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The interior field of a thin mass shell of arbitrary angular momentum per unit mass —a is examined as a
poler series in a parameter (V' = 1 —2m/R + a'/R ') which measures the nearness of the shell to its

gravitational, radius. The exterior field is assumed to be the Kerr metric. Shell shape is arbitrary beyond the

requirement of sphericity in the limits a~0 or V~O. It is shown that, as V~O, the interior inertial

frames are dragged around rigidly at the same rate as the shell, for all a. A class of shapes is found for
which (in the same limit) the interior spacetime becomes completely Aat. This generalizes small-a results due

to Brill and Cohen and to De La Cruz and Israel. Limits for physically acceptable a are found which

correlate with related work by Smarr.

I. INTRODUCTION

In general relativity, it is expected that an ac-
celerated mass distribution will "drag" along with

it the inertial frames in its vicinity to a certain
extent, so that these frames will appear accel-
erated to an inertial observer at infinity. Such

frame dragging is associated with Mach's con-
cept of inertia, ' and is called a "Machian" effect.
Rotating, nearly spherical mass shells provide a
relatively tractable example of this dragging.
Consequently, they have been studied in some de-
tail, although sporadically. ' '

Here we are concerned with cases of "perfect"
dragging, where the inertial frames at and interior
to the shell are dragged around rigidly with the

same angular velocity as the shell, so that an

interior observer cannot detect: the shell's rota-
tion. ' This phenomenon was discovered and pur-
sued in the course of approximation schemes, in

which static solutions of Einstein's equations were
perturbed with a small shell angular velocity, Q.
It occurs only in the limit where the shell is at
its own gravitational radius ("relativistic com-
pactness"). Brill and Cohen' first found perfect
dragging at order 0, but went no further because
of difficulties with shell-shape perturbations that

appear at order O'. De I.a Cruz and Israel' (we

shall call their paper DCI hereafter) advanced to
order 0 by taking the Kerr field for the exact
exterior spacetime. ' This limitation allowed them

to specify the shell shape arbitrarily, because it
removed the need to do a self-consistent calcula-
tion of all shell stresses and gravitational field.
In addition to the order-0' "perfection, " they found

a particular shell shape which made the interior
spacetime flat at order 0'.

It is of great interest to know whether these
provocative results are limited to small 0, or
whether they occur also for rapidly spinning

shells. In this paper we remove the restriction
to slow rotation by expanding in a "compactness
parameter" V'=1 —2m/A+a'/A' instead of in Q.
%e find that perfect dragging occurs for all Q

when V-0, and that in this limit complete interior
flatness is almost always obtainable. In the pro-
cess we discover how to find, with arbitrary ac-
curacy, those shells which separate the Kerr ex-
terior from a flat interior.

Admittedly, the limiting case we wish to study
is somewhat academic. One does not expect to
find highly relativistic elastic shells in nature, nor
could such a shell be stationary when t/ =0 without

experiencing infinite surface stresses. For V

small but nonzero, however, this paper demon-
strates a useful technique for studying bodies of
large spin angular momentum. The extreme case
illustrated here is chosen to probe Mach's con-
jecture that a sufficiently massive object should

govern nearby inertial frames. In this regard,
we mention that the proper surface density of the
shell remains finite at the gravitational radius,
but it is not real for large values of a. The
stresses and surface density are considered in

Appendix C.
Our method is outlined in Sec. II. Then we dis-

cuss the interior spacetime more carefully (Sec.
III) and recast the DCI junction conditions into an

exact form which is suited to two different expan-
sion schemes (Sec. IV). Expansions in 0 and V

establish even-order flatness (Sec. V}. The drag-
ging (odd order) is discussed in Sec. VI.

II. OUTLINE OF METHOD

Consider a closed shell of vanishing thickness
(that is, a surface layer Z) which divides space-
time into two regions. For the exterior region V'

we assume the Kerr metric, written in Boyer-
Llndquist coordinates as
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(ds'), = —(1 —2mr/6)dt'+ (4amr/p)sin'6dhdt

+ (r'+ a'+ 2mra'sin'6/P)sin'6 dQ'

+ P(dr'/n + d6'),

where

(la)

P r2 + a2cos2g 5 =r —2mr+ a

r ——R(1+ z V'F) ==R6:, (2)

r» is the mass of the shell, and -a= J//m~0 is the
angular momentum per unit mass.

Let Z be embedded in V' by requiring

T = Ct, 4 = P+azt/R', (8)

where f, g, X, and = are functions of 6}, while C
and x are arbitrary constants. Inclusion of N in

(7) simplifies later computations. The functions

f and g are defined to be independent of V, while

X and = are to vanish with V.
Now, Z is a single, unique hypersurface whether

it be viewed from V' or V . Therefore, we must
require the three-metric" g,;, defined on 2 via
(1)-(3), to agree with g, ~, defined on Z via (5),
(7), (8) . Thus

(3) orb =Sacr a, b = 0, 2, 3 . (9)

Thus we adopt (I, 6, Q} as coordinates of the hyper-
surface Z. In (2),

z =—a'/R', V':—1 —(2m/R}+a'/R',

and R is an arbitrary constant. DCI specified F
to be the function k cos'6 (k = constant); the choice
k= —1 led to interior flatness at order e. Here,
F will be equatorially symmetric and must be
finite when z = 0 and/or V = 0, but will be otherwise
arbitrary. These restrictions make Z spherical
in the absence of rotation (z = 0), and locate it at
its own event horizon in the limit of relativistic
compactness (V- 0). The redundant notation (F
and 6') for the r-embedding function will be useful
below.

An exact interior solution to Einstein's equations
which matches onto a Kerr exterior is not known.
An approximate solution must therefore be found
and matched, order by order, with an appropriate
expansion of the Kerr metric. For the interior
region, V, we write the metric in the form

(ds') =QN '(dp'+dz') NdT'+ p'N '-(dc —u)dT)',

(5)

where Q, N, and ~ are functions of p and z, to be
determined. This form of the line element is sim-
pler to work with at higher orders than is the
equivalent form used in DCI; the two forms are
related by simple redefinitions of the coefficients
(see Appendix A).

Local inertial frames rotate with angular veloci-
ty u relative to the coordinate C. Relative to an
inertial observer at infinity, they rotate at the
rate

In Sec. IV we will obtain an equivalent set of condi-
tions from the four nonvanishing equations in (9).
For V=0, those conditions will determine f and g,
and restrict C and z. For general V, they will
determine X, =, a,nd the values of N and & on Z,
in terms of the exterior shape function F. It
will be possible to adjust F, C, and K to make N= 1,
& = 0, and a =0 to any desired accuracy in a, in
the limit V-0. The field equations (Sec. III) then
show that Q =constant to the same accuracy, and
this constant may be set to unity by a scale change
on p and z.

III. PROPERTIES OF THE INTERIOR METRIC

For the metric (5), the vacuum field equations
G"" = 0 reduce to (subscripts denote partial deriva-
tives)

Qp
= —,'p[(N

p
—N, ') —p'((up' —(u, )] QN ', (10a)

Q, = p(N&N, —p vzur, )QN ', (10b)

Nqq+Np, 'p+Ngg =[(Np +N, )+p ((up + u), )] N ',
(11a}

u)pp+ 3(up/p (ug,+= 2((upNp+ (u, N)N '. (lib)

Equations (11) are the integrability conditions for
Eqs. !10)

The flat spacetime Q=N=1, &=0 is clearly a
solution of (10) and (11). It is the appropriate so-
lution when e =0, for which the Kerr metric re-
duces to the Schwarzschild metric. Now suppose
that there is a small parameter x, in terms of
which Q, N, and ~ may be expanded in power
series,

[(ddT —d4)/dt] zyyyg= 0
= (d

this is the "dragging" rate.
Let Z be embedded in V by the parametric

equations

p' = R'Nf(1+ X)sin'6,

z =R Ng (1+=) cos 6,

(7a)

(7b)

Q = 1+x'q, +x'q + - ~ ~

N- 1+x n, +x n, + ~ ~ ~

~ =xwo+x wi+x w2+ ~

(12a,)

(12b)

where the q;, n;, and w; may be functions of p
and z. (Solutions in this form appear in DCI for
x'= c, where wo= constant. We shall also consi-
der the case x = V.) Substitute (12) into (11) and
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separate orders of x. The left-hand sides of
(11) provide the homogeneous parts of the re-
sulting equations, while the nonlinear right-hand
sides provide the inhomogeneous terms. On Z,
the homogeneous solutions for n; and m; are com-
plete sets of equatorially symmetric functions
(see Appendix B). Therefore, n, and w; may be
independently adjusted to match any equatorially
symmetric boundary conditions —even if the parti-
cular solutions for the inhomogeneous equations
are nonzero. Furthermore, if N= 1 exactly (a case
we will study), then the inhomogeneous part of (11)
vanishes at all orders of x. From (10), Q is then
a constant up to the square of the order of the
first nonconstant m;. The homogeneous w& will
thus be the functions limiting the flatness of the
interior space-time.

IV. THE JUNCTION CONDITIONS

From 1+g0~=1+g~, one has

9 =—(I+E. —V )Pj(& + e cos 8)

=1-O'N+ef(1+i()x 'sin'8,

where

x' =—a' —CR'tv/a .
Dividing g,', =g,3 by 8 sin'6 yields

e9 sin'8+e F'= f(1+y) .

(13)

(14)

(15)

Dividing g03=g0, by g sin'8 and using (15) to re-
move X gives

(I -ee' sin'8)9 = (e+ 5.")tt' . (16)

C~= V [1+O(e)] =— V y', T=vyt. (16)

Equations (13)-(16)are exact. The condition

g,', =g,, in its exact form is somewhat lengthy and
will not be quoted here. For V=O it reduces to

gecos6 -g sin8

=[ 1+6 cos 8 —(1+e) cos 8j(l+e cos 8) ]

(17)

For V@0, it is solvable by quadrature for = in
terms of g, f, y, 6:, and N.

For the case x'=—e = 0, one has from (2), (12),
and (13),

Equations (2) and (8) allow evaluation of (13)-(16)
when x =- V = 0, with the result

f= (1+e)'/(I+ e cos'8)

K = 1/(1+e)+O(V') -=1/(1+e)+ V'It, .
(19)

(20)

V. EXPANSIONS OF N

To see how (22) relates to the results in DCI,
consider first the case x'=e (1. Then (22) be-
comes

For a flat interior space-time, N = 1 and the p-em-
bedding reduces to p'=A'f sin'6 when V--0. Thus

f is the unique, exact p-embedding function that
allows a flat spacetime interior to a shell at its
gravitational radius. Expanding f for e (1, one
immediately recovers the order-~ results in BCI.

The z-embedding function g cannot be evaluated
exactly, but it is a trivial matter to expand (17)
to any desired order of e and thus obtain g to ar-
bitrary accuracy when e & 3. One finds

g= 1 —~e cos'8 —e cos'8(1 —,"-cos'8)+ O(e'),

(21)

which agrees with DCI's order-c results and pro-
vides the order-c' corrections. For e =-,' the
square root in (1'I) vanishes at the poles and the
expansion used to obtain (21) diverges there. For
e &-,'- there is a range around each pole for which

g is imaginary; where this happens (17) has no

convenient expansion and must be integrated nu-
merically. These results concur with those of
Smarr, "who examined rotating black holes (but
not shells) of arbitrary charge. In terms of our
parametrization, he found that for e ) & the spatial
part of the Kerr horizon can be embedded in
pseudo-Euclidean space near the poles, but not in
Euclidean space. This situation also influences
the proper surface density (see Appendix C).

For most of the discussion below, the key equa-
tion is obtained from (13) by using (15) and (16)
to eliminate f and it',

O'N = V'y'N = 1 —9(e + 5")/(9e sin'8+ e+ 6') .

(22)

One may now consider cases where V and e are
both nonzero but at least one is small.

&2N=1+&F*—e'fV'FF*+ (1 —V')F[3(1 —V') —(1-3V')cos'8] —(3 —4V')

+ (2 —5V')cos'8+ V'cos'8 —V'(1 —cos'8)']+ O(e'),

where

F~= (1-V')(F+cos'8) —-(2 —V').
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If for E one were to substitute E-=E,+ gE, +a~E, +. . . , it is clear thatat order e', after regrouping tex'ms, the
only terms containing E, wouldbe (1 - V')E„coming fromf F*in (23). F& (j &t) would not appear at order f',
hence F, could be adjusted to cancel all other terms of order f' on the right-hand side of (23). Since this
could, in principle, be done for all i, N can be made unity to arbitrarily high orders and for any value of
V. Thus, for example, any E, of the form

E~=s - cos 8 ~

together with

y'= 1+f[(1—V')8 —(2 —V')] + O(f'),

(24a.)

will Illake N= 1+O{f ) fol' all V. Hel'8, 8 18 ally fllllctloll of V tllat does Ilot dlvel'ge as V 0. Tile choice
s =0 recovers the embedding used by DCI to obtain interior flatness at order c. The choice of E, which
removes the e' terms from tV can be found from (23) and (24) almost by inspection.

For x'= V'&1, Eq. (22) gives

(1+ f )'y'N =[1+f cos'8 + fF(1 —f ) (1+f cos'8)]

—V ff F {1—2f —f' Cos 8 f (1 —f)sill 8[5—f —f (1 —f)81I1 8])

+ fE {1—f cos'8 —2f" sin'8[ 3 —f" (1 —f)sin'8]) —C(1+ f cos'8)sin'8/(1+ f)}+O(V'), (25)

e 'y' = (1+f s')f"'+ O(V'), (26b)

will make N= 1+O(V') for all values of f except
e =1. Here, s' is any function of e that does not
diverge as e - 0. The choice s' = 0 yields an E
which, when expanded for e &1, agrees with DCl's
order-f embedding (for V=0, 0= —1) and provides
all higher-order corrections. Thus, for a shell
at its gravitational radius, (26) is the exact ex-
terior embedding which makes the interior space-
time flat. For V small but nonzero, one may ob-
tain the order-V' corrections to (26) without diffi-
culty, from (25).

where f =-f/(1+f) .
By expanding E in powers of V' and arguing as

we did for the e expansion, we observe that N can
(in principle) be made unity to arbitrarily high
orders in V', for all values of e. To lowest order,
any E of the form

E = (8' —cos'8)/(1 - f ) (1+f cos'8) + O(V'), (268)

together with

n = (de/dr) =[(d-C/dt)(dt/dT)],

= (Q' + alI/tt')/yv .

Combining (20), (27), and (29) yields

(29)

while from (6), (18), and (20), the interior drag-
ging relative to infinity is

Id= -8/(R +a )+ &dyv+O(v') .
Comparing with (27), we find that the interior
inertial frames rotate rigidly with the shell when

V 0, as seen from the outside. Thus "pex"feet"
interior dragging occurs for arbitrary angular
momentum when V- 0. Remarkably, this result
depends only on the a,ssumption (i) tha, t the shell
is spherical in the absence of rotation (8 =0),
which was the crucial assumption leading to (16)
and (20).

Owing to the infinite gravitational xedshift when
V-O, however, the situation as viewed from in-
side is not yet settled. An interiox obsexver sees
the shell rotating with the angular velocity

VI. THE INTERIOR DRAGGING
n- = —(8/ytt') ~ O(V) . (30)

To complete the proof that (26) makes the interi-
or flat as V- 0, we must show that, concurrently,
the interior dragging is rigid. Then there will be
a global coordinate frame in which ~ =0 and, by
(10), the remaining interior metric function, Q,
will be a constant.

As seen by a stationary observer at infinity,
the shell rotates with the angular velocity"

Q' =- (dQ/dt)r = -a/(R'+a')+ O(V'),

Since y is nonzero, 0 vanishes with V. The key
assumptions involved in this result are (i) above
alld tllat also fol' 0 = 0 (ll) the llltel'iol' cool rdt nae
frame reduces to the nonrotating system of the
standard interior Schwarzschild solution plus
(arbitrary) terms that vanish with V'. The ques-
tion remaining is whether {d vanishes in this
frame when aw 0.

Solve (16) for K' and substitute (22); there re-
sults



z' = 1/(1+ a) + V'(z, —&uyA'/a V)

(31)

It is more interesting to expand for small V.
Then one uses (14) and (20) in (31) and finds for
O'YAl h'a J'p 6

Equation (31) provides a solution for &u on Z in
terms of the arbitrary constant x„and the em-
bedding parameter y and function 5 which are
fixed by placing requirements on ¹

If one expands (31) for small e and uses (24) and
(25), then for proper choice of «, one obtains re-
sults equivalent to the ordex-a' results in DCI.
For all s, ~ is seen to vanish as a'V.

—+@A /a V =- —(yacc+ 2«E)/(I+ e )+ O(V') .

For general «„N, and F, (32) shows ~- O(aV).
In special cases one may make ~- O(a'V). For
example, if (26a) is used in (32) and one sets
«, =-(I+as')/(I+«)', then

(eye'= 2a'V (s' —cos'6)/[(I+ «)'(I —~)(I + «os'&)] + O(V') .

Because x2 is a constant, it is not possible to remove the order-V dependence from &.
Since (see Appendix B) there are readily available global solutions only for those &u which are polynomi-

als in cos 8 on Z, a global form for ur follows from (32) only approximately. Taking s' =0 in (33), for ex-
ample, an. expansion for small e leads to

~(l -e') = --', V~(n/Z') [(I -3~/'I)+ (-', -4e/9)(p '-4~-') —(se/63)(p'-12p'z'+ 6~')+ O(~')]+ O(V'),

where y was defined by (26b). The constant terms may be removed from the right-hand side of (34), and

the scale of the remainder adjusted at will, by changing the scale of y,' this does not affect the line element
(5) if a scale change is also made in p and z.

y'N = —,
' (1+cos'8) + O(V'), (35)

so it is impossible to make N and Q constants.
Perfect dragging persists, however, since {32)
is still valid. In fact we now have exactly

«2 —&uyR /aV

,' (E+ ,' V'E'+ y'-N-)/(I +-V'F + ,' V'E'), -
(32')

with I" still arbitrary. For the special choice
«2=0 and F=[(1—2y2V N)'~' —1] /V, u vanishes
identically for all V. Therefore, an observer at

VII. DISCUSSION

To a large extent, the key results at even vs odd

orders in a are independent of each other. The
odd-order function cu, and therefore the interior
dragging up, vanish like O(V) for all a regardless
of the behavior of the even-order functio~ X. In

turn, N can be made unity to any desired accuracy
in either one of V or a, for arbitrary values of
the other, without considering &. One's control
over N and ~ can be used to make Q = 1 as V- 0
for any a, and the interior spacetime Qat in that
limit.

The one exception to these results occurs for
c = 1, the relativistic limit of rapid rotation. "
Then for any finite F, Eq. (25) gives

infinity sees pex'feet interiox dragging for all V,
while an interior observer sees rigid dragging
which becomes perfect as V- 0.

Extl erne Machlan effects thus appear to charac-
terize stationary shells near their gravitational
radii. The price one pays for the interior effects
is the divergence of the surface stresses as V-0
(Appendix C), which ls required to support the
shell in this limit. It is apparently just this di-
vergence which "locks in" the interior inertial
frames with the rotating shell, since I indblom
and Brill' have shown that a (slowly rotating) free-
ly falling shell leads to perfect dragging only as
seen from the exterior. Although we have simpli-
fied matters by taking the shell to be vanishingly
thin, there is no obvious reason to expect sub-
stantive changes in any of these results if the shell
is allowed to have a small nonzero thickness. The
question of what would happen with a thick shell or
a solid ball (as of nuclear matter) remains open.

The author thanks James Hartle for suggestions
which led to the research repox'ted here, and for
reading an earlier version of the manuscript.
Most of this work was done while the author was
at the University of California, Santa Barbara.
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APPENDIX A: TRANSFORMATION ON THE INTERIOR

LINE ELEMENT

For purposes of comparison, the form of the
interior line element used in DCI is due to Lewis":

—e"(dr —ed@)'. (Al)

The form used in this paper, Eq. (5), follows from .

(Al) if one defines new coefficients Q, N, and &u to
replace v, A. , and%,

e' = N)V, —8"= Q&, 4 = -p'u)/(N'yV),

The solutions (81)-(BB)have the property that, on
a nearly spherical shell where p =R sin8+ 0()(')
and s =R cos8+ O(r ) (z = any small parameter),
tt(g)( 0-"Pgz (cos8) + O(X ) and %(1)g

~ dip g(cus8)/
d(cos8) + O(X*). Thus, t)((), and u(z), constitute
complete sets of equatorially symmetx ic functions
on E.

APPENDIX C: THE STRESSES AND SURFACE DENSITY

The surface stress energy tensor" $,' is defined
by

—(BvG/c')S,'= ),' 5,')"—, ,

W=l-p+/N . (AB) where y, =E., -E,~ is the jump in extrinsic curva-
ture g at the shelL We will set G = c'= 1 below.
The g depend on the embedding

At each order j there is an infinite set of inde-
pendent solutions to the homogeneous part of (lla).
These solutions are

I
pg(g) ] ~ Q(L) j P g p Q Oy 1p 2y ~ 0 ~ p

a(I -4) 35

jmo

The homogeneous solutions of (lib) for tap)( have
the same form except that the constants c are
replced by e' where

p
X 1I+ok sou ga) ()~b +s {xr)e(b)

where a&„ is the metric in the embedding space-
time, t.~,~ are coordinate basis vectors for the
hypersurface, n is the unit outward nox mal, and

{z,} are the Christoffel symbols formed from
the a&, . Indices on K,& are raised with the in-
verse of the hypersurface metric g,~. The X'
are the hypersurface coordinates (8, P, f).

The propex surface density o is defined by the
eigenvalue equation

The eigenvectors (velocities) are not needed to
find c, beyond noting that u~ = 0 and u@ =Qu' .

One may factor out the divergent terms in Eqs.
(Cl), yielding at leading order in V,

See= (1BvRV) '[(1+a)(l -e cos'8) —2e sin'8+ O(V)]/(1+ ~ cos*8),

Sz= (16vRV) '[(1+&)'(1-~ cos'8)+ O(V)] /(1+& cos'8)',

St = —(BvRV) 'e sin'8[1+ ~ cos'8+-,'(1+a)(l - c cos'8)+ O(V)] /(1+ e cos'8)',

S~=-Sfa(l+e)/a, S~ =St~a/(1+&).

These expressions are exact in ~. The 8, obtained
from the order-a' expansions of (g)', given in
DCI, agree in the double limit e, P «1.

These S, all diverge when V-O, as expected.
The terms shown come from the (If,)'. The (Id,')

are all nondivergent; their exact forms ax'e rathex'
long RIll ax'e not reproduced hex'e.

The divergence of S~ as V 0 makes the inter-
pretation of the other results of this paper some-

what a mattex' of taste. Ho%every nowhere Ln the
computation of (A), the embedding functions, and
the interior metric do divergences appear. The
results obtained are therefoxe the correct limiting
properties of a sequence of stationary, evex more
compact shells of given mass and angulax momentum.
The sequence limit is not physically attainable;
this fact need not impair the implications of the
limiting results fox Mach's conjecture.
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From (C2) and the S,', one quickly finds that the
leading (divergent) terms in the proper surface
density o cancel, and o is determined by the
(finite) interior embedding. Thus, o is finite for
all c, a result consistent with the behavior DCI
obtained for small e in the limit V-O. The sur-
viving form of o in our case (general e) is too
lengthy to quote here. It should be noted, however,
that a does become imaginary in precisely those
regions where the embedding space is pseudo-

Euclidean. This occurs because, as V-O, every
nonvanishing term of o contains a factor arising
from the unit normal vector to the horizon. Thus,
e = 3 represents an upper limit for the rotation
of any acceptable shell with nearly flat interior,
near its gravitational radius. Mach's conjecture
has therefore been extended over the entire range
of physically achievable angular momenta in such
compact shells.
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«E. Mach, The Science of Meehan&&&, 5th English edition
translated by T. McCormack {Open Court, I.a Salle,
1942).

2J. Lense and H. Thirring, Phys. Z. 19, 156 (1918).
D. H. Brill and J.M. Cohen, Phys. Rev. 143, 1011
(1966).

4J. M, Cohen and D, B.Brill, Nuovo Cimento 569, 209
(1968); J.M. Cohen, Phys. Bev. 173, 1258 (1968).

V. De La Cruz and W. Israel, Phys. Rev. 170, 1187
(1968).

6L. Lindblom and D. B.Brill, Phys. Rev. D 10, 3151
(1974).

P» S ~ Florldess Nuovo Clmento 138' 1 (1973); P» S»
Florides and J.L. Synge, Proc. B.Soc.London, A280,
459 (1964).
For discussions of philosophical and physical implica-
tions of this circumstance, the interested reader is
referred to the literature. See, for example, D. W»
Sciama, Mon. Not. B.Astron. Soc. 113, 34 (1953);
J.S.Wheeler, in Proceedings of the 1962 Warsaw Con-

fe~enee on Relativistic Theories of Gravitation, ed&ted

by C. Infeld (PWN-Polish Scientific, Warsaw', 1964);
D. Brill and J.Cohen, Hef. 3.

This is a reasonable limitation for the study of relativ-
istically compact shells, since all uncharged Mack
holes in nature are expected to be of the Kerr family.
See D. C. Robinson, Phys. Hev. Lett. 34, 905 (1975).

«B. H. Boyer and B.W. Lindquist, J. Math. Phys. 8, 265
(1967).

««Latin indices have the range 0, 2, 3 and apply to three-
tensors defined on Z. Greek indices have the range
0,1,2, 3. Bepeated indices imply summation.

«~L. Smarr, Phys. Rev. D 7, 289 (1973},
«3This very general result is independent of the details

of the problem. See, for example, C. Misner,
K. Thorne, and J.Wheeler, Gxmitation (Freeman,
San Francisco, 1973), pp. 893-895.
The equatorial rotation velocity of the shell is & in this
limit. See Bef. 12 for a discussion of this limit rvhen
one is dealing vrith a rotating black hole without a shell.
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