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Condensed matter at very high pressure is viewed as a collection of squeezed atoms, which are de-

scribed in terms of a statistical model. A very strong magnetic field is supposed to be present, and tem-
perature effects are taken into account, but exchange is neglected, because at nonzero temperature its
effect tends to be canceled by long-range correlations. The free energy of such an atom can be calculated
explicitly as a function of the appropriate variables, after which the thermodynamic properties are derived

by standard methods. For canonical pulsars, with an iron crust having already cooled down to about
10 K, and surface magnetic fields of the order of 10' G, temperature corrections turn out to be neg-
ligible. However, they represent sizable effects in the case of very young and hot pulsars.

I. INTRODUCTION

In a previous work' the pressure-density rela-
tionship for condensed matter in a very strong
magnetic field and at zero temperature was de-
rived under the simplifying assumption (valid at
high pressure) that condensed matter consists of
atoms squeezed together. These atoms were des-
cribed in terms of a statistical model, ~ 4 which in-
corporated the assumption that a very strong mag-
netic field was present. The proceduxe has ob-
vious limitations: cohesion cannot be explained in
such a simplified scheme, and spherical symme-
try must be assumed in order to handle the equa-
tions more easily. This limits the applications to
deformations px'csex'vlng the macx'oscoplc shapes
(no shears), the model being thus able to yield in-
formation only on the diagonal elements of the
stress tensor. Nevertheless, the simplicity of the
method recommends it as a first step in investi-
gating the properties of matter in the outer crust
of magnetic neutron stars' and, possibly, of super-
compressed matter in the laboratory. '

Our approach" was inspired by some early
work on the equations of state for normal condensed
mattex, a'9 derived fx om the conventional statistical
model of atoms, '0'" and aiming at understanding
the behavior of matter under high pressure, e.g. ,
inside white dwarfs or in nuclear explosions. Later„
this work has been completed by taking into account
temperature effects, treated either as perturba-
tions, '" ox' exactly. e " In the present paper we
extend in a similar manner the method of Bef. 1
to nonzero temperatux'es.

What distinguishes the statistical model of atoms

In this approximation the tx'Rnsvex'se magnetic mo-
tion decouples from the rest; after subtracting its
contribution, the energy of a single electron is
written Rs

e = q'/2m+ e y(r), (l.2)

where q is the longitudinal momentum and pQr the
electrostatic potential. The longitudinal Fermi
momentum, q r(r), is locally related to the num-
ber density of electrons, n(r), by the equation
n(r) = (eft/2w'5'c)q~(r}. Moreover, it is assumed
that everywhere (except for the close neighborhood
of the nucleus, where the statistical description
is inadequate) q~(r ) «p~, which is a convenient
expression of the fact that the magnetic field is
very stro.'lg.

In extending the method to nonzero temperatures,
we have in mind the conditions existing in the outer
crust of pulsax"s, down to a few meters below the
surface: temperatures' T = 10" K (except for
very young pulsars, which are much hotter), and
magnetic fields" g = 10" Q. Even at much higher

used here' fx'om the conventional one" is the fact
that, because of the anisotropy introduced by the
magnetic field, the transverse and longitudinal
motions of the electrons (with respect to the di-
rection of 5) must be treated differently. In the
degenerate case, assuming that the magnetic field
is Sufficiently strong, the tx'Rnsverse Fermi mo-
mentum, p~, is position-independent, being deter-
inined only by the magnetic field (adiabatic hypo-
thesis); viz. ,

p~ =25sB/c.
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temperatures and lower field intensities than the
typical figures quoted above, one ha, s kT «p~'/2m.
Therefore, as far as the transverse motion is con-
cerned, the electrons continue to be degenerate;
the magnetic motion is so fast that temperature,
like Coulomb forces, practically does not affect it.
This is not necessarily true for the much slower
longitudinal motion, and it may happen that kT
=qz'/2m', in this case, from the point of view of
the longitudinal motion, the electrons must be
treated as nondegenerate. Neglecting the vanish-
ingly small contribution of the excited magnetic
levels, "the mean occupation number of a one-
electron state with energy q and transverse mo-
mentum p will then be

in@=2, , (2mkT)'~'I, &,(p/kT), (2 4)

Z =4, , (2mkT)'~'I, ),(p/kT), (2.5)

where

I q)= y dy

exp(y —q) + 1
(2 6)

where e is given by Eq. (1.2) with p(r) =0. The
summation over the microscopic states amounts
to integrations over the transverse and longitudi-
nal momenta, p and q, with a density-of-states
factor [v/(2vk)'] 2' dpdq. Using Eqs. (1.1) and
(1.3) one obtains

{exp [(e —y)lkT ]+1+, p~ p„
~(e,P) =

0 P~P Jl
(1.3)

are the usual Fermi-Dirac functions. " Hence

F)Z, v, T) =Zk)'
(q

—2 I ) )2()))
' (2.7)

These considerations are applied first to a gas
of noninteracting electrons (Sec. 11) in order to
show how the method works in a very simple case
and to prepare the ground for the more complex
statistical model. The latter is examined in Sec.
III, which represents the main part of the paper.
After deriving the basic equation of the model and
its range of validity, we use the March" variation-
al principle to obtain the expression of the free
energy, from which the thermodynamic proper-
ties are derived by standard methods. Numerical
results are given in Sec. IV, foll.owed by a short
discussion (Sec. V). The low-temperature limit
is examined briefly in Appendix A. The explicit
expressions of the various contributions to the
energy in terms of the solution of the basic equa-
tion are collected in Appendix B.

II NONINTERACTING ELECTRONS l6

We consider first a, simple, if unrealistic (ex-
cept at very high pressure), example: a gas of
electrons without Coulomb interactions, but inter-
acting with a very strong external magnetic field
B. Apart from showing how the method works in
the simplest possible situation, this is needed as
a basis for the derivation of the free energy in the
statistical model (Sec. 111).

I.et the gas consist of Z electrons, occupying a
volume v at temperature T. To derive its macro-
scopic properties we start from the grand canon-
ical ensemble and calculate the free energy

with

q= p/kT. (2.3)

(2.9)

gy 3 1/2

To obtain the latter expression one needs the re-
lation

= aI, (q), u) —,.dI (q)
q

Then, one can compute the energy

(2.11)

and check the virial theorem"

6E =3P.„p. (2.12)

This standard game may be played further, e.g. ,
one can calculate quantities like

Now the various thermodynamic quantities are
calculated straightforwardly. The chemical po-
tential, the longitudinal pressure, "and the entropy
are given by

E(Z, e, T) =-kT lnQ+ pZ. (2.1)

The grand potential and the total number of par-
ticles are

(2.13)

in@=gin{1+exp [(p- e)/kT D,

Z = +{exp [(e —p)/kT ]+ 1] ', .

(2.2)

(2.3)

etc. However, we will stop it here, and go on to
examine the more interesting and more realistic
case of the statistical model.
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III. STATISTICAL MODEL

A. Basic equation

One obtains the differential equation

P"= sI, /, (Pls), (3.11)
When the Coulomb interactions are switched on,

the single-electron energy is given by the com-
plete expression (1.2). The statistical model
trea. ts the electrons as locally free, so Eq. (2.3)
may still be applied to a small cell around point
r, yielding for n=Z/v

n(r) =, , (2m kT)' /'I,
/, ( t(ir)), (3.1)

with

n(r) = [p. —e p(r) ]IkT. (3.2)

Ze n(r')
rp(r)= ——+e -, dr',r Ir- r'I (3.3)

with the normalization condition

This local relationship between the number density
of electrons, n(r), and the electrostatic potential,
y(r), is the basic equation of the model.

For a neutral atom of atomic number Z, con-
sisting of a pointlike nucleus at the origin and a
gas of electrons described in terms of their num-
ber density, n(r), one has

to be solved subject to the conditions (3.6) and
(3.4), which in the new variables read

p(0) —23 /2+-I /2 n 1ZL1 /2 T5
/4

P(s, ) —s, P'(s, ) =0.
(3.12)

(3.13)

Here s, corresponds, via Eq. (3.7), to the atomic
radius rp.

The range of validity of the model is limited by
several restrictions imposed on its parameters:
atomic number (Z), field strength (L), tempera-
ture (r), and pressure (or, equivalently, atomic
volume, determined by sp) First, the statistical
description holds only within the interval"

5 x 10 'Z' ' «L «10 'Z'. (3.14)

Second, the assumption thy, t the transverse motion
is unaffected by temperature requires that the av-
erage thermal energy per electron be small com-
pared to the spacing of the Landau levels: k T
«SeB/mc, or

T «2a L. (3.15)
n(r) dr =Z (3 4)

hy(r) = -4ven(r)

with the boundary condition

limry(r) = —Ze,
p

(3.5)

(3 .6)

and then eliminate n(r) between Eqs. (3.1) and
(3.5)." At this stage we assume spherical symme-
try, "and introduce the dimensionless quantities
s and P(s) defined by

(3.7)

(3 6)

Equations (3.1) and (3.3) maybe combined, to yield
one basic equation for one basic quantity, which
determines all the physics of the model. The usual
procedure is to replace first Eq. (3.3) by the Pois-
son equation

Third, the pressure can be neither too small (in
which case the details of the electronic structure
in the outer layers of the atom would become im-
portant, and the description in terms of squeezed
Thomas- Fermi-like atoms would be inadequate),
nor too high (the average kinetic energy per elec-
tron must remain small compared to the spacing
of the Landau levels). Because at high compres-
sion the electrons become practically free, one
may use for the energy Eq. (2.11); then, the latter
condition reads

kTI, / (q)II, /, (t)) «SeBlmc.

Typically, this must hold at the atomic boundary,
where y(r, ) =0, and the argument of the Fermi-
Di."ac functions is q = p(so)/so» 1. Using the lead-
ing asymptotic behavior given by Eq. (Al),"one
obtains a lower bound for sp in implicit form:

It is convenient to choose p(so)/so «6n 'Lr '. (3.16)

( = g 2 I I277& I2(yL & I27&I4
p t

SeB
PB C

2kT7—mc'n'

where ao = 5'/me, n =e'/lic, and

(3 .9)

(3.1o)

This may be put in explicit form by using Eqs.
(3.7), (3.9), and (A2), (A4) to obtain the relation-
ship between sp and xp then combining it with Eq.
(3.12) to get

(3.17)
(In other words, the magnetic field is measured
in units B,=m'c'/Se, and the temperature in Ry/k. ) Here x, is a universal quantity (independent of Z,
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10 ansatz for I', which must be checked afterwards
to show that it is indeed compatible with the basic
equation (3.1). Such a heuristic derivation can
be made either at the microscopic level, to obtain
first the partition function, "or, even simpler, at
the phenomenological level, yielding directly the
expression of the free energy. " It is this latter
alternative that we shall adopt here.

The electrons being regarded as locally free, one
can imagine the following prescription for setting
up the free energy in the statistical model: take
the analytic expression of the density of free en-
ergy as given by the case of noninteracting elec-
trons, make it a function of the position, then
add the terms representing the Coulomb interac-
tions. Using Eq. (2.7) we are thu.s led to the ansatz

f, g,(n(r))
((z, U, lT=~+f ( ( I( +( —~("*(

10
10

FIG. 1. The range of validity of Eqs. (3.11)-(3.13) is
the oblique strip between the straight lines x0=1.2 and
F0=2.7. The six series of calculations reported in
sec. IV were performed along the dashed horizontal
lines; their ordinates correspond to iron (/= 26) in a
magnetic field B=1.4 & 10~2 6 and at temperatures
(downwards from top) 7=10 Ks 3 && 10 Kv 10 Ks 36

~ 10' K, 10' K, 3 ~ 10' K.

L, and r) characterizing the compression of the
atom. Its lower bound may be determined once for
all from condition (3.16), by solving numerically
Eq. (S.ll) for arbitrary values of the other para-
meters. The upper bound on x, results from the
requirement that the atoms be squeezed to the point
where the statistical model becomes applicable. '
One obtains approximately

where g(r) is a function related to the number den-
sity n(r) by Eq. (2.5) applied locally, i.e. , by Eq.
(3.1)

To check the correctness of Eq. (3.19) we start
from the vaxiational principle" which requires the
free energy, regarded as a functional of n(r), to
be stationary with respect to variations of n(r),
subject to the additional condition (3.4). Introduc-
ing a Lagrange multiplier p. , we therefore require
that

(3.20)

for arbitrary variations 5n(r) or, equivalently,
& q(r). Using Eq. (2.10) and the formula

~.2 +xo & 2.7 (3.18)

In a log-log plot of P(0) vs s„the allowed range
resulting from Eqs. (3.17) and (3.18) is an oblique
strip of constant width (Fig. 1).

8. Free energy

To extract physical information from Eqs. (3.11)
-(3.13) we calculate first the free energy E(Z, v, T)
in terms of their solution, P(s). One possibility
of doing that is to start from the total energy (see
Appendix B) and integrate the Gibbs-Helmholtz
equation. '~ We find more instructive the procedure
which sets up the expressio~ of the free energy on
the basis of simple intuitive arguments compatible
with the assumptions of the statistical model. This
is not a rigorous derivation, and it leads to an

[the latter is obtained by differentiating Eq. (S.l) ],
Eq. (3.20) may be cast into the form

r

eal
[kTq(r)+ey(r) —g j —5@dr =0. (3.22)

dq

Hence we obtain Eq. (3.2) which, substituted into
(3.1), yields indeed the basic equation of the sta-
tistical model.

It is convenient to write Eq. (3.19) in the form

E(Z, v, T) =2K„—W- pZ,

where the expressions of K„,W, and p. are given in
Appendix B. The analog of Eq. (3.23) in the con-
ventional model has been established by Brach-
man.
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C. Thermodynamics

P„=2k „(r,) (3.24)

[See Eq. (B3};a comparison with Eq. (2.9) shows
that, in accordance with the philosophy of the sta-
tistical model, the expression of the pressure in
terms of the electron density is the same as for
noninteracting electrons, with the difference that
it has become a function of position. This holds
also for the transverse pressure, P,."] Tl'e re-
sult of Eq. (3.24) may also be obtained from the
virial theorem, Eq. (B7), or by a simple kinetic
argument. '

Third, the entropy is calculated as S = (BF/BT}z -„.
Bearing in mind that n(r), and therefore cp(r), de-
pend on the temperature, and using Eqs. (2.10),
(3.1), (3.3), and the relevant formulas in Appen-
dix B, one obtains

1
S (3K)(+ V+ 2W pZ} (3.25)

It is easy to check that in the completely degener-
a.te ca,se Eq. (3.25) reduces to S=0.'

The higher-order derivatives of the thermody-
namic potential (specific heat, compressibility,
etc. ) do not have simple analytic expressions; if
necessary, they may be computed numerically.
The explicit expressions of the various quantities
appearing in Eqs. (3.23)-(3.25), in terms of the
solution of Eqs. (3.11)-(3.13), are given in Appen-
dix B.

IV. NUMERICAL RESULTS

We wrote a computer program for the numerical
integration of Eqs. (3.11)-(3.13). The integration
may be started either from the origin, with given
values of P(0) and P'(0), ending at s, determined

Within the limits of the thermodynamic descrip-
tion and of the specific model adopted, Eq. (3.23)
contains implicitly all the physical information on
our system. To extract it in explicit form one
must follow the standard procedure of calculating
the successive partial derivatives of the thermo-
dynamic potential with respect to the appropriate
variables (in this case, the derivatives of the free
energy with respect to Z, v, and T).

First, and trivially, one has p =(BE/BZ)„r,
which confirms the interpretation of p. as chemi-
cal potential. " Second, the longitudinal pressure"
is given by P„=—(BF/Bv)z r. To obtain the macro-
scopic pressure, this quantity must be calculated
at the atomic boundary, where the electrons are
free and the W term in Eq. (3.23) may be dropped;
the result is twice the density of longitudinal kin-
etic energy:

by Eq. (3.13), or in opposite direction, with given
values of s, and P(so), and ending at the origin.
The relevant quantities computed from the solu-
tion, or assigned by the initial conditions, are
P(0), P'(0), so, P(so), and fP"(s)ds, in terms of
which the basic physics of the model can be ex-
pressed (see Sec. III and Appendix B).

The Fermi-Dirac functions I~»(q), needed both
during the integration and in expressing the physi-
cal output, were computed as follows. For n& —2,
we used the truncated expansion"

k= &

(4.1)

for -2 ~ g&10, we used the Blakemore tables, "
together with a fourth-order interpolation formula
for calculating the functions at intermediate points;
for 10 & g & 10', we used the truncated asymptotic
formula"' "

where

~
A+1 ( d( 0')

k~j.
(4.2)

d,'~" =2(1 —2' '~)g(2k)(a+1)n. . . (n —2k+ 2); (4.3)

finally, for 10' & q, only the leading term in Eq.
(4.2) was used. For any q, this procedure guar-
antees a relative error less than 10 ' on I„&,(q),
sufficient for ensuring a relative accuracy of the
physical results (some of which are obtained as
differences of large numbers) better than 10 '.

The results reported hereafter refer to six
series of calculations, each of them correspond-
ing to a given P(0) and a string of values for so,
distributed throughout its entire range (Fig. I). The
values chosen for P(0) correspond to iron (Z =26)
in a magnetic field 8 =1.4 & 10" G and at the fol-
lowing temperatures: T =10' K, 3 x 10' K, 10' K,
3 && 10' K, 10' K, 3 && 10' K. Some results for zero
temperature, taken from Ref. 1, have been added
for comparison.

Figure 2 shows three solutions P(s) for T=3
&& 10' K; they refer, respectively, to a low, a mod-
erate, and a high compression. The corresponding
graphs of the volume density of electrons, n(r),
and the "radial density", 4zr'n(r), may be obtained
from Eq. (3.1). As temperature is decreased, "
the curvature of P(s) gradually increases, the elec-
tron distribution being more and more determined
by the Coulomb forces; of course, this fact is less
apparent at high compression.

According to the discussion in Sec. I, the total
free energy of the atom is obtained by adding to F
the kinetic energy of the transverse motion, K,
= SeBZ/2mc. ' In Fig. 3 the quantity E+K, is plot-
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FIQ. 2. Three solutions of Eqs. (3.11)-(3.13) for Z
=26, +=1.4 & 10' G, and 7= 3 & 10 K. The numbers on

the curves indicate the corresponding values of p'(0).

10500

10000

ted against the mass density, p=3AMl4wr ' (A is
the atomic weight, and M is the proton mass). One
sees that, for the given values of Z and 8, the
temperature correction becomes a sizable effect

p(g cm ')
FIG. 4. Pressure vs mass density at constant tem-

perature, for g = 26 and B= 1.4 && 1012 Q. Lower
curves: longitudinal pressure at temperature (up-
wards from bottom) 7=0 K (dashed curve), 3 && 105 K,
106K, 3&&106 K, 107 K, 3&10~ K (solid curves). Upper
curves: transverse pressure at temperatures (upwards
from bottom) T = 0 K (dashed curve), 3x 106 K, 107 K,
3x10~ K (solid curves).

only for temperatures of the order of a few times
10' K; its relative importance decreases with in-
creasing density.

In Fig. 4 the longitudinal and transverse pres-
sures, P„andP„"are plotted against p. A com-
parison with the completely degenerate case (dash-
ed curves)' reveals the size of the temperature
correction, which is much more important for P,
than for P,. Indeed, in this model the effect of
temperature on P( is due to the increase of both
the average longitudinal momentum and the elec-
tron density at the atomic boundary, whereas in
the case of P, only the latter (and less important)
factor is present, the transverse momentum re-
maining unaffected in the adiabatic approximation.

Finally, Fig. 5 presents the entropy as a function
of the mass density.

V. DISCUSSION

3~ 10

I

10 2 ~ 10

p(g c,m-')

FIQ. 3. Total free energy vs mass density at con-
stant temperature, for g=26 and $3=1.4 & 10 G. The
corresponding temperatures are (downwards from top)
7=0 K (dashed curve), 3X 106 K, 107 K, 3X107 K
(solid curves); for the insert (downwards from top)
7=0 K (dashed curve), 108 K, 3 & 106 K (solid curves).

Let us first discuss the reasons for neglecting
exchange corrections in the above treatment. At
zero temperature their effect has been calculated
and shown to be quite important at relatively low

pressure. ' In the conventional statistical model"
exchange corrections have been considered also
in the case of incomplete degeneracy. '9 However,
we have deliberately ignored them here, because
at nonzero temperatures it seems quite inconsis-
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It is very difficult to speculate on the applications
of this model to supercompressed matter on earth, '
without knowing what field intensities and tempera-
tures can one really expect to produce in the lab-
oratory in the not-too-distant future.

APPENDIX A: LOW TEMPERATURES

1.0

0.5

At low temperatures, vis. , when p-ep(r, )»kT,
one may use in Eq. (3.1) the asymptotic expan-

jon27 17

et+1

f,(q) =" [1+n(o.+l)v'/6q'+0(q ') ], g»l.
(Al)

Making the change of variables"'

r =Gx,

r [p-eq(r)]=Ze'C'(x),

(A3)

(A3)
3 ' &0 10

p (g Cm-3)

FIG. 5. Entropy vs mass density at constant tem-
perature, for @=26 and B=1.4 &10~2 G. The corres-
pondinj, temperature are (upwards from bottom) T
=10 K, 3&105K, 10 K, 3x10 K, 19 K, 3&10 K.

with

+ 2-3/5&2/5+&/5~1/5L -2/5
0

and following the procedure described in Sec. IG,
one obtains the equation

4 =(xC)'"{I-&'x'/4'), (AS)
tent to take into account exchange effects while
neglecting electron correlations. If, however, one
is willing to give away the simplicity of the statis-
tical model in favor of a more realistic scheme
which is able to incorporate both electron exchange
and long-range correlations, these two effects are
found to cancel almost exactly. ' This suggests that
in the incompletely degenerate case the simple
statistical model may be closer to reality if ex-
change corrections are ignored —not to speak of
the clumsiness which results from trying to incor-
porate them into the scheme.

The limitations of the "squeezed-atoms" model
in describing the properties of matter at high pres-
sure have been discussed in Ref. 1, and that dis-
cussion applies to the nonzero-temperatuxe case
as well.

As to the applications to matter in the outer crust
of pulsars, the results of Sec. IV show that the
effect of temperature on "standard" pulsars, which
have already cooled down to about 1,05 K, is ixxele-
vant; in a magnetic field of 10' G the properties
of an iron crust are practically the same as at
zero temperature. However, this is no longer
true for vexy young pulsars, which might be as
hot as 10'-107 K j" and are very interesting objects j
hardly understood at all at this moment. It has
already been pointed out' that the properties of the
crust may be detexminant for a series of observ-
able effects which have their origin in the pulsar
magnetosphere.

where

y2 —2 3]./53 lgl4/5 8/5g B/5L 4/5p

The boundary conditions are the same as for zero
temperature:

4'(0) = 1, 4'(x,) —x,@'(x,) = 0, (A I)

where x, corresponds to the atomic radius. Eq.
(A5) gives a correct description only if tempera-
ture effects may be regarded as small corrections
to the Coulomb interactions; more precisely, only
if

(AS)

This represents a much stronger limitation on the
temperature than Eq. (3.15), which implies that
temperature effects are regarded as small correc-
tions to the magnetic forces.

In the conventional case, the analog of Eq. (A5)"
and different perturbation schemes based on the
expansion (Al} have been studied by several au-
thors. " %'e will not make a similar investigation
here because (i) the temperatures at which con-
dition (A8} is satisfied are so low that the physics
is essentially the same as at zero temperature
(See Sec. IV}, and (ii) solving numerically the ex-
act equation (3.11) is a more direct and illumin-
ating procedure than any perturbation expansion
in the temperature.
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APPENDIX 8: ENERGY AND VIRIAL THEOREM

We collect here some formulas which give the
various contributions to the energy of a Z-elec-
tron atom, in terms of the solution of Eqs. (3.11)
-(3.13).

After subtracting the kinetic energy of the trans-
verse motion, the energy of the atom is

Assuming spherical symmetry and making the
change of variables given by Eqs. (3.7)-(3.9), one
obtains, after some manipulations involving par-
tial integrations and the use of Eqs. (3.11)-(3.13),

8p 0) 2
p(0)p (0) + 2s f (p(so)/so)

E =K„+V+A, (Bl)

where V and W represent the contributions of the
Coulomb interactions

n(rV=- Ze' - dr,r
e' n(r)n(r')
2 Ir- r'j

(B2)

and K„is the kinetic energy of the longitudinal mo-
tion. The density of the latter, k„(r),is obtained
by averaging the quantity q'/2m over a small cell
around r. One finds

P ~(0)
P(so)

ZkT Sp

Zk T s, 2P(0) so

(B5)

Once the quantities p(0), p'(0), s„p(s,), and

fp" (s)ds are determined by solving Eqs. (3.].1)-
(3.13), &„,V, and W may be calculated explicitly
from Eqs. {B5). Also, using the same equations
and

with q(r) given by Eq. (3.2). Hence

{B3)
p = kTP(s, )/s, (B8)

[see Eq. (3.8) with cp(r, ) =0 j, one can check the
virial theorem'

(B4)
6KH + V+ W 3P))V

where g =—3m'' is the atomic volume.

(B'7)
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