complex coefficients
with U" &=0. Hilbert-space symmetries are de-
fined by isometrics, i.e., automorphisrns which
preserve h through the relation

(U '
) *h,q

U'„=h (2.11)

which gives f)'=U '. If h is expressed in diagonal-
ized form (as is always possible), then by defini-
tion U is unitary if h is a positive-definite metric,
and pseudounitary if P is indefinite (having both
positive and negative eigenvalues).

In Eq. (2.6) p has the transformation property

P m fImP 'Uq
n 1 0 n (2.12)

but is not necessarily form invariant under trans-
formation. ". ."'atisi'ying Eq. (2.11). In this respect,
the for malism is not covariant under Hilbert-space
symmetry groups. However, this is not a flaw in
the theory, because Hilbert-space symmetry does
not necessarily reflect any laws of nature. The
asymmetry of P can actually be useful, because it
implies that there may be a Fourier basis on which
the theory reduces to a particularly simple form
in which the states &z can be regarded as canonical
modes of the system.

Under a combined isometry of the Hilbert space
and Minkowski space the A" undergo the trans-
formation

(2.13)

where. 4",=0 implies A,",=0, so that the Fourier
formalism here is covariant under the Poincare
group (the usual symmetry group of special rela-
tivity) but not under local Lorentz transformations.
Hence the K and G formalisms based on the Four-
ier and Lorentz connections, respectively, are
mutually complementary. Equation (2.2) assumes
Z'=~ =0.

(2.8)

Defining K „„—=h,K„'„, the conditions h „.„=0
=h „& give

III. SPINOR CONNECTION

In the first quantization when the problem is an-
alyzed relative to an accelerated frame on the
nonholonomic basis A"„determined by the local
Lorentz transformation from an inertial frame
with Cartesian coordinates x", the Maxwell-Dirac
equations ean be written in the form

F" 8=47Fg. y &p,

y (iV „—A )p= (p,

(3.1a)

(3.1b)

using the spinor connection" 'f expressed as a
4x4 matrix in geometrized units for a spin- —,

'

particle of unit charge and mass. g here is y de-
fined by Schweber, with Planck's reduced con-
stant f =-1.

Corresponding to the space-time basis A" there
is the spinor basis 8 expressed in closed form
as a complex 4x4 matrix field satisfying the
homomorphic identity

Aj'Sy g-'=yJ', (3.3)

which relates the Lorentz group to its covering
group. " As Eqs. (1.6)—(1.9) relate G to A, so
Y is related to 8 by noting S.„=O, where

(3 4)

using spinor connection 0„ for the generally covari-
ant derivative so that

(3.5)

G and Y are related by noting that the y are
absolute constants, "so y. &

=0, and on the basis
used here y &

=0, giving

y. g =G(py +Yey —y Tp (3.6)

consistent with Eq. (3.3) in the sense that under
local Lorentz transformations y is a mixed se-
cond-rank spinor as well as a eontravariant vec-
tor.

Spinor space, interpreted as the universal cov-
ering of Minkowski space, "has the Hermitian
metric P =P = P '= y' in the representation used
here in which

Y Y +y 7 20

and the dagger denotes Hermitian conjugation.
8 is further defined by the isometry

where Eq. (3.1a) is equivalent to Eq. (1.13a), &p is
a 4-component spinor field (expressed in closed
form as a column matrix), i' = —1, the y' are the
Dirac matrices (see Ref. 13, p. 70), and V, is a
covariant derivative operator such that V

The locally Lorentz-covariant derivative

(3.2)



(3 3) $$ 0=8 A A~St/) y (3.13)

which, together with Eq. (3.3), impbes that I) and
the relation p =@' are invariant under local Lorentz
tx Rxlsformatioxls; so the fox'malism is covariant.

@is a complex vector in a pseudounitary metric
space, with scalar product 9f y defined in terms
of the adjoint vector g =ivy P. For any matrix
opex ator 6 it is useful to define the adjoint opera-
tor,

(3 9)

It then follows that y is self-adjoint (y =y ),
Q~ is skew-adjoint (g„=-Q„), and 3 is pseudo-
unitary (j(=3 ').

Under relativistic transformations spinor space
does not have unitary symmetry, just as space-
time (which is pseudo-orthogonal) does not have
orthogonal symmetry. However, under nonrela-
tivistic transformations (not entailing a change in
the I orentz frame) the 3-space of special rela-
tivity does have orthogonal symmetry.

If the analysis is confined to an inertial. frame
(G =0) with A" =5), then y is a complex vector in
R UnltRI'y Hllbert spRce Rnd in the x'epl eseIltatlon
used here the scalar product can be defined in

integraL form,

using R trRAsforITled lnterRctlon HRmlltonlRA.
Equation (3.4)~ with Q~ = Q05~ ~ then gives

(3.14)

so that iQO is the zeroth-order or "unpertux'bed*'
Hamiltonian, and S has the exponential form
8 =exp(Qox'), making the Dirac picture a viable
approach to quantum field theory (see Ref. 13,
p. 317).

The Heisenberg picture can be introduced by
letting g o

= 0, which gives

8 OS '=Qo =-iH, (3.15)

where H is the complete Hamiltonian (3.13). This
approach to the MaxweLL-Dirac equations is prob-
lematical, "because Eq. (3.15) cannot be solved
explicitly for arbitrary A„, and there are covari-
ance pxoblems due to the ambiguity regarding
whether spinor space is unitary or pseudounitary.

As long as the analysis is confined to a Lorentz
frame, P can be treated as a complex vector in a
unitary Hilbert space with scalar product (3.10).
However, for the analysis relative to an acceler-
ated frame which entails the transformation
g-8 g, the scalar product assumes the form

(3.10) (3.16)

shel. e the integraL is taken over all values of the
spatial coordinates x', for i =1,2„3; and the time
coordinate x' is the independent variable of Eqs.
(3.1). This ls the resul't tn a coordinate repre-
sentation" in which the x' are quantum numbers,
i.e., eigenvalues of observables, " and y is as-
sumed to have unit norm.

The formalism is no longer manifestly covari-
Rnt, but, nevertheless, it is Lorentz covariant in
the sense that the same results can be derived in

Rny Lorentz frame.
This duRL I ole of the DlrRc field p makes I.t

possible to Use the spinor connection to define the
VRx'Ious pictures of quantum theox'y in terms of
Hilbert-space geometry.

In the Schrodinger picture Q =0, and Eq. (3.1b)
can be expressed in the form

&4,0 =0(i(' ~

where 0 is the Schro*dinger Hamiltonian

using summation convention over j = 1,2, 3 and

p =-0, 1, 2, 3, with o~=-y'y", S„=—s/Sx", and P=y'.
The Dirac picture can be introduced by letting

q = 5 g, where S is R Hilbert-space operator, Rnd
~p satisfies the modified Schrodinger equation,

where 3 satisfies equation (3.8), so that the Hil-
bert space is no longer unitary. This problem can
be avoided in special relativity, but it is Rn

essentlRL pRI't of generRL x'elRtlvlty where the
Einstein-Dirac equations ax e problematical' in
a manner which may be resolvable by the second
quantization'; although the problem has not yet
been solved, and may entail changes in the
Hamiltonian forlTlalism.

In the Schrodinger pictux'e, in which y", =9, it
seems logical to generalize this to the condition
y".„=0for other pictures. However, in the Heisen-
bex'g plctux'e ln which $ o

= 0y It seems loglcR1 to
generRllze this to the condltlon /j). ~ =Oy %hex'e

(3.17)

Rnd Q~ 18 R quantum connectlony I.e, y RA Rfflne
connection for the Hilbert space of g. In special
relativity it suffices to let Q&

= -&,.„Rnd Qo =i H for
the Schro*dinger picture, so that H is the essential
part of the connection. %hen Heisenberg pl"oved
that a Hamiltonian can vanish, he proved it is not
a tensor because a tensor cannot vanish in any
frame of xeference unless it vanishes in all
frames. IQ effect 0 is the "quantum connection, "
and the Heisenberg picture is R quantum analog of
an inextial frame. In classical physics the Hamil-
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ton- Jacobi method establishes similar results. "
In the second quantization the Q formalism is

more applicable than in the first, and readily
generalizes to general relativity because it is
manifestly covariant under conditions where Q„
is a globally well-defined concept, but a Hamil-
tonian can only be defined locally (in accordance
with the principle of local Lorentz covariance).
Quantum-mechanical derivatives are reinterpret-
able as covariant derivatives, and Q can vanish
locally (a local Heisenberg picture, i.e. , a quan-
tum analog of a local inertial frame) owing to its
properties as an affine connection; but Q cannot
vanish globally, except in the limiting case of
special relativity.

IV. CONCLUSIONS

The affine connection is as important in special
relativity as in general relativity, but its geo-
metric significance is obscured by phenomeno-
logical. interpretations, as in thermodynamics,
where geometry is deemphasized in favor of
chemical terminology. '

The various connections are conveniently deter-
mined from absolute constants, i.e., quantities
whose covariant derivatives vanish identically, as
illustrated by Eqs. (1.1), (1.6), (1.7), (2.4), (3.4),
(3.6), and (3.17).

The quantum-mechanical equation (3.17) deter-
mines Q„ for special relativity, where the Hamil-
tonian operator is essentially a phenomenological
interpretation of the Hilbert-space connection. In
the first quantization the spinor connection, de-
vised for a covariant treatment of the Dirac equa-
tion (3.1b), becomes a natural vehicle for intro-
ducing the "quantum connection" Q„. In the second
quantization Q„can be determined in such a way
that Q, is the global Hamiltonian, and the remain-
ing Q& =0.

In general relativity the "global Hamiltonian" is
not covariant, but Q„ is manifestly covariant, and
allows a local Hamiltonian to be defined from a
global "quantum connection. "

The affine connection is defined independently
of a metric (Eisenhart"), but in physical applica-
tions there are associated metric spaces related
by a topological-group formalism. " However,
nonmetric affine geometry, in which covariant
derivatives are defined directly in terms of the
connection, is an equally valid basis for theoreti-
cal physics.

The "quantum connection" Q„, which is trivially
associated with the Hamiltonian in special relativ-
ity, remains undetermined and speculative in gen-
eral relativity, where 'absolute constants" deter-
mining Q are unknown.

The "Lorentz connection" (1.9) is useful for
treating problematical aspects of accelerated
frames in which the kinematics requires an affine
connection, but the chronometry can be treated
with the Cartesian coordinates x" of an inertial
frame thereby obviating the clock paradox" with-
out introducing comoving coordinates or a non-
Lorentzian metric for the accelerated frame of
reference.

The "Fourier connection" (2.2) allows a geo-
metric interpretation of spectral analysis, and
associated problems such as radiation reaction
while the second quantization appears necessary
to resolve the problems associated with the Dirac
equation.

The results here are consistent with conclusions
of Cartan, "who proved that the components of the
spinor connection (the 4&&4 matrix 0„) cannot be
restricted to the domain of ordinary complex
numbers. Contrary to causing difficulty, this al-
lows the connection formalism to be used for the
definition of quantum-mechanical "pictures, " and
in other applications where there are transforma-
tions which do not necessarily involve any change
in the relativistic frame of reference.

Much work remains to be done on this, e.g. , in
the geometric classification of elementary-par-
ticle spectra, where the problem of combining
relativistic and nonrelativistic transformation
properties has not yet been solved.
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