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The flow of magnetized plasma is governed by a large number of coupled equations (Maxwell’s, Euler’s,
conservation of energy and of baryon number) so that the solution of a problem in general-relativistic
magnetohydrodynamics is very complicated, even if symmetries are present. We present here a number of
new conservation laws which make the solution process easier. We obtain the general criteria for a flux
conservation law to exist. We apply them to obtain the relativistic versions of the conservation of magnetic
flux and of Kelvin’s circulation theorem for an unmagnetized fluid, as well as a new flux conservation law for
a charged fluid. For stationary and axial symmetry we find conservation laws for each component of the
Maxwell tensor; these are valid even if the plasma is nonperfect. For perfect plasma we find magnetic
generalizations of the relativistic Bernoulli theorems for an unmagnetized fluid. We also find a new
conservation law without previous analog. As an application of our results we show that extraction of
rotational energy from a black hole by interaction with a magnetized plasma is not possible in the stationary
state. This contradicts previous conclusions based on the approximation of geodesic flow. Finally, still for
stationary and axial symmetry, we find the magnetic generalization of Kelvin’s circulation theorem. With its
help we reduce the problem of solving for the field of flow and for the magnetic field to the solution of two
equations: baryon conservation and a Hamilton-Jacobi-type equation. A by-product of our derivations is an
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explicit formula for the strength of the magnetic field in terms of fluid variables.

I. INTRODUCTION

There are a number of astrophysical situations
in which general-relativistic magnetohydrodynamic
(GRM) effects may be important. Neutron stars
such as are found in pulsars and in some of the
compact x-ray sources are composed of strongly
magnetized degenerate plasma subject to strong
gravitational fields. The magnetosphere of such
a neutron star is again a highly conducting plasma
entrained in the star’s magnetic field and, in re-
gions close to the star, subject to its strong gravi-
tational field. In the environment of an accreting
black hole, such as may exist in some of the x-
ray sources and in quasars, plasma carrying a
frozen-in magnetic field falls in the strong gravi-
tational field of the hole. The relevance of GRM
to astrophysics is thus clear.

The equations of GRM have been developed over
the years by a number of people.'”® Unfortunately
there has been as yet little application of these
to astrophysical calculations. For example, pulsar
magnetospheres are still treated by special relati-
vity.® Accretion onto black holes has been treated
by general relativity, but in the approximation of
geodesic motion which neglects magnetic forces.”®
It appears that this trend resulted from the lack
of conservation laws in GRM which might have
made interesting calculations tractable. In this
paper we present a number of new conservation
laws in GRM, both for the general case and for
the case of stationary axisymmetric flow, which,
we believe, will be of help in GRM calculations for
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astrophysical processes.

In Sec. II we collect the relevant, equations for
GRM flow. We include a justification of the often-
used approximation of a vanishing electric field
in the comoving frame even when the anisotropy of
the conductivity due to the magnetic field is taken
into account. In Sec. III we obtain the conditions
under which a flux conservation law exists for
fluid flow. As applications we obtain the law of
magnetic-flux conservation in GRM, the general-
relativistic version of Kelvin’s theorem on the con-
servation of circulation, and a new flux conserva-
tion law for charged nonconducting fluids. From
the last two we show that the general-relativistic
flow of a perfect fluid (charged or neutral unmag-
netized) may be described by a Hamilton-Jacobi-
type equation.

In Sec. IV we present five conservation laws for
components of the electromagnetic field in the case
of a stationary axisymmetric GRM flow. These
laws are valid even if the fluid is imperfect. In
Sec. V we derive a conservation law without pre-
vious analog for a stationary axisymmetric GRM
flow of perfect plasma. It involves the chemical
potential and the covariant time and axial velocity
components. In Sec. VI we obtain the GRM gen-
eralizations of the Bernoulli theorems for station-
ary axisymmetric flow. These generalize the pre-
viously known results for unmagnetized fluid.” In
Sec. VII we derive a conservation law for a com-
bination of components of the magnetic field. It
gives a connection between the “constants of the
motion” involved in the conservation laws of Secs.
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V and VL

In Sec. VIII we apply our results on stationary
axisymmetric flow to the question of whether en-
ergy can be extracted from a rotating black hole
by interaction with an enveloping plasma. We find
that extraction is impossible. This conclusion is
at variance with that of Ruffini and Wilson,® who
reached their conclusion on the basis of the geo-
desic-motion approximation.

In Sec. IX we use our previous results to prove
a GRM generalization of Kelvin’s theorem valid
for a stationary axisymmetric flow. From this it
follows that under suitable boundary conditions
GRM flow may be described by a Hamilton-Jacobi-~
type equation.

A word about units. We use Gaussian units for
electromagnetism and set c=1. The signature for
the metric is +2.

II. THE BASIC EQUATIONS OF GENERAL-RELATIVISTIC
MAGNETOHYDRODYNAMICS

In GRM one is interested in the relativistic flow
of fluid interacting with the electromagnetic field.
The motion of the fluid is governed by the equa-
tions of motion

T*,,=0, (1)

where T*f is the total energy-momentum tensor

of the fluid and electromagnetic field. The elec-
tromagnetic field evolves according to the Maxwell
equations

Frog01=0 (2)
and
F“";B= 4nd ¢, (3)

where J* is the electric-current 4-vector. We
have assumed that the permittivity and permeabil -
ity of the plasma are unity, which is a good ap-
proximation in astrophysical contexts. In addition
to all the above, baryon number must be con-
served. Let n be the proper baryon density. One
can always define a velocity field u*, with u®u,

= -1, such that nu® is the baryon current. Thus

(nu®),,=0. (4)

The u® may be called the fluid 4-velocity, although
it must be remembered that it may not be repre-
sentative of the electron velocity.

The electric field according to a comoving ob-
server is defined as!

Ea = FaBuB ’ (5)
and the corresponding magnetic field as*

B,= ésasrﬁuBFN ’ (6)

where €4, is the Levi-Civita antisymmetric ten-
sor. Clearly E u*=B,u*=0 so that E, and B,
have only three independent components each, as
required on physical grounds. The electric cur-
rent may be decomposed into a component along
u* and components normal to it:

J%=eu® +j, (7

where j,u*=0. We see that €= —-J%u,, and there-
fore € is the charge density measured by the
comoving observer. Then €u* may be called the
convection current while j* is clearly the conduc-
tion current. We shall assume a linear relation
between j* and E* (Ohm’s law):

J%=eu® + 0*PE,. (8)

It is by no means true that ¢*® must be of the
form ¢g®®. In the presence of a magnetic field the
conductivity of a plasma must be anisotropic.® To
be specific let us consider the conductivity as cal-
culated in the collision-time approximation.'®!!
The standard result may easily be rewritten in 4-
tensor form:

0%8=o(g*® + EB*B® + {**"%,B,) . (9)

(The u, is required in order that ¢**u E,=0.) The
coefficients in (9) are given by'*!!

o=n,e*Tm™[1+(eTB/m)?]™", (10)
t=(et/m)?, (11)
L=et/m, (12)

where 7 is the collision time, 7, is the electron
density, e and m are the electron’s charge and
mass, and B®=B_ B,

Were B=0, the limit 7- = (collisions rare)
would correspond to the often-made approximation
of infinite conductivity. In this case it would be
legitimate to require E;=0 in order that J¢ be fin-
ite. This is the standard procedure in various
treatments of GRM. But clearly when B#0 in the
limit 7=,

08 ~n e*m ' B¥TB*B® + me ' c**"% B,),  (13)

so that the finiteness of J only implies that BE
-0, but says nothing about the components of E
normal to B*. However, one can justify the stan-
dard procedure under some conditions. Suppose
n,e*7/m is large (lots of free electrons) while at
the same time eB7/m is small compared to unity
(7 small compared to electron Larmor period).
Then it follows from (9) that

0% = (n,e*1/m)g*® , (14)

so that we recover the case of an isotropic highly
conducting fluid. In this case it is appropriate to
assume E_=0. The conditions mentioned above
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for this to be a good approximation have a good
chance to hold only if B is not too large, if n, is
large, and if the fluid is hot (and consequently 7
is short while the product »,7 is not small).

Since in some of the situations we enumerated
in Sec. I hot dense plasma are involved, we shall
have occasion to assume the condition

Ea=Fa5uB=0 (15)

in what follows. When this is true the energy-mo-
mentum tensor for the electromagnetic field can
be written as’

T:ﬁ= (B2u®u® + B*h*® — 2B*BF)/ 81 , (16)
where
haa =gaB +uau8 (17)

is the projection tensor into the space orthogonal
to u®.
It must be remembered that in general'?

T = —F*J,. (18)
Thus,
u, T2, = E*Jy= 0 E*E® (19)

is seen to represent the Joule heating of the plas-
ma by the electromagnetic field. Under the con-
ditions that justify (15) we have o,,E® finite, and
therefore the Joule heating vanishes—there is no
exchange of energy between electromagnetic field
and the internal degrees of freedom of the plasma.
In a sense, magnetic energy is conserved:

u,T%.,=0. (20)

a” em;

When one is not interested in the dissipative ef-
fects in the plasma, it is appropriate to regard it
as a perfect fluid. Then one can write the total
energy-momentum tensor as

T8 = T8 1 puu® + ph*® (21)

where p and p are the proper energy density and
pressure of the fluid, respectively. Substituting
into (1) and contracting with », we have, in view
of (20),

u®p, o +(p+plu*;,=0, (22)

which represents the conservation of fluid energy.
From the law of baryon conservation we have

un, o, +nu;,=0. (23)
Eliminating u®,, between (22) and (23) gives

dp/dT=n"Y(p+p)dn/dT , (24)

where d/dT=u%9, represents the (convective) de-
rivative along the flowline. Equation (24) is valid
along an arbitrary flowline. We can thus view the
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relation’?
w=dp/dn=n" (p+p) (25)

as valid generally; it is essentially a thermody-
namic relation. The quantity u is referred to as
the chemical potential.

Projecting Eq. (1) with 7., gives the (magnetic)
Euler equations:

(p+p+B*/4m)a*= —h*®((p + B>/8m) , - (B,B"),,/4n],
(26)

where a®=u® ® is the fluid’s 4-acceleration (note
that a®u,=0). The equations are clearly very com-
plicated and it would be handy to have first inte-
grals for them. In Secs. V and VI we shall present
such first integrals for the case of stationary axi-
symmetric flow.

Finally, we want to write down an expression for
B®, , that shall be of use to us in Sec. V. Taking
the divergence of (6), we have

B“;a=%€“57°(u8;aF75+u5F7°;a) . (27

In view of (2) the second term in (27) vanishes.
Now in the high-conductivity case E,~ 0. Thus,
since B® and u* are the only vectors left, one must
have up to a factor,

2€**"F  =y®B* —u*B®. (28)

It is easy to verify that (6) follows from (28); this
verifies the numerical factor in (28). Substituting
(28) into (27) we have

B*, ,=a,B*, (29)

which is the required result. It was earlier given
by Yodzis® and Banerji.*

III. FLUX CONSERVATION LAWS

The conservation of magnetic flux through a con-
tour comoving with a highly conducting fluid is a
well-known result of magnetohydrodynamics.®
Since it is a local law, it must also be true in
GRM. Here we want to consider the general con-
ditions under which one can obtain flux conserva-
tion laws (even others than magnetic-flux conser-
vation) for fluid flow. Any such law will have to be
of the form

4

2 (V*aa,)=0, (30)

where V* is the vector whose flux is conserved
while dA , is a vectorial element of area carried
by the fluid in its motion. It suffices to consider
a quadrangular element whose sides are repre-
sented by two infinitesimal vectors £* and n*.



1812 JACOB D. BEKENSTEIN AND ELIEZER ORON 18

Then
dA,= €a875u857n6 ’ (31)

as may be verified by going to the comoving frame
where %#=(1,0,0,0). The conservation law then
takes the form

d
<= (waE°7) =0, (32)
where
waﬂ=€70uBVyuu- (33)

The question, then, is what conditions must an
antisymmetric tensor w,, satisfy in order for a
conservation law of the form (32) to exist.
Carrying out the differentiation in (32) explicitly,
and replacing w g, in terms of w;,4.,;, we get
d
Zl—'? (wasganﬂ) = (3w[a5;7] —Wya;8 = va:a)uyganB
+ W, g £ P+ w0 g EOP, U, (34)

Now, since the area element is carried by the
fluid, so must the vectors £* and n®. Mathemati-
cally speaking, this means that the Lie derivative
of £ (or n®) along #* must vanish.'* Thus,

£ " =u% 8, (35)

i

and a similar relation for n%. Substituting these
into (34), and shifting indices around we can write
the result as

d
d—T(waBEanB) = [(waruy):ﬂ - (wayuy); «
+ 30y o5, 0" 15T, (36)
We now see that the conservation law will hold if
woguf=0 (37)
and

Wiag;y1=0. (38)

We note that (37) is consistent with (33), which
means that the conservation law can also be written
in the form (30).

If we choose w,z as the electromagnetic field,
then (38) is satisfied by virtue of Maxwell’s equa-
tions (2) while (37) follows from (15) in the high-
conductivity case. It is easy to see by comparing
(33) with (6) that V“ is proportional to B*. Thus
we obtain a conservation law which, in the form
(30), is evidently the law of magnetic-flux conser-
vation in GRM. The existence of such a law was
well known earlier.? Applications of this law are
manifold. For example, from it one deduces cor-
rectly the expected strength of the magnetic field
of a pulsar starting from the typical magnetic field

in a massive star. For an alternative way of stat-
ing this law see Appendix A.

As a second application of our conclusion, con-
sider a plasma in which the magnetic pressure B%/
87 is negligible compared to the fluid pressure.
This may be relevant to the study of accretion of
plasma from the interstellar medium by a lone
black hole. It then follows from (26) that

(p+p)a®=—h*p 4, (39)

which are the ordinary Euler equations. Now dif-
ferentiate (25) and divide by p to obtain

ps=(p+pIK o/ 1. (40)
Therefore (39) can be written as
pa® + (uuf+g*®)u 4=0. (41)

This equation can be thrown into a suggestive form,
due originally to Khalatnikov,'* be defining the anti-
symmetric tensor

Wos = (Httg) ;g = (Httg)q. (42)

Then (41) is equivalent to w,zu®=0.

In addition, because w4 is a curl, it automati-
cally satisfies (38). Thus we again have a flux con-
servation law of the form (32). The vector V? is
in this case

1
VO=3€y w o= L€y u,. = LW, (43)

which is just the vorticity vector of the fluid times
. Thus (30) represents the generalization of Kel-
vin’s theorem of the conservation of circulation's:

d [+3 -
= (Hw*dA,) =0. (44)

These results may be used as follows. Ina si-
tuation where the flow at large distances from the
region of interest is uniform and nonrelativistic,
w,g Will vanish asymptotically (i is nearly con-
stant since p and the internal energy density are
negligible compared to the rest energy density).
By the conservation law, w,, must vanish along all
flowlines, even into the relativistic region (so long
as B?/8m <p). By (42) it then follows that

By =d ,, (45)

where & is some scalar function. Then by the
normalization of %,

V,BVP= —p?, (46)

which is a Hamilton-Jacobi equation with “variable
mass” u. To solve for the flow, then, one has to
solve only two equations, (46) and (4) together with
an equation of state, instead of the five equations
(1) and (4). Further simplification results if there
are symmetries. For example, if the flow is sta-
tionary and axisymmetric, then in order that pu,
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share the symmetries we must have
&=S(x',x%) + Lx® - Ex°, (47)

where L and E are constants, and where x° (x°) is
the time (axial) coordinate. Thus the problem re-
duces to solving two partial-differential equations
in two variables (x' and x?). It follows from (45)
and (47) that

puy,=-E, (48a)
l-‘-u3= L, (48b)

These are general relativistic generalizations of
Bernoulli’s theorem for potential flow.'®

As a third application of our conditions, consid-
er the relativistic flow of a uniformly charged non-
conducting ideal fluid. We might meet such a flow
in a massive neutron star’s interior where, ac-
cording to calculations,® the free protons form a
charged superfluid. Now a superfluid flows through
other material without impediment; it is also de-
void of viscosity. Thus we may regard the proton
component as a uniformly charged fluid flowing by
itself and interacting only with the electromagnet-
ic and gravitational fields. In such a description
there is no place for a conduction current. Thus
we may write (8) as

J%=enu®, (49)

where e is the proton charge. The energy-mom-
entum tensor will be of the form (21) where the
electromagnetic part must now include the contri-
bution of E, which does not vanish here.

Taking the divergence of 7*#, and substituting
(18) and (49) we have as the Euler equations

(p+p)a®=—h*p 4+ enF*Pu,, (50)

Replacing p, , from (40) and (p+p) from (25) we
turn this into the form

pa® + (U + g8, — eF*Pu,=0, (51)
Defining
Wop = (Httg); o — (Mtty);5+ €F o, (52)

we see that (51) is equivalent to w,u®=0.

In addition, since F,; is a curl, the full w,, is
a curl and it automatically satisfies (38). Thus we
have a flux conservation law like (32). Passing to
the form (30) we have on the basis of previous re-
sults

d—df-[(uwa —eB*)dA,]=0. (53)

Thus for a uniformly charged fluid only a combin-
ation of circulation and magnetic flux is conserved.
In precise analogy to our treatment for the un-

charged fluid we conclude that if in the region

where the flow originates conditions are such that
w,g=0, then throughout the region one can take

Bu,+eA,=® ,, (54)

where A, is the electromagnetic vector potential.
Then it follows from #*u,= -1 that

(Vo —eA)B(V* —eA*)d = —p?, (55)

which is the Hamilton-Jacobi equation for a charged
particle with variable mass u.

IV. CONSERVATION LAWS FOR THE ELECTROMAGNETIC
FIELD IN THE STATIONARY AXISYMMETRIC CASE

We now specialize our considerations to the case
of stationary axisymmetric flow in a stationary
axisymmetric spacetime. This case would be of
relevance in studying accretion by a rotating black
hole, or the dynamics of a pulsar magnetosphere
in the aligned magnetic axis model (Goldreich-
Julian approach).!® We take x° (x°) to be the time
(axial) coordinate and choose the other coordinates
such that

gaB.0=gaB.3=0' (56)

We make no other assumption about the form of the
metric. The condition that the electromagnetic
field and the field of flow are stationary and axi-
symmetric means that the Lie derivatives of all
relevant quantities along the Killing vectors £

=06¢ and £$ =067 must vanish. Equivalently, in our
coordinates,

Fas,o=FaB,3=0 (57)

and
ua'0=ua13=n.0=n.3=pn°=p03=0' (58)

Our object is to display a number of conservation
laws for the components of F,, which follow from
the symmetries.

In view of the symmetries, the Maxwell equa-
tions (2) give

Fos,1=F03.2=0, (59)
F13,2+Faz,1=0y (60)
Fio,2+Fo3,,=0. (61)

It is clear from (57) and (59) that F, is a constant.
With reasonable asymptotic conditions it can be
taken to vanish, and we shall assume this hence-
forth.

Assuming a large conductivity, we have con-
dition (15) from which follow

Fy,= —u'F,,/u?, (62)
Fyy= —u'Fy/u?, (63)
F,=(u®Fg, +u°F,))/u. (64)
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Substituting (62) into (61) and dividing through by
F,, we get

- uz(ul/uz),l = (ulFOI,l + “zFox.z)/Fm

=d(InF,)/dT. (65)
Similarly from (63) and (60) one gets
—u®(u*/u?),, = d(InF)/dr. (66)

Now by subtracting (65) from (66) we see that F,,/
F,, is conserved along each flowline. Thus

Fox/F:u:A, (67)

where A may vary only from flowline to flowline.
From the ratio of (63) and (62) we see that

Fy,/Fy,=A. (68)
Let us now return to (66) and write it as
d(InE))d7= —u® , +u°u®, ,/u?, (69)

where account has been taken of (58). From bary-
on-number conservation it follows that

d
u“",=—a?1n(V—g ). (70)
With the aid of this we can cast (69) into the form
d F
LSy, (71)
ar V=g nu?
Thus

F

?@_f c, (72)
—gnu

where C may differ from flowline to flowline but
is conserved along each flowline. Now it follows
immediately from (63) that

F

—23 __C, 73
'J:g‘-nul ( )

Finally, it follows from (64), (67), and (72) that
—Fu _c (74)
\/:g-'n(ua'f'Auo)

We have thus obtained five conservation laws (67),
(68), and (72)—(74) for components of the electro-
magnetic field. Effectively, these are first inte-
grals of the Maxwell equations (2). Given the field
of flow (n and «*) and initial conditions for F g (in
the asymptotic region, for example), the first in-
tegrals determine F,; everywhere. We point out
that all results in this section are valid even if the
fluid is viscous since we did not assume yet that
the fluid is ideal.

V. CONSERVATION LAW FOR THE COMPONENT
OF EULER’S EQUATION ALONG THE MAGNETIC FIELD

Let us contract Euler’s equations (26) with B,.
Recalling that #*B,=0 we have
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(p+p+B*/4m)Ba*= ~p B*+B*B*, /41,  (15)

Replacing B a® by (29) and b, bY (40) and cancel-
ing out terms, we can write the result as

(kB®%),4=0. (76)

Although this looks like Gauss’s law for the mag-
netic field, one must.remember that it also con-
tains information about the dynamics of the (per-
fect) fluid.

Writing out (76) explicitly with account taken of
the symmetries [B® ,= B* ;=0 follows from (57),
(58), and (6)], we have

(BV=g),, +(BY =g),,= - V=g [(Inu),, B* + (Inp), ,B?].
(77)

The B' and B? may be computed directly from the
definition (6). Replacing each component of F o
with the help of (67), (68), and (72)-(74), we get

VogB'= - C(u, - Au)V—gnu*, (78)
Vg B?= = Cu, - Au )V —g mi®. (79)

When these are substituted into (77) and use is
made of baryon conservation one gets (recall C is
conserved)

- CV=gn[(uy - Auy), ju* + (uy — Aug) 2%)
= C\C-}n(uo ~Au,) [(lnu.).lu‘ + (ln#)'guzl . (80)

Dividing this through by CV—gn(u, — Au,) and re-
membering the symmetries, we have

2 Infutu - Au]=0. (81)

Thus we have
Wuy —Aug) = puy(&F —AES) =D, (82)

where D is conserved along each flowline, though
it may vary from flowline to flowline. This law
has no analog in perfect-fluid dynamics. Now we
shall consider some that do.

VI. GENERALIZATIONS OF BERNOULLI’'S THEOREM

In Newtonian physics the sum of the specific en-
thalpy, specific kinetic energy and gravitational
potential for an ideal fluid is conserved along each
flowline for stationary flow.'* For relativistic flow
one has the following generalization of this Ber-
noulli theorem’:

pu k= -E, (83)

where E is constant along each flowline. An anal-
ogous law applies for £5. Once a sizable magnetic
field is present these conservation laws break
down. We now show how to generalize them to in-
clude effects of the magnetic field.
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Let £ denote either £ or £§. It satisfies Kill-
ing’s equation!?

gm;B""EB;::vz=o (84)
by virtue of the symmetry. One may define a cur-
rent vector

px=To8g, (85)

which, by virtue of (1), the symmetry of 7%, and
(84), is divergenceless:

pe,, =0. (86)

For £, —P“ represents the (conserved) energy
current; for £3, P® represents the (conserved) an-
gular momentum current. This is all very general.
Specializing now to the case of a highly conducting
magnetized perfect fluid we have from (21), with
the notation

X = U+ B%/4mn, (87)
that
P®=xugtPnu® + (p+B%/8m)E* — Byt°B*/4n.  (88)

In taking the divergence of P* we must remember
that the divergence of nu® vanishes, that the grad-
ient of p+B%/8m along £* vanishes by the symmetry,
and that £%,,=0 by the trace of (84). The result
is

(Xugt®), onu® — (Byt®), ,B%/4m — (ByE#)B®, /41 =0.
(89)

By virtue of (76) we may replace B%, by
—(lnp),,B*. By the symmetries, only derivatives
with respect to x' and x® can appear in (89). Re-
placing B! and B? wherever they appear by (78) and
(79), and dividing through by n, we have

d C
C_l?(xusgs) + E(“o —Aus)

d d
x| 35 (Bat) - By () | =0. (90

The derivative of Iny may be evaluated by means
of (81). The final result is

d

C
d—.r'[xua’;’“+a;(uo —Aug)BBE”] =0. (91)

We thus have the following generalizations of the
Bernoulli theorems:

xuagta + Cum(gl‘x _Agz)BB£?/41r= - E, (92)
XuokG + Cug(Ef ~AEG)BE, /4m=L, (93)
where E and L are conserved along each flowline,

but may vary from flowlineto flowline. The mag-
netic corrections implicit in (92) and (93) are sig-

nificant when the magnetic pressure is comparable
to p.

It is important to be sure that the conservation
laws (82), (92), and (93) are really independent.
The law (82) is effectively the projection of (1) along
B,. Inview of (85), the laws (92) and (93) are the
projection of (1) along the Killing vectors since

(T°0Ey), = T*%, &g (94)

But since B*, £7, and £J are clearly linearly in-
dependent, the laws must be independent. It is
also important to note that each of the two Ber-
noulli-type laws (92) and (93) is valid only if both
symmetries are present, unlike the case for a
nonmagnetized fluid where each symmetry gives
rise to its own law independently.

VII. CONSERVATION OF MAGNETIC ENERGY

We pointed out in Sec. II that in the high-conduc-
tivity limit, internal energy and magnetic energy
are not exchanged, i.e., (20) is true. Our object
here is to write this differential law as the con-
servation of a certain quantity along a flowline.
From the new form we shall obtain a connection
between the constants of integration D, A, E, and
L.

Substituting (16) into (20) and remembering that
a*u,=B%u,=0, we have

dB®/dT= - 2B**,, - 2B, B*u". (95)

Now, from B, u®=0 it follows by covariant differ-
entiation and contraction with B? that

B,,;B*u® = — B B*u®, (96)
whereas,
B,B°u® =B, B*u® s+ B, BT 2. (97

The term involving the Christoffel symbols may be
obtained from the result

dB*/dt=(B,B%) ju"=2B,B* °+2B B*Tsu’.
(98)

In making all the replacements in (95) it is also
convenient to use

B,B® guf=dB?/dT - B, zu°B* (99)
and
B,B*u® ,= - B, ,u*B® (100)

which follow directly from B,B*=B? and B,u*=0,
respectively, as well as

u®, = —n"tdn/dr, (101)
which follows from (4). The final result is

dB?/dT - B*n™\dn/dT+(B, 4~ By, Ju®B=0. (102)
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We may simplify (102) by recalling that all de-
rivatives of B, with respect to x° or x* must van-
ish. In view of the form of B' and B? given by (78)
and (79) we get

B™%dB?/dt —n™'dn/dt
+B2[( fu® - B®dB,/d7 +( fu® - B®)dB,/d7]=0,
(103)
where
f==Cnl(p, -Au,). (104)

By going back to the definition of B*, (6), and com-
puting the components of F,, from (67), (68), and
(72)-(74), we have

fu® —B°=Cn, (105)
fu® -B3= — CAn. (106)
Thus (103) reduces to
2
%[%W(BO—ABS)} -0, (107)

which is the required conservation law.
We may also write (107) as

B?/n+C(B,-AB,)=F, (108)

where F is conserved along each flowline. Let us
now take (92) and subtract from it A times (93).
In view of (82) and (108) we get

D+ F(u, —Au,)/4r=—E —AL. (109)

Clearly [see (82)] u, —Au, is not in general con-
served along a flowline. The other terms in (109)
are conserved; thus we must have F=0, and con-
sequently

D=_-E -AL. (110)

Thus D is not an independent “constant of the mo-
tion.” Once D is chosen as in (110), the conserva-
tion law (107) becomes a consequence of the laws
(82) and (92), (93).

VIII. ON EXTRACTION OF ENERGY FROM A BLACK HOLE

The energy source of a pulsar is the rotation of
a neutron star. Is there any astrophysical phe-
nomenon which is powered by the rotational energy
of a black hole? One might put forward some of
the compact x-ray sources and the quasars as pos-
sible candidates. In both cases there is evidence
consistent with the presence of a black hole,'” but
in both cases the energy may well be liberated by
accretionof gas onto the hole, rather than being
rotational in origin. Clearly the answer to our
question depends on whether black-hole rotational
energy is extractable in an astrophysically realis-

tic way. That the extraction is possible in princi-
ple was first demonstrated by Penrose.!® Recently
Piran and Shaham'® proposed an astrophysically
realistic mechanism based on Penrose processes to
extract black-hole rotational energy and produce
the mysterious y-ray bursts.?® By its very nature
this mechanism extracts energy in spurts. Is there
a mechanism capable of extracting energy steadily ?

The straightforward analog of the pulsar mech-
anism is ruled out because, unlike a pulsar, an
astrophysical black hole is expected to be devoid
of a magnetic field.* One might, however, hope
that the magnetic field frozen into plasma sur-
rounding a black hole might accomplish the ex-
traction of energy, perhaps with the help of the
dragging of inertial frames. In this context the
question may be posed as follows: Is outflow of
energy from a rotating black hole possible when
the hole is surrounded by a magnetized plasma in
a stationary state? In view of a general theorem
of Hawking,?® one may also assume the system to
be axisymmetric.

Ruffini and Wilson® have claimed that the answer
to the question posed earlier is positive on the ba-
sis of a calculation of the stationary axisymmetric
flow of highly conducting magnetized plasma in the
vicinity of a Kerr black hole. Their conclusion
may be questioned since it was reached by neglect-
ing the influence of the magnetic field on the mo-
tion (geodesic flowlines), while taking it into ac-
count in the energy transport. Now that we have
several results about magnetohydrodynamic flow
which take into account fully the effects of the mag-
netic field, we can check whether the result in
question is valid in general, or is an artifact of
the assumptions made.

We shall not have to assume that the black hole
is of the Kerr type; thus our argument will hold
even if the enveloping plasma is massive enough
to perturb the metric significantly. Now consider
a spacelike 2-surface Z, sharing the symmetries
of the problem, which encloses the black hole. It
must be described by an equation of the form

glx',x?) = const, (111)

where g is some function; there is no x° or x° de-
pendence in view of the symmetries. The sur-
face’s normal vector, N,=g,,, clearly has van-
ishing N, and N, components. Recalling that the
energy current is given by -7 [see (85)], we see
that the mass energy M of the black hole must
change at a rate

M= f TSN, dA , (112)
C

where dA is the area element of Z, and N, has
been chosen as the appropriately normalized out-
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ward normal. It is understood that = is chosen
close enough to the black-hole horizon. Were we
to be interested in the rate at which the black hole
absorbs baryon number b, we would write

b=- [ mumN,da (113)
T
because nu® is the baryon current.

From (88), (78), and (79) we have for the compon~
ents Tj and T2

Té = [Xuy+ Cluy — Aug)B,/4n | nu' . (114)
Thus by (92)
M=— f Enu®N.,dA , (115)
C

where E at each point on £ may be evaluated any-
where along the particular flowline. Comparing
(113) and (115) we see that each baryon adds en-
ergy E to the black hole, where E refers to its
own flowline. Thus, the question of whether ener-
gy outflow from a rotating black hole is possible
hinges on the sign of E.

To determine the sign let us with the help of (78),
(79), and the condition B u®=0 rewrite (92) in the
form

E= —Xu, — (B,u' + Bu® + Bau®)(B*/u* + B*/n?)
X (8mnu®)™t. (116)

Since E is conserved along a flowline, it may be
evaluated far from the black hole. There we ex-
pect the flow to be nonrelativistic; thus in asymp-
totically flat coordinates u°~1, u,~ -1 and u*, %%,
and «°® are the ordinary space components of the
velocity. We see that the last term in (116) is of
order B*/8mn with indeterminate sign. Now, B?/
8mn is the magnetic energy per baryon. In the as-
ymptotic regime it is surely much smaller than the
rest energy per baryon, which itself is smaller
than x. Thus on each flowline which comes from
the asymptotic region, E must be positive. But in
steady state every flowline which enters the black
hole must come from the asymptotic region. It
follows from (115) that M has the same sign as b,
namely positive; the black hole cannot lose energy.
Energy extraction is not possible in the station-
ary state, no matter what the flow pattern is. Ap-
parently the contrary conclusion reached by Ruf-
fini and Wilson® is an artifact of the geodesic ap-
proximation.

It is still possible that extraction of energy by a
magnetized plasma may be possible in a time-de-
pendent situation; such extraction might have
something to do with the short-timescale vari-
ability of quasars and Lacertid objects. It is also
possible that dissipative effects due to viscosity

(especially in shocks) or finite electrical conduc-
tivity may make extraclion possible, though this
seems less likely.

IX. A CIRCULATION CONSERVATION THEOREM IN GRM

For an unmagnetized perfect fluid one has the
generalized Bernoulli theorem (83) according to
which pn, is conserved along each flowline in sta-
tionary flow. In addition, for a perfect fluid one
has the generalized Kelvin theorem (44). From it
under appropriate boundary conditions follows that
ULu, is not only conserved along flowlines, but is
the same number for all flowlines [see (48a)].
Now, for a magnetized plasma we have the Ber-
noulli-type result (92). To show further that E in
(92) is the same for all flowlines, we would, by
analogy with the preceding discussion, have to
first find a Kelvin-type theorem for a magnetized
plasma. We have not succeeded in finding such a
theorem valid under all conditions, but have
proved one for axisymmetric stationary flow. This
is sufficient to show that E is constant from flow-
line to flowline.

Let us take the tensor w,, of Sec. III to be the
curl of the vector

2%=xu®+Clu, — Auy)B*/4m , (117)

where C is defined by (72); it is clear that the as-

sumptions of stationary axisymmetric flow has al-

ready been made. By its very definition w_, sat-

isfies (38). We now show it also satisfies (37).
Directly from the definition

Wogt® = Xttg ; B =X, o = X3 gt® = X, g0,
—(CDu™B,) g/ 4m +(CDu™By) uf/4m
(118)

where use has been made of (82). We now proceed
to rewrite each of the six terms in (118). The first
term vanishes in view of the normalization of u,.
Differentiating x explicitly and taking account of
(25) we have for the second term

X, = —np _(32/47”1)'&. (119)
The third term in (118) is given by (26):
—Xtho; tl® =1 (p + BY/81) o + 17 (p + B?/8M) géu,
—n"(By;sB° + BB, + u u B®, B")/4r .
(120)

The fourth term may be rewritten by use of the
expression u,T%,;=0, which follows from (1).
Substituting (21) into it and making use of (23) gives

‘X,BuBua = _n'l(p + B2/81r),5u8ua
+n" B%, Bugu,/4m . (121)



1818 JACOB D. BEKENSTEIN AND ELIEZER ORON 18

By the conservation of CD along flowlines, the
fifth term in (120) reduces to

-(CDu™B,) gu®/4m= ~CD(B, g — p™'p PB,)/4mp ,
(122)

while by the orthogonality of «® and B,, the sixth
term reduces to

(CDp™By), ,uf/4m = CDU™ By P /4w . (123)

Substitution of (119)-(123) into (118) gives
wogt = (3B, = B,;B® — B B",;)/4mn — (B?/4mn) ,
—CD(B, s -Bg, o — L™ 1 gB,)/ 4. (124)

This expression is further simplified as follows.
From (76), (78), (79), and (82) we have

Bﬂ;ﬂz _;,c.";.l.’ﬂl':"B:CDnu.'Z;‘L.Bu‘3 , (125)

where we have used the symmetries. Next we note

that
%Bz,a—Ba;BBﬂ=(B ‘Ba;B)B8=(BB.a'Ba,B)BB‘

(126)

[:H%

Thus, due to cancellations,
wogu®=(By,, — By, 5)(B® + CDnp™uf)/4mn
_(Bz/4ﬂn)'a. (127)

Now from (82), (78), (79), and (104)—-(106) it fol-
lows that

B® 4 CDnp™uP = Cn(=8%,+ A8%,) . (128)
Therefore, in view of the symmetries,
wygut®= [B*/n+C(B, -AB,)] ,/4m. (129)

But from (108) and the conclusion that F=0 it fol-
lows that the contents of the square brackets in
(129) vanish. Thus condition (37) is satisfied and
there is a conservation law of the form (32) or
(30).

We have thus obtained a GRM generalization of
Kelvin’s theorem for the case of stationary axi-
symmetric flow. One application of this result
concerns flow for which asymptotically w,,~— 0.
This would be the case for asymptotically non-
relativistic and uniform flow with a uniform mag-
netic field. By our theorem w4 is zero every-
where. Thus z, has to be the gradient of some
scalar &. For the z, to be independent of x° and
x%, & must be of the form (47), where E and L
are constants. From z,=® ,and z,=® ; we re-
cover our previous results (92) and (93), except
this time E and L are the same for all flowlines.

By squaring z,=&, , and using (82) we obtain

v, ®V&= —(x? - C?D*u"2B%/167%) , (130)

which is a Hamilton-Jacobi equation for a particle

with variable mass. In solving (130) it may be es-
sential to eliminate B? and leave only fluid vari-
ables. This is done as follows. We write (128) as

B,=-CDnptuy, — Cn(goy —AZsy) - (131)
Then by forming B? and using (82) again we have
B?=C*n*(D?u"2 + g0 — 2A80; +A%gy,) (132)

which is the desired relation. Once & is solved
for, u, follows from z,=& ,, from which B, is
eliminated by means of (131). Then B, is recov-
ered. Thus the problem of determining the flow
field and the magnetic field reduces to solving two
equations, (130), and (4) supplemented by an ap-
propriate equation of state.

Incidentally, (132) is the law of growth of the
magnetic field. We notice the tendency of B to in-
crease as n/u. Since L is expected to increase
slower than »!/3 (this is the law for extreme rel-
ativistic gas), B will always grow with », and
B?/n will grow faster than u until the extreme rel-
ativistic regime is reached. Thus the role of the
magnetic field increases during the inflow pro-
cess and there is some indication that the magnetic
energy per baryon reaches some sort of equiparti-
tion with the fluid energy per baryon.
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APPENDIX

In nonrelativistic magnetohydrodynamics the law
of magnetic-flux conservation can also be ex-
pressed by saying that if two nearby fluid elements
lie on a magnetic line at one instant, they always
do so, while B divided by the density varies as the
distance between them.® The relativistic form of
this statement is obtained as follows.

Consider a vector n* between two nearby fluid
elements. It is frozen into the fluid and thus it
must be Lie-transported along the velocity:

Dn*/dr=u*; n*. (A1)

The spacelike part of n* with respect to the fluid
velocity k*%n, is orthogonal to u,. We call it 7*,
and write

" =7 - ngafut . (A2)

Substituting this into (A1), making use of fj u*
=a,u*=0, and simplifying, we get

Dij*/dt=u*, 7* +u"T,a® . (A3)
Now for a highly conducting plasma’
DB*/dr=u*, B* +a,Bu* —u®, B* . (A4)
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Substituting »*, , from (4) we find

D (B , B* , B°
a7<7>—u ;a—n—+u aa—n—. (A5)

We now see that B*/» and 7* obey the same type
of equation. If n* connects two fluid elements

which lie on a magnetic field line at a given in-
stant (as seen by a comoving observer), then *
will be proportional to B*/n at that instant. By
(A3) and (A5) %* and B*/x will always remain pro-
portional with the same proportionality factor.
Thus the fluid elements remain on the magnetic
line, and B/n varies as the distance between them.
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