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The path-integral method seems to be the most suitable for the quantization of gravity. One would expect
the dominant contribution to the path integral to come from metrics which are near background metrics that
are solutions of classical Einstein equations. The action of these background metrics gives rise to a new

phenomenon in field theory, intrinsic quantum entropy. This is shown to be related to the scaling behavior of
the gravitational action and to the topology of the gravitational field. The quadratic terms in the Taylor
series of the action about the background metrics give the one-loop corrections. In a supersymmetric theory
the quartic and quadratic but not the so-called logarithmic divergences cancel to give a one-loop term that is

finite without regularization. From the one-loop term one can obtain the effective energy-momentum tensor
on the background metric. In the case of an evaporating black hole, the energy-momentum tensor will be
regular on the future horizon. The usual perturbation expansion breaks down for quantum gravity because
the higher (interaction) terms in the Taylor series are not bounded by the quadratic (free) ones. To overcome
this I suggest that one might replace the path integrals over the terms in the Taylor series by a discrete sum

of the exponentials of the actions of all complex solutions of the Einstein equations, each solution being
weighted by its one-loop term. This approach seems to give a picture of the gravitational vacuum as a sea of
virtual Planck-mass black holes.

I. INTRODUCTION

Although general relativity has been around for
more than 60 years, it has been generally ignored
by most physicists, at least until recently. There
are three reasons for this. First, the differences,
between general relativity and Newtonian theory
were thought to be virtually unmeasurable. Sec-
ond, the theory was thought to be so complicated
mathematically as to prevent any general under-
standing of its qualitative nature being achieved
or any detailed predictions being made. Third,
it was a purely classical theory whereas all other
theories of physics were quantum mechanical.

The first two objections to general relativity
have largely been met in the last fifteen to twenty

years. On the observational side we now have

very accurate verifications of general-relativistic
effects in the solar system and fairly convincing
evidence for such strong-field predictions as
black holes and the "big bang. " On the theoretical
side, while there are still some unproved conjec-
tures such as cosmic censorship, the development
of new mathematical techniques has given us a
pretty complete qualitative understanding of the

theory while the advances in computers have en-
abled us, at least in principle, to make quantita-
tive predictions to any desired order of accuracy.
However, the third objection still stands; despite
a lot ot' work (and some successes) we do not yet
have a satisfactory quantum theory of gravity
whose classical limit is general relativity. This
is probably the most important unsolved problem
in theoretical physics today. I shall not attempt

to review all that has been done but simply give
my personal view of some of the difficulties in-
volved and how they might be overcome.

There are three main ways of quantizing a
classical field theory. The first is the operator
approach in which one replaces the field variables
in the classical equations by operators on some
Hilbert space. This does not seem appropriate
for gravity because the Einstein equations are
nonpolynomial in the metric. It is difficult enough
to interpret the product of two operators at
the same spacetime point, let alone a non-
polynomial function. The second method
is the canonical approach in which one in-
troduces a family of spacelike surfaces and
constructs a Hamiltonian. Although many people
favor this, the division into space and time seems
to me to be contrary to the whole spirit of rela-
tivity. Also it is not clear that the concept of a
spacelike surface has any meaning in quantum
gravity since one would expect that there would
be large quantum fluctuations of the metric on
small length scales. Further, I shall want to con-
sider topologies of the spacetime manifold that do
not permit any well-behaved families of surfaces
let alone spacelike ones. For these reasons I pre-
fer the path-integral approach though it too has
problems concerning the measure and the very
meaning of the integral. In what follows I shall
try to describe some of these problems and the
ways that one might solve them.

II. PATH INTEGRALS

The basic idea of the Feynman path integral is
that the amplitude to go from a state with metric
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g„and matter fields p, at time t, to a state with
metric g~ and matter fields p, at time t2 is given
by an integral over all field configurations which
take the given values at times t, and t:

(g„('„(I((„g,( (= fa(g(al((exp((t((:, (I),

of the gravitational and mattex fields contained in
a box of radius xp at a temperature T =P '. This
pa, x tition function can be expxessed as a path in-
tegx al over all matter and gravitational fields
that are periodic in imaginaly time with period
P, i.e.,

where D[g] is a measure on the space of all me-
trics, D[P] is a measure on the space of all mat-
ter fields, I is the action, and the integral is
taken over all field configurations with the given
initial and final values. (I am using units in which

c =5=k =1.) The gravitational contribution to the
action is normally taken to be

However, the Bicci scalar R contains second de-
rivatives of the metric. In order to obtain an ac-
tion which depends only on first derivatives, as
is requix ed by the path-integral method, one has
to remove the second derivatives by integrating
by parts. This produces a surface term which
can be written in the form

X@)'Ad'x +C,
8nG

where the integra, l is taken over the boundary of
the region for which the action is being evaluated,
K is the trace of the second fundamental form of
the boundary in the metric g, 5 is the induced me-
tric on the boundary, and C is a term which de-
pends only on the boundary and not on the parti-
cular metric g.

In ordex to make sure that one registers this
surface term correctly one has to join the initial
and final spacelike surfaces by a timelike tube
Rt some lRrge r'Rdlus J'p I't ls convenlent to rotRte
the time interval on this timelike tube between the
hvo surfaces into the complex plane so that it
becomes purely imaginary. This makes the me-
tric on the boundary positive definite so that the
path integxal can be taken over all positive-def-
inite metrics g that induce the given metric for
the boundary.

Suppose that one wants to find the number n(E)dE
of states of the gravitational Rnd matter fields
which have energy between E and E+dE as mea-
sured from infinity. This will be given by

too

n = . Z(P) exp (PE)dP,

where

is the partition function for the system consisting

Z= Dg DQ exp-I,

where I= -iI is the Euclidean action and the path
integral is taken over all positive-definite metrics
g whose boundary is a two sphere of radius rp
times a circle of circumference P representing
the pex'iodically identified imaginary time axis.

Gne would expect that the dominant contribution
in the path integral for Z would come from metrics
g and matter fields (t( that are near background
fields gp, |t)p that extremize the action, i.e., are
solutions of the classical field equations with the
given periodicity and boundary conditions. Ne-
glecting, for the moment, the question of the
x adius of convergence„one can expand the action
in a Taylor series about the background fields

f [g, y]=f [g„y,]+f,[g, y]+higher-order terms,

where g g, +g, p = p, + p, and I, is (luadratic in

the perturbations g and p. If one neglects the
higher-order terms, then

One can regard the first term in the equation above
as the contribution of the background field to the
partition function and the second term Rs the con-
tribution of thermal gravitons and matter quanta
on the background geometry. '

HI. THE BACKGROUND FIELDS

Gne wants to find solutions of the Einstein equa-
tions that are asymptotically flat and which at
infinity are periodic in imaginary time with period
I3. The simplest such solution is flat Euclidean
space which is periodically identified in the imag-
inary time direction. It is natural to choose the
term C to make the action zero in this case, i.e.,

where E'=2tp ' is the trace of the second funda-
mental form of the boundary S2xS' in the flat-
space metric q. This can be xegarded as a choice
of the zero of energy. Thus the flat-space back-
ground metric makes no contribution to the path
integral, although the fluctuations around flat
spRce will give R contx'lbutlon col x'espondlng to
thermal gravitons which will be evaluated in the
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next section.
It is quite easy to see from scaling arguments

that any vacuum solution of the Einstein equations
has zero action if its topology is R'XS', i.e., the
same as periodically identified flat space. How-

ever, one can obtain solutions with nonzero action
by going to other topologies. The simplest exam-
ple is the Schwarzschild solution. This is norm-
ally given in the form

2M', 2M
d~ = —Il -—Idt + 1 —— d~ +~'dQr &

Putting t =-iT converts this into a positive-defin-
ite metric for x& 2M. There is an apparent sing-
ularity a,t x =2M, but this is like the apparent
singularity at the origin of polar coordinates, as
can be seen by defining a new radial coordinate
x =4M(1 —2Mr ')' 2. Then the metric becomes

2 y2)2d"= —" d" .' d" -dn.
4M2]

This will be regular at g =0, r =2M if z is re-
garded as an angular variable and is identified
with period 8mM (using units in which G =1). The

manifold defined by x~ 0, 0 &z ~8aM is called
the Euclidean section of the Schwarzschild solu-
tion. On it the metric is positive definite, asymp-
totically flat, and nonsingular (the curvature
singularity atr =0 does not lie on the Euclidean
section).

Because the Schwarzschild solution is periodic
in imaginary time with period 8@M at infinity, it
will contribute to the partition function for P = 8@M

or T=(8rM) '. Because R =0, the action will
come from the surface term only. This gives I
=Mp/2 =(1/16')p . Thus the background metric
contributes —p'/16' to lnZ. Now

Z =g(nI exp(- PE„)In),

where E„ is the energy of the nth eigenstate. Thus
the expectation value of the energy is

(E)=-—lnZ =M,d
dP

as one might expect. The entropy S is defined to
be

S = -QP„ Inp„,

where p„ is the probability of being in the nth

state. Thus

S = P(E) + ln Z = 4wM' =A /4,

where A is the area of the event horizon. This is
a quantum-field-theory derivation of the entropy
that was assigned to black holes on the basis of

particle-creation calculations done on a fixed
spacetime background. ' It is a most surprising
result since classical solutions in other field
theories do not contribute to the entropy. The
reason the classical solutions in gravity have in-
trinsic entropy whereas those in Yang-Mills or
scalar field theories do not, is closely connected
to the facts that the gravitational action is not
scale invariant and that the gravitational field can
have different topologies.

Under a scale transformationg-k'g, k con-
stant, I- k'I. This implies that the action of an

asymptotically flat metric with period P must be
of the form

I =BP'

where B is independent of P, since P determines
the scale of the solution. Thus

(E)= ——lnZ =2BPd

dP

and

lnZ = ,'(E)p——
and not

lnZ= -(E)P,
as would be expected if there were only a single
state with energy (E) contributing to the sum that
defines the partition function. Because lnZ is
only P(E)/2 it do-es not cancel out the term P(E)
in the formula for the entropy S and so

S =P(E)/2 =BP

Yet we have only a single background metric.
So how does this give rise to entropy or uncer-
tainty about the quantum state and why is it that
the action of the background metric is only P(E)/2
and not P(E)? To answer the second question, con-
sider two surfaces of constant imaginary time z,
and y, in the Euclidean section of the Schwarz-
schild solution. They will have boundaries at the
surface of the box at radius r, . However, they
will also have a boundary at r =2M when they in-
tersect each other. The amplitude to propagate
from the surface 7 y to the surface 7, will be given
by a path integral of all metric configurations
bounded by the two surfaces and the walls of the
box at the radius ro. The dominant contribution
to the log of the amplitude will be the action of
the classical solution of the Einstein equations.
This is just the portion of the Schwarzschild solu-
tion between these surfaces. Again R =0 so that
the action is given by the surface terms. There
is a contribution of ';, M(~2 —r,) from the boundary
a,t ra,dius r, but ther e i.s also a contribution from
the angle between the two surfaces at r =2M. This
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is also equal to ,'M—(v,—v, ) so t at the total action
is M(r, 7-,) i.e., mass times imaginary time in-
terval, as one might expect for a single state and
the entropy would be zero. However, when one
considers the Euclidean Schwarzschild metric
simply as a metric which fills in the boundary at
radius ro, one does not have a boundary atr =2M
and so one does not include a contribution to the
action from there of MP/2. Neglecting this con-
tribution can be regarded in some sense as sum-
ming over all the states of the metric for r & 2M
which were not included on the Euclidean section.
Similar results hold for charged and rotating
black holes. ' In each case the background metric
contributes an entropy equal to a quarter of the
area of the event horizon.

IIgda„exp(- —'y„a ) =II2' 'v'

The number N (X) of eigenvalues whose value is
less than X has an asymptotic expansion of the
form

where

P = 1
(gpss/2d4z32n'

[(-,
' —h)R —m'](g'0)'/'d'x,

1

IV. THE ONE-LOOP TERMS

I now come to the question of evaluating the path
integrals over the quadratic terms in the fluctua-
tions about the background fields. These are often
referred to as one-loop corrections because, in
Feynman diagram terms, they are represented
by a graph with any number of external lines
joined to a single closed loop. Consider first the
case of a scalar field p obeying (say) the confor-
mally invariant wave equation. The quadratic
term of the action will be of the form

yAy g "de,
where A is a second-order differential operator.
With the condition that (t) be zero on the boundary,
the operator A will have a discrete spectrum of
eigenvalues A.„and eigenfunctions p„,

The eigenfunctions can be normalized so that

Any field p which is zero on the boundary can be
expanded in terms of the eigenfunctions

The measure D[p] on the space of all fields p can
be expressed in the terms of the eigenfunction
expansion

where p, is some normalization constant with di-
mensions of mass or (length) ', Using these
formulas, the path integral over field p becomes

1
0

+ (6 —30()OR + —,'(6$ —l)~R2

+30m'(1 —6t')R +90m']d'x,

for an operator A of the form

A = —Q+(8+m

For the conformally invariant wave operator,
g

=& and m =0. Thus P, =O. However, P, is non-
zero and is proportional to the volume of the
space. Thus the determinant of A diverges badly.
To regularize the determinant, that is to get a
finite value, one has to divide out by the numbers
of eigenvalues that correspond to the first two
terms P, and P, in the asymptotic expansion.
There are various ways of doing this such as di-
mensional regularization or g-function regulariza-
tion but they all amount to the rather arbitrary
removal of an infinite number of eigenvalues.
However, there is one possible way in which a
finite answer can be achieved without regulariza-
tion. If fermion fields are present in the path in-
tegral, they can be handled in a rather similar
way except that they have to be treated as anti-
commuting Grassmann variables. ' Because of
this, the path integral gives determinants of op-
erators in the numerator rather than in the de-
nominator as for boson fields. If there are equal
numbers of fermion and boson spin states, lead-
ing divergences will cancel because P, is always
proportional to the volume of the background me-
tric. Such a correspondence in the number of
boson and fermion fields is a feature of supersym-
metric theories, in particular supergravity.
These divergences arising from the P, terms will
cancel if the masses of the fields obey some rela-
tion, in particular, if they are all zero (as in
supergravity) and the background metric has
vanishing Hicci scalar. In this case the quadratic
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path integrals will be finite without any regular-
ization or infinite factors.

Whether the divergences cancel or are removed
by regularization, the term P, will in general be
nonzero, even in the supergravity if the topology
of the background metric is not trivial. ' This is
often said to correspond to a logarithmic diver-
gence but this is misleading because it does not
give rise to any divergence at all. What it means
is that after cancellation or regularization of the
terms arising from Pp and P„one is left with
some finite number P2 (not necessarily an integer)
of eigenvalues in the denominator (or in the num-
erator if P, is negative). Because the eigenvalues
have dimension (length) ', they have to be divided
by the normalization constant p.

' to get a dimen-
sionless answer. Thus the path integral will de-
pend on p. if P2 is nonzero.

In Yang-Mills theory or quantum electrodynamics
(QED) the quantity corresponding to P2 is propor-
tional to the action of the field. This means that
one can absorb the p, dependence into an effective
coupling constant g(z) which depends on the scale
K under consideration. If P, is positive, g(a)
tends to zero logarithmically for short-length
scales or high energies. This is known as asymp-
totic freedom.

In gravity, on the other hand, the ]Lt. dependence
cannot be absorbed because P, is quadratic in the
curvature whereas the usual action is linear. For
this reason some people have suggested adding
quadratic terms in the curvature to the action.
However, such an action seems to have a number
of undesirable properties and to have a classical
limit which is not general relativity but a theory
with fourth-order equations, negative energy and

propagation outside the light cone. ' Thus it seems
that the p, dependence of the path integral cannot
be removed. This may not be a disaster because,
unlike Yang-Mills theory, gravity has a natural
length scale, the Planck length G' . It might
therefore seem natural to take p.

' to be some
multiple of this length.

One can obtain the energy-momentum tensor for
the p field by functionally differentiating the reg-
ularized path integral over P with respect to the
background metric,

thermal radiation at a temperature T =P ' con-
fined to a box of radius rp and in equilibrium with
the black hole at the same temperature. The en-
ergy-momentum tensor will be regular even at
the horizon r =2M despite the fact that the local
temperature will be infinite because of an infinite
blue-shift. Near the walls of the box one can de-
compose the energy-momentum tensor into an

outgoing part and an ingoing part reflected off the
walls of the box. To obtain the energy-momentum
tensor appropriate to a black hole radiating into

empty space without any box, one merely subtracts
out the energy-momentum of the ingoing, reflected
part. This will be regular on the future horizon
so the energy-momentum tensor will also be reg-
ular there and will have a negative-energy flux
into the black hole which balances the positive-
energy flux of the thermal radiation at infinity,
showing that a black hole will indeed lose mass as
it radiates and that there is no reason to believe,
as some have claimed, that the radiation prevents
the formation of an event horizon in the gravita-
tional collapse.

One might expect that the energy-momentum
tensor of a conformally invariant field would have
a zero trace. However, that cannot be true if P,
is nonzero as can be seen by the following simple
argument. Under the scale transformation g p

—k'g„ the eigenvalues A.„of the operator A will
transform as X„-k 'A.„. Because Z contains P,
excess eigenvalues in the denominator, lnZ will
increase by P, ink. But from the definition of the
energy-momentum tensor,

Thus the integral of the trace of the energy-mo-
mentum tensor is equal to P,. A more detailed
calculation shows that it is pointwise equal to the
integrand in the equation for P,.' "

V. BEYOND ONE LOOP

In a renormalizable theory such as Yang-Mills
or p' theory one can expand the action about the
background field pp in the form

7 as 2(gg-x/2
5g„~

This energy-momentum tensor will obey the con-
servation equations if and only if the normaliza-
tion quantity p, is held fixed under the variation of
the metric.

In the case where the background metric is the
Euclidean section of the Schwarzschild solution
the energy tensor can be regarded as representing

where A. is a coupling constant. For example, in

theory

I, =
Q dx.
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The path integral takes the form

Z =exe(-t(6, ]) f (O6] eex( (,)-

1 nxE )xl)
Q S x

In effect this means that one is evaluating path
integrals of (I~, )" with the measure D[p] exp(-I, ).
This can be done because, for (t)' theory, there
is some constant C such that I,, & C(I,)'. In other
words I„,is a measurable functional on the space
of all fields P with the Gaussian measure defined
by exp(-I, ). Similarly, in Yang-Mills theory,
the interaction part of the action is bounded by
the square of the quadratic "free" part of the ac-
tion. One would not have such a bound, in say,
(Ii)' theory. This is the reason why this theory is
not renormalizable.

In gravity the interaction part of the action is
an infinite power series in the metric and its
derivatives. Thus it is not bounded by the quad-
ratic term. One therefore cannot use the usual
form of perturbation theory in quantum gravity.
This is not surprising because in the classical
theory we have always known that perturbation
theory has only a limited range of validity: One
cannot describe black holes as a perturbation of
flat space. This means that the perturbation ex-
pansion has a zero radius of convergence in the
quantum theory because one can always add small
"virtual" black holes to any metric with an arb-
itrarily small increase in the action.

By considering conformal transformations g'
=0'g one can see in detail at least one way in

which perturbation theory breaks down. Under

such a transformation the action I becomes

l[z'] = — f (O'R ~ 6O O )(6)'l'6 *

[@RID] ((]])&&Rdzx
SING

One can decompose the space of all metrics which
satisfy the boundary conditions into equivalence
classes under conformal transformations where
the conformal factor 0 is required to be one on
the boundary. In each conformal equivalence
class one can pick a metric g* for which R =0.
One can then perform a path integration over the
conformal factor about the metric g*. Because
the eigenvalues of these conformal transforma-
tions are negative, i.e., they reduce I, one has
to rotate the contour of integration so that one
integrates over conformal factors of the form
0 = 1 +iy, y real and y = 0 on the boundary. One
then performs an integration over all metrics
with R =0.

Consider a one-parameter family g(v) of me-
trics with g(0) go, a, solution of the Einstein
equations. For small values of v the conformally
invariant scalar wave operator A = — +-,' R will
have no negative eigenvalues. This means that
there will be a positive function v with e =1 on
the boundary such that the metric g*(v) =&o'g(v)
has R =0. It seems that, in asymptotically Eucli-
dean metrics the action I[g*] of these metrics
will be positive and will increase away from the
background metric gR (Ref. 12). Thus the contrib-
ution of such metrics will be damped.

As v increases, one or more of the positive
eigenvalues of the operator A may pass through
zero and become negative. As a function of v the
action I[g*]will have poles at the values v„v„.. .
at which eigenvalues pass through zero. Beyond
v =»„ the conformal factor + will pass through
zero so that the metric g* will be singular. How-
ever its action will still be well defined.

To perform the path integration over the metrics
g*(v), one has to displace the contour of integra-
tion into the complex v plane to avoid the poles
at v = v» v„.. . . The path integral over the con-
formal factor 0 = 1+iy about each metric g*(v)
will contribute a factor of (detA) '~'. As the num-
ber of negative eigenvalues of A increases, one
would expect this to oscillate in sign and decrease.
Thus one could hope that the path integral would
converge.

With a, family of metrics g(v) that corresponded
to a long-wavelength perturbation of the metric,
a reasonable approximation to the integral of
exp(-I) over v would be obtained by taking just
the value of I and its second derivative at the
background metric go. However, for perturba-
tions on length scales shorter than the Planck
length, the poles in I[g*]will approach the back-
ground metric and will invalidate the stationary-
phase approximation. Indeed one might expect
that for very short length scales, the integral
over v might be independent of the length scale
and so provided a cutoff at less than the Planck
length.

VI. THE GRAVITATIONAL VACUUM

What can one do about the fact that perturbation
theory breaks down in quantum gravity? One
possibility that I would like to suggest is that one
replace the path integrals over the Taylor series
about a single background metric by a discrete
sum of the exponentials of the actions of all com-
plex metrics that satisfy the Einstein equations
with the given boundary conditions, each metric
being weighted by its one-loop term. This pro-
cedure is closely analogous to that adopted in the
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statistical bootstrap model of elementary par-
ticles" where one takes into account the inter-
actions between particles by introducing new spe-
cies of particles (resonances) which are then
treated as free particles.

There are, probably, an infinite number of com-
plex solutions of the Einstein equations. However,
one might hope that the dominant contribution
came from just a finite number of them. To il-
lustrate how this might happen I shall consider
the gravitational vacuum. This is not a pure quan-
tum state but a density matrix for the microcan-
onical ensemble at zero energy. One obtains n(0),
the density of states at zero energy, by integrating
the partition function Z(P) over all P.

A single black hole will contribute W, exp(- P'/16w)
to the partition function mhere W, is the one-loop
term for the Schwarzschild metric. There are
probably no real positive-definite metrics which
represent two or more black holes because they
would attract each other and merge into a single
black hole. Homever, one might be able to find
a slightly complex solution which corresponded
to the possibility of having tmo black holes in the
box. Alternatively, one might represent several
black holes by the self-dual multi Taub-Newman-
Unti- Tamburino (NUT) solution. " In this the at-
traction between the ordinary "electric "-type
mass of the black holes is balanced by the repul-
sion between the imaginary "magnetic" or NUT

type mass.
One mould expect the action of an N-black-hole

solution to be something like -XP'/16v, indeed it
is exactly that in the multi Taub-NUT case." An
N-black-hole metric would be expected to have

3N zero eigenvalues corresponding to the possi-
bility of putting the black holes anywhere in the

box. These eigenvalues will give a factor pro-
portional to (p, 'VP where V is the volume of the
box. One will have to divide this by N ~ because
the black holes are identical. Thus the dominant
contribution mill come from N of the ordex of
p. 't/'. Taking p,

' to be of the order of the Planck
length, one sees that one gets one black hole per
Planck volume.

To estimate the mass of the black holes that
give the dominant contribution one has to find the
maximum of W exp(-I) as a function of P.

From the scaling behavior one finds that jtf P,
ls positive the maximum occux's for a p of order
one or a mass of the order of a Planck mass.
Thus one has a picture of the gravitational vacuum
as a sea of Planck-mass black holes. Particles
such as bqryons or muons could fall into these
black holes and come out as different particles,
thus providing a gx'avitational violation of baryon-
and muon-number conservation. However, it
seems that the rate mould be very low.

On a larger scale, one can think of the gravi-
tational collapse of a star as merely enlarging
one of the Planck-mass black holes already pre-
sent in the vacuum, This large black hole would

x adiate thermally and mould eventually shrink
back to a Planck-mass black hole indistinguishable
from the others in the vacuum. This picture
avoids the difficulties that mould arise from the
singularities that would necessarily occur on the
Euclidean section if black holes mere created or
destroyed.
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