
PH YSICAL REVIE% D VOLUME 18, NUMBER 6 1. 5 SEPTEMBER 1978

Analysis of quantum-nondemolition measurement
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The quantum-nondemolition measurement process suggested by Braginsky and co-workers is analyzed and

shown not to work because of the fundamentally linear coupling between the oscillator and the measuring

apparatus. A second-order coupling would xvork but the effect is probably too small for experimental

realization.

Recently Braginsky ef al. ' ' (referred to here-
after as B), in examining the ultimate limits to
the sensitivity of gravitational radiation detection,
proposed a scheme by which it would be possible
to detect the energy of the electromagnetic modes
in a resonant cavity without disturbing the energy
of the system. The method was claimed to be
applicable even to the ground state of the cavity.

Although the claim that it is in principle possible
to measure the state of the resonator without dis-
turbing its energy significantly will be shown to
be true, the technique suggested in B is in princi-
ple unable to do so. The plan of this paper will be
to first describe and then analyze the B proposal. ,
and then to describe a technique in which it is
possible to achieve the above aim.

I. ANALYSIS OF FIRST-ORDER DETECTION

Since I will be referring to some details of the
B scheme, I will first describe the essential fea-
tures of that scheme.

An electromagnetic resonant cavity, idealized
as an I -C circuit, is postulated in which an
electromagnetic field exists in some quantum
state. The resonator is assumed to have only one
mode, of frequency v, and the possible states
therefore differ only in the number of quanta 'in

th'ks mode. The capacitor ls assumed to be a split
capacitor. An electron beam is fired between the
plates of one of the capacitors and is then focused
by an electron lens system, where the detectors
are located. The beam which has not been stopped
by the detectors is then focused through the second
capacitor (Fig. 1).

The idea behind the scheme is that in passing
through the first capacitor the electrons are given
some vertical momentum by the field within the
capacitor. The detectors are placed at the minima
of the diffraction pattern produced by the finite
width of the capacitor (or of a slit within the
capacitor) when the fieM within the capacitor is
zero. The presence of a field within the capacitor
will shift the diffraction pattern, and the rate at

which electrons are detected in the former minima
will be proportional to the squared intensity of the
field (Fig. 2).

The success of this design is based on two sepa-
rate claims

(a) The system can be arranged so that the elec
trons which are not detected will have a, negligible
effect on the state of the system.

(b) Those electrons which are detected have a
small probability of having disturbed the detector.
The arguments presented in B to support the
above claims are in general non-quantum-mech-
anical in nature (except for the occasional use of
discreteness of energy levels, etc.). Although a
quantum investigation supports assertion (a), it
does not support (b). The arguments for the pos-
sibility of realizing part (a) given in B are es-
sentially classical and will be reproduced here.

In going through the capacitor, the particle feels
a force in the y direction due to the field, designa-
ted with the abstract symbol q, such that the in-
teraction is of the form

m, = nqh(x),
N

where o.'represents a coupling constant (dependent
on the cha, rge of the particle and on the relation
between q and the electric field). h(x) here gives
the x dependence through the capacitor of the fieM.
Equation (1.1) is assumed to be derivable from a
Lagrangian of the form
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FIG. 1. The proposed Braginskii detection scheme.
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no subtleties there which would invalidate the
argument.

Consider the Lagrangian

= DETECTOR

FIG. 2. Interference pattern in the detector plane.

where the relation between q and E is such that the
Lagrangian for q takes this form.

The equation for q is then

dq„q,+ (t)'q= (ayh(x),

~a xa+ o(q&(x)//(L -x)+ a(qa -(o'qa),

where 8(x) is the unit step function which is 0 for x
&0. This system can be quantized and leads to a
Schrodinger equation describing its quantum be-
havior. If we expand the wave function in terms
of the states (f)/(q, I) of the free harmonic oscilla-
tor, we obtain a wave function of the form

g)I, (x, f)y, (q, I ),

from which we obtain an equation for the rate of
change of energy in the cavity,

dE 1 d l dq '
a a dq+ (()aq' = (a —yh(x)dt 2 dt dt dt

where the particle functions P& obey the equation

t ' = ——,—Q (aq„(t)&(x)&(L-x)P(,

or where we define

/aE = (a —y h(x) dt .dq qq(q)= jq;(qt)qq, (q, q)q, q

If h(x) is effectively a 5 function at x=0 and x=L
(of unit area), we obtain

dq(T) y(T) dq(0) v(o)v„dt v„

85400

f f/)) t (1.10)

where t= 0, T are the times at which the electron
passes through the two capacitors, and v„is
the velocity in the x direction.

If T ~s chosen to be a multiple of the period of
the resonator, and the lens system is designed so
that y(T) = -y(0), then the above expression for
bqE is zero (as the resonator is in free oscillation
between T = 0 and t = T, the "velocity" dq/df will
be periodic).

The above is a classical argument. %ill the
conclusion be valid if the whole system is treated
quantum mechanically 7 As the above system
with its lenses, etc. , and its two-dimensional
nature is difficult to analyze, a much simpler one-
dimensional system can be studied, which will
display the essential features. A two-dimensional
system will then be studied to show that there are

~ 0, j &1+1.

Expand the P in a perturbation series in o(, such
that (I), =Z, g/" here (I)'") is of order (a". Assume
that the only nonzero zeroth-order term is for j
=n, with

~ 2 eikX
y(0) (x I )

&-i(a /a)t

v 2n

The initial state therefore has the oscillator in the
nth state, and the particle has velocity k toward
the oscillator and originates from x= -~-

The only nonzero first-order terms are g„",',

as the interaction through q connects only these
states to g„'"to first order in n. The Green's
function solutions for these are given by

~ -5(x2/2)t elk' L

O q

e-i(x la)t ()t(qx } f cia'x(et(ir )q') L 1)
(2&) i [/a" ((('+ i0}] [I (/a It ')]

(1.12}
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For x& L, this becomes
e-@2& /2~l

&(&(» (x & f I) {qn) (&i(&&-s&l 1)
v gp i«(k —«)

while for x&0

yu& (x(i) f)
e-iFi/2 &(qs) &

ixx-
Il (ei(&!+Ã&I 1)

&2» i«{k+«)

N
q;+ ur'q = n8(x) e(J- —x)

—= qixe{x) e(L, —x) .

(1.15)

The former represents the wave exiting from the
far side of the interaction region while the lattex
represents reflection by the region. If the vel. oeity
fi is chosen so that (k —«)I =Lu'Ii=idT is an in-
tegra, l multiple of 2&i, the numerator in Eq. (1.14)
will then be zero.

For the reflected wave (1.15) no such simple con-
dition applies, as the condition that (k+ «)I, be a
multiple of 2m is almost impossible to realize in

practice for large k. However, this reflected
term is very small when compared with the trans-
mitted wave anyway [i.e. , is down by a factor of
order v/(«'!2) which is assumed to be small].

Classically, the oscillator obeys the equation

This result gives us confidence that a quantum
analysis of the setup in B would duplicate the class-
ical insofaras satisfying the reiluirement (a) to
reasonable precision, (Even classically perfect
compensation is not possible as the length of the
particle's path and the velocity of the particle
depend in detail on the unknown value of the field
as the particle passes the first capacitor. )

This leaves part (b) to worry about, a,nd the
above example demonstrates the probl. em. To
first order in a, one has either a wave which has
not been affected by the oscillator at all. (4'„")
or one has a wave (&j&",&) which has been affected,
but which has in the process changed the state
of the oscillator with certainty [i.e. , there are no
first-order terms of the form „&,„'"(x,t)]. Any
experimental technique must be designed so as
to reject those particles which would have been
there even if the interaction had never taken place,
and these are exactly the particles represented
theterms&1&„"&. If this rejection is perfect (e.g. ,
by looking in the minima of the diffraction pattern
of the unaffected particles), the only particles one
can detect axe those which have with certainty
affected the state of the osciHator. Therefore,
although it is true that a particle which passes
only through the left capacitor has a low prob-
ability of exciting the capacitor, those which are
detected have a probability of nearly unity of
affecting the state of the oscillator. As the first-
order terms will in general dominate those parti. -
cles which ar e detected, when compared with
higher-order terms, the probability of altering
the state by the measurement process is very
high.

The reason for this behavior lies in the property
of the hax monic oscillator that the expectation
value of the coordinate q in any energy eigenstate
is zero. Another way of looking at the problem i,s
to write q in terms of annihilation and creation
operators for quanta of the oscillator

T
hE= ixqdt = ix[q{t) -q(0)] .

ge $(&dt gt ef tent
+

~(d
(1.18)

When the particle is within the oscillator (i.e. ,
0 & x &L ) the eiluilibriumposition of the oscillator is
shifted to the point q= &, but during this time q
ls still R periodic function with pel lod 2'II' M.

Therefore, if 7.
' is chosen to be a multiple of this

period, the change in the oscillator energy caused
by the particle's traversing the oscillator is zero.
The classical condition for the oscillator to re-
main in its state after passage of the paxticle is
the same as the quantum condition —namely,
that {dT be an integral multiple of 2m. There is
no classical. analog to the reflected wave.

Any interaction that proceeds via q must do so by
annihilating ox' creRtlng R quantum ln the oscilla-
tor. Since the two processes will be about equal
a priori, the expectation value for the energy may
change little, but the fluctuations in the energy will
be increased. This accounts for the classical argu-
Dlents which would imply very little chRDge ln the
average energy.

The essential. result obtained from the analysis
so fRl 18 thRt for' the one-dimensional scheme
proposed, the nondernolition detection will not
work because the interaction is first order in
the coordinate q of the oscillator. TheB scheme
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proposed, however, is a two-dimensional scheme.
In one dimension the state of the detecting particle
can change only when accompanied by a change in

its energy. In two dimensions the direction of the
beam can change without necessarily being ac-
companied by a change in energy. One might expect
that the electron could bounce off of the electric
field without changing the energy of the oscillator,
in analogy with recoilless scattering in solid state
physics.

Furthermore, the above analysis has examined
only the first-order terms in the perturbation
series. In the two-dimensional case, it may be
that the higher-order terms are responsible for
the recoilless scattering" and their effect will
dominate the first-order terms.

II. ANALYSIS OF TKO-DIMENSIONAL SCHEME

To show that this does not happen, I will now

analyze a two-dimensional model of the experi-
ment proposed by Braginsky.

The model is defined by the Lagrangian

2 m(x'+ y') + 2 (q' —(o'q') —eqyh(x),

where h(x) will be taken to be given by

lxl&I,

0, lxl» ~

(2.1)

(2.2)

To connect with the actual system proposed by

Brag Hlsky,

~=~c v.!
(2.3)

where C is the capacitance (0.3 pF), ~ is the ang-
ular frequency of the oscillator (2 && 10"!sec), 2d
is the separation of the plates (10 ' m), V is the
voltage across the capacitor, and m is the mass of
the electron. In the analytic expressions, ns and
@ will be taken to be unity and will bereinserted into
expressions when necessary for numerical evalua-

tionn.

The above model seems to me to be a reasonable
model for the actual physical setup. There are a
number of terms neglected here. The electric
field inside the capacitor is assumed to be rigid",
i.e. , the shape of the modes between the plates
of the capacitor is assumed to be independent of
the position of the electron going through the cap-
acitor. The force on the e1.ectron due to its own
image charges is neglected. (These would be
independent of the state of the field in the cavity
anyway, and would thus not affect the rneasur-
ability of that field. ) The mode structure within
the cavity is assumed to have the form h(x)y, which

neglects the effects of fringing fields at the edges
of the capacitor. Using a more complicated ex-
pression for the shape of the mode would not
alter the conclusions reached here, but would com-
plicate the mathematics. All relativistic effects
are neglected, including the effects of any mag-
netic fields within the capacitor.

A quantity which operates as an effective coupling
constant is

(2.4)

The second-order terms wil. l be found to be of
order u' less than the first-order terms. This
quantity must be kept less than unity for a per-
turbation analysis to apply at all. For larger
values, all orders in a perturbation expansion
would become equally likely, a pnori, and would
almost certainly not result in a "nondemolition"
measurement.

I will assume that the incident rnomenturn of
the electron is p with a spread 5p (such that i5p!p
-10 ') and such that p'» 2~ (i.e. , the energy of
the electron is much greater than the energy of
a quantum of the oscillator).

The wave function for the electron oscillator
system is written as

g e,. (x, y, t)@,(q, f) 1 (2 5)

where P,. is the j -quanta eigenstate of the free
oscillator. The electron wave functions obey

i —+ —,+, 4,
,

= gyh(x)Q q„+,e' '8 $ 82 8 i(j"l )ut
8$ 2 8x 8y

(2.6)

qf' +(y)

I will be interested in the Fourier transform of

4,. in the region x&L. The Fourier transform of
C~"' in this region will be denoted by 4",."', where

e-& &A~x +A 2y )
(")(k"k.) = 4(")(x y) 2

x e"~'dxdy,

E= z (k, '+ k, ')

[the integral is defined for x&I by taking the
analytic extension of P',"'(x, y) for values of x
& Lto values of x& L]

The zeroth-order solution for the electron

The solutions for 0,. can be expanded in a perturba-
tion series in &,
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wave function is taken to be

e-intel(k&X+ k2y)

(2 9)

that direction by having altered the state of the
oscillator and the lowest-order terms which have
not altered the state of the oscillator. The prob-
ability densities for these two processes are,
respectively,

In order to mimic the effect of the finite width of
the capacitor, P"' is taken to be given by

&"= Q ~*fl(!"(& /„&)l'dk, ,
+ m

(2.11)

P('«(k„k~)= S (k, )
&md',

(2.10)

where S(k,) is some unit norm function strongly
peaked at k, = p and of width 5P (e.g. , a normalized
Gaussian).

The detection scheme envisaged is to measure
the number of electrons which are scattered into
the first minimum of the diffraction pattern. (The
lens serves to focus electrons with the same wave
number in the y direction onto a single spot on
the detector plane. ) I will in the following there-
fore calculate the probability of an electron scat-
tering with y-wave-number m/d (i.e. , into the first
minimum of the unperturbed diffraction pattern).

The terms which will interest me are the lowest-
order terms which correspond to scattering into

P~ '= & g
' k, 7t d 'dk,

(,(")'( )«&)= fdk(dk, (()"'(k„k,)q, 5'(k, —«()

-sin(k, —k, )L
k, (k, —k, )

k, =(k, '+k, ' —X'v 2(u)'~' .
After some manipulation this becomes

(2.12)

where a stands for n+1. [The lower-order term
2 Re(( ( &("&*), for nondisturbative scattering is
zero at the y -wave number of interest since g"'
is zero there. ]

The first-order amplitudes p,
"' are given by the

equation

8
0',"(i&,, «() =

I&—,~
+ = = l&q, ((&"&(k,«()

k sk &
' ' k(«"-k)

k —(p&p 2(y)(&& (2.13)

The only term which contributes to the scattering
into X = m/d is the term proportional to sg'"/s X.

One finally obtains

T-
2 r, and one obtains

P((& d e (2n+1}
1T

(2.16)

P"' = ' ' sin'(urL/p).d 'q'(2n+ 1&

7T (d
(2.14)

P(, &
d'e'(2n+ 1) &P

7Th) P
(2.15)

In the scheme envisaged by Braginsky, however,

The argument of the sin can be rewritten as wT/r
where T is the transit time through the capacitor
and & is the period. If T is chosen so as to min-
imize P"'(i.e. , T=7), the spread 5P in P also
becomes impor tant and one obtains

One must now calculate the second-order term P„"'
in order to estimate the probability P"' of an
electron scattering into y-wave number mid without
altering the state of the oscillator. Only if P"'
» P" ' can one be said to have performed a quantum
nondemolition measurement. If P"' » P"', any
electron detected will have almost certainly altered
the state of the oscillator. (In calculating g„"&
only those terms which depend on n are of impor-
tance as the other terms cannot give any informa-
tion as to the state of the oscillator. ) The full
expression for the second-order term is

$„"'(v,(r) = Q ' dk(dk, d«(d(«,
-4~ t&

+ W

&'(k, —&)&'(& —o) sin(p, —k()L sin(p —k)L
(g' —k, ' —i0)(y-k()(P k,)k— (2.1V)

(y 2+y 2 g2+ 2+)&/2 Q (Q 2+/ 2 (P)y/
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Because g+'(v, e/d) = 0, only those terms in the
above expression which depend on derivatives of
P"' with respect to its second argument will con-
tribute to P"'. The terms proportional to 8$"'/
8& in general have an amplitude which is smaller
than the amplitude of i(,"' by a factor of the order
of

(i.e. , the above represents the a wave of energy
k'/2 diffracted through a slit of width 2a in the y
direction). The effect of an electric field in the
slit is to lowest order to change value of the X at
which the maximum occurs. %'ith a time varying
fieM, the resultant wave becomes something like

@ fQ /Q)t ~ P„~cos~g ~fftx~ixaf~

These cannot significantly contribute to P~".
(Except for one term, they all have a similar
dependence on I as do P,"'. Therefore chosing
I so as to minimize P&» mill also minimize these
terms. )

The only significant term is therefore the term

. (as+ 1) 8', (sin&uI /v)'

mhich represents an oscillating diffraction pat-
tern. However, expanding H(X —& cosset) in
powers of o, the above becomes

&
4(A /2)g ~ y &iftx&j)ted~

(2.19)

Using the assumed form of g'0' this term gives
a contribution to P"' of

P(2) (an+ 1) d
[ ( I/ ))Q (2.20)

(note that choosing I so as to minimize P"' would
also minimize P"'). The ratio of Po' to P "' is
given by

The first tex'm is the diffraction pattern of the un-
disturbed wave, while the second represents to the
lowest order the oscillating pattern. Note that it
is made of particles not with energy k'/2 but of
(k'/2 + &o). The particle must have absorbed or
given up an energy of e to produce an oscillating
diffraction pattern. [Note that at s = 0, the y
dependence of the first-order term is

+y +Dat~
dX

= -afye(y+ a)8(a —y), (2.24)

=1 & 10 '(an+ 1)«1 for low n . (2.21)

This implies that only of the order of 0.1% of the
electrons detected at the diffraction minima mill
be electrons which have not altered the state of
t e osciuator.

The quantum-mechanical analysis presented
above is confusing mhen one attempts to think
classically. After all no energy is needed to alter
the direction of the electron. A rather more
qualitative argument can shorn horn this effect
arises quantum mechanically.

Let us write the beam after it passes through
the first capacitor (with zero field in the capacitor)
in the form

/2) t ~ y &fftxIX'~

q'= —[a'a+ aa' + a'e ""'+(a')'e*'"'] .
4P

(2.25)

The first tmo terms represent an interaction which
can measuxably alter the state of the particle
while leaving the energy of the oscillator un-
changed. If the expex iment can be designed so
that the time-dependent terms have very little
effect, one mill succeed in measuring the state of
the oscillator without altering its energy.

which is just the type of term expected for the
form of first-order pertuxbation at the capacitor
with an interaction of the form &5(x) yq. ]

The problem arises because the interaction is of
first order in q. If these first-order effects could
be arranged to all cancel out ther e could be a hope
for perturbing the particle without also perturbing
the energy of the oscillator. Alternatively, it
mouM be much simpler to design the experiment
so that all first-order effects are automatically
zex'o —namely y by makmg the lnteractlon second-
order in q. An interaction term of the form q'
can be written in terms of annihilation and creation
opex ators as
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III. SECOND-ORDER DETECTION The equation for g„is

The construction of an example of such a system
is straightforward. Consider the Lagrangian

L = a (x)'+ nq'f (x) + z (q' —~'q'), (3 1)

where q represents the abstract coordinate of the
oscillator, n is a coupling constant, and f (x)
gives the spatial dependance of the interaction of
the particle with the oscillator. A physical rea-
lization of the above system would be obtained by
letting the oscillator be an electromagnetic mode
in a cavity, where q will be related to the max-
imum electric field in the cavity, and q'f(x) is
the squared electric field along the path of the
particle. The coupling constant a will be related to
the polarizability of the particle in question. Such
a specific physical realization is not necessary for
the matter of principle being discussed, however.

For simplicity I will assume in any specific cal-
culations that f(x) is of the form

}(„=—[k'/2+ aq'„„f(x) ]X„.1 9
(3.8)

If the initial velocity is large enough, this can be
solved by a WKB approximation to give (for x) L)

-ik t/2 3(tf X+6)2
e e

van

where A is approximately one, and

(3.9)

I

=-~ q'„„f(x)q„+g q'„,(t)f(x)p, . (3.'I)
} jffl

To lowest order in ~ we can neglect the second
set of terms on the right-hand side. As q'„„is
independent of t, the problem reduces in this
order to the one-dimensional scattering problem
for X„=e' ' ' g„.One obtains

f(x) = —x&(x)&(L/2 -x)
2

~ }I — }9}L— }9}*—L12 }) (3.2)

([k'+2o.q'„„f(x)]'t'—k)dx
mao

" q'„„f(x)dx
k

Z 4, (x, t)g, (q, t), (3.3)

where P,. (q, t) is the normalized wave function for
the jth state of the free harmonic oscillator. The
wave equation for the system can now be written
as

, }t}, —g qo', , (t)f( )x}((}xt),~e j 8'

(3.4)

i.e. , f(x) has a triangular shape. (Classically this
gives a force on the particle which is constant in

the regions 0&x &L/2 and L/2 &x&L).
The quantization of this system is s traightf or-

ward. If we expand the wave function for the com-
bined particle-oscillator system in terms of the
wave functions for the free oscillator with fre-
quency ~ we obtain a wave function of the form

n
q nn

=q Qq „„T.2 (3.10)

(ei6 y) y(0) (3.11)

in the interference region.
The flux of incident particles represented by P„

is k /2w while the flux of particles in the inter-
ference region is

(3.12)

Here T is the time for the particle to traverse
the distance L in which the interaction occurs.
Such a phase shift is measurable by interferometry
techniques. Subtracting from P„the form it
would have had if the interaction had been zero,
namely, }t}'„"=e '~' 'e'~*/}/2v, we obtain

where I def ine

s'; }i}= f4'}q, (3.5)

The ratio of particles detected in the interference
region to the number of particles sent through the
interaction region is the ratio of these fluxes or

2 ei'
[y (x t)] e i&}} /a&t

n & in
v 2'

(3.6)

Let us define the initial conditions so that the
oscillator is in the pure state j= n, and the parti-
cle is coming into the interaction region with vel-
ocity k from x= -~. The boundary conditions are
therefore that near x= —~, only }t}„(x,t) has an
ingoing part which I will assume is of the form

(&~)
i

6

o.'(q'„„)',~'n'T'
2 2' (3.13)

where the value of q'„„,i.e. , (n/ar), has been
used.

In order to determine the state (i.e. , n) ac-
curately, the error in n introduced by the discrete
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Poisson nature of the detection process should be
less than 2..

(3.&4a)

j=n~2
e= 6 2(d, «= (k &4(d)

2 & (q2 )(t)e (()I / R )(

or

(N~) & n (3.14b)

2
=2()(ne ''" "'/(t(d)

We can write the solutions for either of y„„as
The total number of particles which must be
sent through the oscillator should therefore obey

A i (&0')x'
( ),/, —„„(,.

)
f(x)e dx

2(d (3.16) A yI I eik'x P ei( 0"r'c' ) L /2
y

2

(2(()'/' k" —(«'-+ t0} 2 (k —k'}L ')
(note that N is not dependent on which state the
oscillator is in). This experiment differs from
that of Braginsky et al. in that the detection of one
of the particles N~ does not imply that the oscilla-
tor has changed state.

The above analysis has been concerned only
with those particles for which the state of the
oscillator remains unchanged in the nth state.
One must now show that the total probability that
the state is changed by sending through N particles
is very small, and that the flux of particles which
have changed the state of the oscillator and which
enter the interference region is small. (ff most
of the flux in the interference region were due to
particl. es which had changed the state of the de-
tector, then the conditional probability that the
detector had changed state given that a particle
had been detected in the interference region would

be very large. )

To demonstrate that such a situation is possible,
I will calculate the form of the functions with jwn
to first order in O'. To lowest order in u, the
equation for g& is

(
i& j.—+ —,(()/ = —nq', .„(t)f(x)(t(„(x,t)

e coax
()(q',„(t)f(x)e.

&2m
'

(3.16)

lg j is n onzero on 1y for j= n a 2, and for th ese
terms it takes the form

e(~xL e((A-a)L /2 1)
(2(())/' 4«(k —«) (L /2}J

-( L e((k+s ) L/

(2w)'/' 4«(/;. + «)L/2 ), x+O.

(3.19)

The total flux in each of these modes leaving the
oscillator divided by the incident flux is thus

2 l(Cf- )L/

«(d 2 (k —«)L!2

eC (i+rf )'. /2

(k+ a)I. /2

~2n2 ei(~x ) L/2 ' 4 ] 4

uP (k —«)L/2 kL
(3.20)

where I have used ~ = k and have assumed that
over the spread 5k of a. wave packet the exponen-
tial minus one in the second term averages
out to of order unity. The second term represents
particles reflected from the oscilla. tor region and
one thus need not worry about detecting t:hem in the
inter fer ence reg ion, but only need cons ider
whether the total probability of transition to an
n +2 quantum state be small for N particles passing
through the oscillator. As N= 2(L) jn T, the
probability of transition t.o the n + 2 state due to
the second term in E(l. (2.20) is of order n'(kL) ',
For large enough k or I

„

this ca.n be made a.s
small as desired. Note, however, that for given
k, the probability of excitation increases with
increasing n. The first term is more int:cresting.

We can rewrite

q', „(t)=
e C2aut

[(n+ 1)(n+ 2)]'/'

[n(n —1)]' '
j =n+2

n 2 0

(3.17)

k —K = (d/(k+ K) 2(d/k (3.2&)

The probability that the oscillator will be excited
by some one of those of N particle which goes
through the oscillator is then given by

For order of magnitude estimates the square
roots will be replaced by their approximate value
n.

These equations for g„„maybe solved by
Green's function techniques. If we define for

n2
coT

{.'.22)

(This also is the probability that one of the N~

particles detected is a particle which has disturbed
the oscillator. The two needed conditions are
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therefore equivalent. ) By making coT very large
(i.e. , by making I very large) this term can be
made as small as desired. However, there is a
more efficient procedure. If we let (k —x)L/2
= M be an, integer multiple of 2m, then the term
in the numera, tor goes to zero. This can strictly
be true only for one value of A,' since T depends
inversely on k. However, if k differs from the
required value k, by &k, then

(k —K)L/T = (a T,(l —5k/k), (3.23)

and the probability of exciting the oscillator be-
comes

(3.24)

(Because k —x differs for the transitions to n+2
and n —2, one can never choose I and k so as
to satisfy the required relation for both transitions.
Qne can take this into account by saying that
5k/k is at least. 2&~k'. One can therefore make
the probability Of transition extremely small. )

Furthermore, the exact expression for the trans-
ition probability depends on the form assumed
for f(x}. If we define a function f,(x) such that

(3.25)

the power 4 which occurs in the various transition
probabilities is replaced by 2p. The phase shift
6 is, however, left unchanged. By choosing p
sufficiently large, the probabil. ities can be further
suppl essed.

This behavior can be clarified by examining the
classical equation for q

Q +(d g= &f(x}g . (3.26)

The particle therefore acts on the oscillator by
changing the frequency of the oscillator. Since
f(x) =f(f/U), by designing f so that the effective
oscillator frequency ((d' —uf)' ' changes slowly
with time, the state of the quantum oscillator will
adiabatically track the frequency shift rather than
jl-"r:fging to another state. By either increasing I
for a fixed k, or by increasing p for a fixed k and
L, one brings the system nearer this adiabatic
limit.

This suggests other possible techniques for mea-

suring the state of an electromagnetic mode in a
cavity. For example, a small needle conductor
can be introduced into the cavity on a torsion
fiber such that the natural frequency 0 of this
needle is much less than the frequency of the
cavity. The dipole moment induced in this needle
will. coupl. e the needle to the square of the elec-
tric field. The intera, ction will of the form n8'q'
(for small angles & from the direction of the 8
field). This represents a frequency-frequency
coupling in that the presence of energy in either
system alters the frequency of the other. Since
the needle's period is much longer than the field's,
the field will respond quasiadiabatically to the
motion of the needle, while the needle will re-
spond to the average energy in the cavity. If the
frequency of t.he needle can be monitored, it will
give an indication of the energy in the e1.ectro-
magnetic field.

A useful physical realization of the above
schemes is extremely difficult, especially be-
cause of the second-order nature of the interactions
necessary. Also, if effective interference ex-
periments were to be carried out, one would like
relatively long coherence lengths for the particles
being used. This suggests the use of photons
(which a.re also useful because of their zero mass
and of the constancy of their velocity). Unfortuna-
tely, the direct photon-photon coupling in vacuum
is extremely weak. However, if a material couM
be placed within the cavity whose optical properties
depended on the square of the applied field, it
cou&d be used to provide a coupling between the
optical photons used as detectors and the modes
in the cavity. (Alternatively by using photons
directly on a transparent bar .in such a way as to
induce a second-order coupling between the photons
and the cavity mode of interest one could dispense
with parametric amplifiers, etc. )
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