PHYSICAL REVIEW D

Comments and Addenda

The section Comments and Addenda is for short communications which are not appropriate for regular articles. It includes only the following types of communications: (1) Comments on papers previously published in The Physical Review or Physical Review Letters. (2) Addenda to papers previously published in The Physical Review or Physical Review Letters, in which the additional information can be presented without the need for writing a complete article. Manuscripts intended for this section must be accompanied by a brief abstract for information-retrieval purposes. Accepted manuscripts follow the same publication schedule as articles in this journal, and page proofs are sent to authors.

Some comments on the Brayshaw mechanism for generating peaks in the hadron system

D. D. Brayshaw

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

W. A. Simmons and S. F. Tuan

Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 28 November 1977; revised manuscript received 24 April 1978)

We point out here that the recent proposals of one of us (D.D.B.) enable us (at last) to understand the striking empirical successes of the Peierls mechanism for generating hadron peaks noted many years back. Trivial predictions can now be made for identifying the octet partners of the $N^*(1470)$ Roper resonance. Further applications of the Brayshaw mechanism to systems involving the $\phi(1.020)$ and charm particles are also summarized here. Finally, we comment on the empirically unexplored aspects of the Peierls mechanism, in particular, for low-lying excitations of three-particle systems involving a baryon isobar.

Almost a generation back, Peierls¹ proposed that the mechanism of pion-isobar scattering (with nucleon exchange in the crossed u channel) can generate a sharply energy-dependent effect and behaves like a resonance. Nauenberg and Pais² extended Peierls' treatment to the meson system, where in place of $(\Delta(1238), \pi, N)$ for generation of a possible higher pion-nucleon resonance $N^*(1512)$, one considers energy peaks in the meson system generated by (ρ, π, π) , (K^*, π, K) , and (K^*, \overline{K}, π) . Here we have employed the notation (X, A, B) to represent the process illustrated in Fig. 1. Peaks are predicted at c.m. energy for $(\rho\pi)$, $(K^*\pi)$, and $(K^*\overline{K})$ at 1090, 1170, and 1410 MeV, respectively. The first and third predictions are in striking agreement with experiment³ on the $A_1(1100)$ and E(1420), while the second prediction is in satisfactory accord with the lower structure Q_1 at 1200 MeV—considering the experimental uncertainties and the fact that there are no free parameters in the Peierls formula. Nevertheless, Salam⁴ first questioned whether the particular Peierls singularity (corresponding to $s_{\perp}^{1/2}$ c.m. energy in notations to be developed below) discussed then¹ will actually show up when joined with the initial pion-nucleon system via π + $N \rightarrow \pi + \Delta(1238)$ —since all physically observed strong interactions are initiated with stable particles (and isobar-meson scattering is not directly observed). A naive calculation⁵ suggests that the singularity becomes only logarithmic in $\pi N \rightarrow \pi \Delta$,

and introducing a finite width for the $\Delta(1238)$ would largely eliminate the peak effect in the neighborhood of the second pion-nucleon resonance N*(1512). Later, a more systematic analysis was carried out by Goebel, Chew and Low, and others⁶ with the more definitive conclusion that the Peierls (s_{+}) singularity is on the wrong sheet and unlikely to generate peaks in physically observed stronginteraction processes. Nevertheless, as a mne*monic rule*, the Peierls s_{+} singularity formula is remarkable⁷ and suggests that ultimately a sound theoretical basis will be found for the empirical successes (of which the Nauenberg-Pais examples quoted above are just the most illustrative sample). With the above historical introduction, we turn now to the proposals of one of us (D. D. B.).⁸

The proposed mechanism arises from a singularity in the diagram of Fig. 1. This singularity

FIG. 1. Rescattering diagram which generates the Brayshaw singularity. The vertex blobs correspond to off-shell scattering amplitudes, and A', B' are at threshold. The situation in which the subenergy $s_{A'B'}$ coincides with a resonant energy of A' + B' gives rise to the Peierls singularity.

1719

corresponds to the diagram being realized as an on-shell sequential rescattering, i.e., to A, B, and C describing a physical intermediate state of invariant (three-body) energy \sqrt{s} . For our purposes, we choose X to be a resonance. The situation in which the subenergy $s_{A'B'}$ coincides with a resonant energy of A' + B' gives rise to the Peierls' singularity.¹ The present mechanism is different in that we take $s_{A'B'}$ at the subenergy threshold, and a singularity for the [C, A', B'] system is generated for $s = (k_A + k_B + k_C)^2$, with $m_X^2 = (k_B + k_C)^2$, $s_{A'B'} = (k_A + k_B)^2$, and $\cos\theta_{AC} = -1$. Thus,

$$s = s_{A'B'} + m_{C}^{2} + 2(s_{A'B'})^{1/2} \epsilon_{C},$$

$$\epsilon_{C} = \left[\alpha(m_{B}^{2} + \bar{k}_{B}^{2})^{1/2} + \bar{k}_{B}(\alpha^{2} - m_{B}^{2}m_{C}^{2})^{1/2}\right]/m_{B}^{2},$$

$$\alpha = \frac{1}{2}(m_{X}^{2} - m_{B}^{2} - m_{C}^{2}).$$
(1)

Here \bar{k}_B is the magnitude of the three-momentum \bar{k}_B in the AB (and A'B') c.m.; i.e.,

$$(m_{A}^{2} + \overline{k}_{B}^{2})^{1/2} + (m_{B}^{2} + \overline{k}_{B}^{2})^{1/2} = (s_{A'B'})^{1/2} = m_{A'} + m_{B'}.$$
(2)

In particular, for the (elastic) case $m_A = m_{A'}$ and $m_B = m_{B'}$, we have $\overline{k}_B = 0$, and Eq. (1) reduces to $s = s_c$, with

$$s_{c} = (m_{A} + m_{B})^{2} + m_{C}^{2} + (m_{A} + m_{B})(m_{X}^{2} - m_{B}^{2} - m_{C}^{2})/m_{B}.$$
 (3)

A detailed analysis shows that this singularity is on the *correct sheet*,⁹ and occurs irregardless of whether the initial (XA) state is on shell (e.g., the diagram of Fig. 1 could be preceded by an arbitrary production process). It is thus reasonable to anticipate a resonance near $s = s_c$ in the threehadron system A'B'C (and in coupled inelastic channels). However, the s_c singularity, though near the physical region, is only logarithmic in a given partial wave (a point apparently recognized by several earlier authors¹⁰ in an analogous context). Introduction of input two-body resonances having typical widths of the order of 100 MeV causes s_c to be removed rather far from the real axis (note that m_x is *complex*), and relatively sharp peaks are not predicted. The key aspect of Ref. 8 is to stress that in circumstances where $m_{A} + m_{B} > m_{A'} + m_{B'}$, e.g., in

$$p\pi^{-} \rightarrow n\pi^{\circ}, \quad n\pi^{+} \rightarrow p\pi^{\circ},$$

$$\pi^{+}\pi^{-} \rightarrow \pi^{\circ}\pi^{\circ},$$

$$\overline{K}^{\circ}K^{\circ} \rightarrow K^{+}K^{-},$$

$$D^{+}D^{-} \rightarrow D^{\circ}\overline{D}^{\circ},$$
(4)

a final "charge exchange" at this vertex can shift the singularity into, or very near, the physical region while the particles themselves remain close to subenergy threshold thus leading to much enhanced effects.

To see this we note that \overline{k}_B as defined by Eq. (2) becomes (positive) imaginary; $\overline{k}_B = i\kappa_B$. Hence

Ims =
$$\frac{2(m_{A'} + m_{B'})}{m_{B}^{2}}$$

 $\times [(m_{B}^{2} - \kappa_{B}^{2})^{1/2} \operatorname{Im} \alpha + \kappa_{B} \operatorname{Re} (\alpha^{2} - m_{B}^{2} m_{C}^{2})^{1/2}],$
(5)

with $\text{Im}\alpha = -\overline{m}_{X}\Gamma_{X}$ for $m_{X} = \overline{m}_{X} - \frac{1}{2}i\Gamma_{X}$. For increasing values of $\kappa_B > 0$, the second term in the square brackets can lead to a substantial cancellation in certain three-body systems and a corresponding reduction in Ims. In practice, this effect is crucial and leads to conclusions which appear contradictory from the standpoint of the approximate formula of Eq. (3). For example, if X is a typical baryon resonance and A is a pion, Ims, is almost twice as large for pion exchange $(m_B = m_{\pi})$ as for baryon exchange $(m_C = m_{\pi})$. Nevertheless, when the exact expression of Eq. (5) is employed, one finds that Ims is considerably smaller for pion exchange (generally speaking, the coefficient of Im α must be small, and hence m_{R} should be the lesser of the two decay masses). This suggests that the nucleon-exchange diagram is relatively unimportant, a fact which is confirmed by the more rigorous treatment of Brayshaw⁸ (it should be noted that the singularity is not a simple pole, and Ims cannot be identified with the width). The importance of the charge-exchange mechanism in generating a significant effect is discussed in some detail in a recent article.9

We now consider the Peierls singularity corresponding to Fig. 2, i.e., to (X, A, C). This singularity¹¹ represents a cut in the *s* plane (s_+, s_-) for X-A scattering, where

$$s_{+} = 2(m_{x}^{2} + m_{A}^{2}) - m_{c}^{2}, \quad s_{-} = (m_{x}^{2} - m_{A}^{2})^{2}/m_{c}^{2}.$$
(6)

For the meson system $(X, A, C) = (\rho, \pi, \pi)$, (K^*, π, K) , and (K^*, \overline{K}, π) [to which we can now add also the entry⁸ ($\delta(970), \pi, \eta$), where $s_+^{1/2}$ = 1.285 MeV in close proximity to the *D* meson], Nauenberg and Pais² argued that the energy peaks

FIG. 2. Rescattering diagram which generates the Peierls singularity. The vertex blobs correspond to off-shell scattering amplitudes, where Y is a resonance.

are due to the s_+ singularity. Here we present a general kinematic argument for both meson and baryon systems that if $m_A = m_B$ and $m_X = m_Y$, then $s_+ = s_c$.

The argument proceeds as follows. In Fig. 2, the Peierls singularities correspond to the following conditions for four-momentum conservation:

$$m_X^{\ 2} = (k_B + k_C)^2 , \qquad (7a)$$

$$m_{\rm r}^2 = (k_{\rm A} + k_{\rm C})^2$$
 (7b)

$$s = (k_A + k_B + k_C)^2 \,. \tag{7c}$$

Solving (7a) and (7b) for the mass-shell four-vectors k_A , k_B , k_C (e.g., in the ABC c.m. system), and substituting into (7c) leads to the values $s = s_{\pm}$ when $\cos\theta_{AB} = \pm 1$. As noted above, the Brayshaw singularity⁸ $s = s_c$ comes from

$$m_{\chi}^{2} = (k_{B} + k_{C})^{2}$$
, (8a)

$$m_{Y'}^{2} = (k_{A} + k_{B})^{2}$$
, (8b)

$$s = (k_A + k_B + k_C)^2$$
, (8c)

with $\cos\theta_{AB} = +1 = -\cos\theta_{AC}$ and $m_{Y'} = m_A + m_B$; note that only (8b) is different from the Peierls case. Now evaluate in the *AB* c.m. system, so that $k_A = (m_A, \vec{0})$ and $k_B = (m_B, \vec{0})$. Therefore, if (8a) is satisfied, we also have

$$m_{X}^{2} = (k_{B} + k_{C})^{2} = m_{C}^{2} + m_{B}^{2} + 2m_{B}E_{C}, \qquad (9)$$
$$(k_{A} + k_{C})^{2} = m_{A}^{2} + m_{C}^{2} + 2m_{A}E_{C} \equiv s_{AC},$$

 \mathbf{so}

$$E_{c} = (m_{\chi}^{2} - m_{B}^{2} - m_{c}^{2})/2m_{B},$$

$$s_{AC} = m_{A}^{2} + m_{C}^{2} + m_{A}(m_{\chi}^{2} - m_{B}^{2} - m_{c}^{2})/m_{B}.$$
(10)

Thus, in the special case

$$m_A \neq m_B, \quad m_X = m_Y, \tag{11}$$

this reduces to $s_{AC} = m_x^2 = m_y^2$; i.e., condition (7b) of the Peierls case is satisfied, and hence $s_c = s_+$. Needless to say, the cases¹² considered by Nauenberg and Pais² do satisfy condition (11). Hence, although the sheet difficulties⁶ prevent direct use of the Peierls s_+ singularity, the empirical successes recorded at that time can now be understood in the Brayshaw framework.

Note that as a practical rule, $m_X = m_Y$ usually forces $m_A = m_B$, so the Peierls s_+ , with only one type of resonance involved, equals s_c . A counterexample would be a diagram (cf. Fig. 2), where $m_A = m_C = m_{\pi}, m_B = m_N, m_X = m_{\Delta}$, and we take ACto be at resonance $m_Y = m_{\rho}$. Here s_+ and s_c are *quite different*. For the baryon system, we shall see below that the new outlook presented by Brayshaw (with no sheet problems) enables us now to proceed and identify possible octet partners of the $I = \frac{1}{2}$, $J^P = \frac{1}{2}^+$ Roper resonance N * (1470).

The Roper $J^{P} = \frac{1}{2}^{+}$ octet? Brayshaw⁸ had already pointed out that taking $X = \Delta(1236)$, $A = B = \pi$, C = N in Fig. 1, the mechanism for $(N\pi\pi)$ yielded a mass of 1488 MeV, which may correspond to the Roper N*(1470)—especially as the $\pi^{+}\pi^{-} \rightarrow \pi^{\circ}\pi^{\circ}$ scattering of Eq. (4) is in I=0, S wave near threshold. Choosing $X = \Sigma_{1}^{*}(1385)$, $C = \Lambda(\Sigma)$, and $X = \Xi^{*}(1530)$, $C = \Xi(1320)$ of the decuplet with $A = B = \pi$ would suggest the following entries for completion of the Roper octet¹³ with $J^{P} = \frac{1}{2}^{+}$:

$$\Lambda^{*}: \sqrt{s_{c}} = 1.62 \text{ GeV},$$

$$\Sigma^{*}: \sqrt{s_{c}} = 1.57 \text{ GeV},$$

$$\Xi^{*}: \sqrt{s_{c}} = 1.74 \text{ GeV}.$$
(12)

The baryon states of Eq. (12) are expected to share the peculiar properties of $N^{*}(1470)$ (and A_1), namely, absence of a simple Breit-Wigner signal in hadron-initiated strong processes, different width properties in diffractive and nondiffractive experiments, etc.¹⁴ From the Dalitz guark-model viewpoint,¹⁵ candidates for the Roper octet are $\Lambda^*(1600)$ and $\Sigma^*(1660)$ which may belong to an overall (56, 0^+)_{N=2}, where N denotes the harmonic-excitation bands in a shell-model picture. Hence there is nothing inconsistent with the quarkmodel prediction for Λ^* , and it would be of substantial interest to search for the $\Xi^*(1.74)$ with $J^{P} = \frac{1}{2}^{+}$ (we shall comment further on the situation with respect to $\Sigma^*(1660)$ of the quark model below). Again for the above baryon cases, $s_c = s_+$ = $2(m_{b*}^{2} + m_{\pi}^{2}) - m_{b}^{2}$ (where b and b^{*} are the appropriate baryon and baryon resonance, respectively). However, the assignment of spin-parity and, sometimes, isospin is different. For instance, the Peierls s_+ mechanism sought explanations^{1, 5,11} of $J^{P} = \frac{3}{2} - N^{*}(1512)$ and a Σ_{1}^{*} in the vicinity of 1645 MeV; the dynamics of these J^{P} $=\frac{3}{2}$ states needs to be understood differently, perhaps in terms of a Ball-Frazer mechanism.¹⁶ We have restricted our application here to X identified with well-known low-lying resonances. Removing this restriction would enable us to predict the positions of a host of other states with either parity. However, in these cases where sufficient phase space is available (for three-body systems with X a high-lying resonance), the Brayshaw mechanism might well produce closely degenerate resonances in two or more J^{P} states and hence become difficult to sort out experimentally. We conclude with an example of X identified with a "higher" resonance [belonging to $(70, 1^{-})_{N=1}$], where phase space is not "forbidding," namely, $X = \Lambda(1405)$. With $A = B = \pi$, and $C = \Sigma$, Eq. (3) yields $\sqrt{s_c} = 1.65$ GeV. The predicted $[(\pi \pi)_{I=0} \Sigma]$

state has I=1, and given the phase space available to the $\epsilon \Sigma$ configuration [where $\epsilon = (\pi \pi)_{I=0}$], a J^P $= \frac{1}{2}^+$ assignment is most likely. Such a state may well be related to the $\Sigma * (1660)$ with $J^P = \frac{1}{2}^+$ of the quark shell model mentioned above.

Application to $\phi(1.020)$ and the charm particles. The $\phi(1.020)$ is a good testing case for the mechanism⁸ since ϕ has relatively narrow strong decay width into $K^{\circ}\overline{K}^{\circ}$, and the S-wave scattering $K^{\circ}\overline{K}^{\circ} \rightarrow K^{+}K^{-}$ [Eq. (4)] can be enhanced by threshold-type resonances in final states like the I=1 $\delta(970)$ and the I=0 S*(993). Setting $X=\phi$, $A=\overline{K}^{\circ}$, $B = K^{\circ}, C = \overline{K}^{\circ}, \text{ and } (A', B') = (K^+, K^-), \text{ we obtain}$ $\sqrt{s_c} = 1.52$ GeV. The final three-body (*KKK*) system has $I=\frac{1}{2}$, and because of the small phase space available, the three K mesons are likely to be in mutual S-wave pairs leading to a suggested $J^{P} = 0^{-1}$ for the predicted 1.52-GeV state. Application to charmed particles leads to the results found in Table I. In Table I, the following points are to be noted: (a) Experiments¹⁷ suggest that $D^* \sim D^+ \pi^$ is forbidden from phase-space considerations though $D^{*+} \rightarrow D^{\circ}\pi^{+}$ is allowed; hence given the constraint embodied by Eq. (4), it is possible that the predicted state at 2.15 GeV appears in $(D^{\circ}\pi\pi)^{\circ}$ but not in $(D^+\pi\pi)^+$. (b) The charmed baryons $\Lambda_{c}(2.260), \Sigma_{c}^{*}(2.426), \text{ and } \Sigma_{c}^{*}(2.500) \text{ are assumed}$ to have $J^{P} = \frac{1}{2}^{+}, \frac{1}{2}^{+}$, and $\frac{3}{2}^{+}$, respectively, as appear to be consistent with current data and mass systematics.^{18,19} (c) The J^{P} values given in Table I are mere suggestions based on available phase

TABLE I. Results from application to charmed particles.

X	A (A')	B (B')	С	$\sqrt{s_c}$ (GeV)	(I, J ^P)
ψ'' (3.772)	D	\overline{D}	D	5.65	$(\frac{1}{2}, 0^{-})$
D*(2.007)	π	π	D	2.15	$(\frac{1}{2}, 0^{-})$
$\Sigma_{c}^{*}(2.426)$	π	π	$\Lambda_{c}(2.260)$	2.59	$(0, \frac{1}{2}^{+})$
$\Sigma_{c}^{*}(2.500)$	π	π	$\Lambda_{c}^{(2.260)}$	2.73	$(0, \frac{1}{2}^+)$

space rather than firm predictions.

Finally, we comment on the empirically unexplored aspects of the Peierls mechanism,¹ in particular for low-lying excitations of three-particle systems involving a baryon isobar. Brayshaw and $\ensuremath{\text{Peierls}}^{20}$ have argued convincingly that though the s_+ singularity is unphysical for the cases we treat,²¹ the singularity at s_{-} [cf. Eq. (6)] is on the physical sheet, and a three-particle resonance might be expected to develop near s_{-} . The actual occurrence of such resonances is, of course, still a quantitative question (it has been applied to π -d scattering by one of us^{22}). However, it is clear that low-lying excitations of three-particle systems involving a baryon isobar would be good candidates to examine. The \sqrt{s} values have been $summarized^{11}$ for the low-lying baryon isobars (with appropriate *u*-channel baryon exchange) as follows:

	(Δ(1238), π, N)	(Σ*(1385), π, Λ)	(Ξ*(1530), π, Ξ)
\sqrt{s} (MeV)	1605 - i130	1700 – <i>i</i> 60	1760 - i7

If one assumes that the c.m. momentum of pionisobar scattering is small, then the lowest partial wave (S wave) is likely to be dominant, and a well-defined angular momentum structure may result. Three particle resonances with $J^P = \frac{3}{2}^$ and masses near $R \sqrt{s_-}$ [given by Eq. (13)] are thus suggested, namely, $N^*(1605)$, $\Sigma^*(1700)$, and $\Xi^*(1760)$. Crudely we may regard $\sqrt{s_-} = E_r$ $-\frac{1}{2}i\Gamma$, where E_r and Γ are, respectively, the resonance mass and width.

The data³ do not support the existence of an $N^*(1605)$; nor for the meson system does there appear to be a 1⁺ $K^*(1550)$ which might evolve from ($K^*(888), \pi, K$), where $\sqrt{s_-}(MeV) = 1550$ – i90. So a qualitative conclusion is that for $\sqrt{s_-}$ to be not too far from the real axis (thus not yielding a difficult-to-detect very broad resonance), the half "width" $\frac{1}{2}\Gamma$ has to be smaller than 90 MeV, unless some peculiar inelastic property

is associated with the predicted state. The situation with respect to a predicted $\Sigma^*(1700)$ from s_{\perp} is far more promising. The data^{3,23} refer to a $\Sigma^*(1695)$ with a large branching ratio into the $(\pi\Lambda)$ channel seen in production experiments.²⁴ There is no well-established bump as a candidate for $\Xi^*(1760)$ to date²³; such a state can only be searched for in production experiments, e.g., via $K^-p \rightarrow K^+\Xi$. In view of the narrow 'width'' $\frac{1}{2}\Gamma = 7$ MeV associated with $\sqrt{s_-}$ (and hence its proximity to the real axis), we urge *concentrated effort for an experimental search of the associated nearby* $\Xi^*(1760)$ *resonance of relatively narrow width*.

We can also explore s_{-} effects involving $\phi(1020)$, psions, and charm particles. For instance, $\sqrt{s_{-}}(MeV) = 2071.2 - i8.3$ for ($\phi(1020)$, K, \overline{K}), might generate an $(I, J^{P}) = (\frac{1}{2}, 1^{+})$ state near 2071.2 MeV; $\sqrt{s_{-}}(MeV) = 7627.1 - i56.7$ for ($\psi''(3772)$, D, \overline{D}) might generate an $(I, J^{P}) = (\frac{1}{2}, 1^{+})$ state near 7627.1 MeV assuming that $\psi''(3772)$ is an I=0 state of width 28 MeV; and $\sqrt{s}(MeV) = 2151.8 - i2.2$ for $(D^*(2007), \pi, D)$ might generate a state with $J^P = 1^+$ near 2151.8 MeV assuming that D^* has its upperlimit width²⁵ of 2 MeV and D mass is taken to be 1863 MeV throughout. The work of D. D. Brayshaw was supported by the National Science Foundation Grant No. PHY76-24629. The work of W. A. Simmons and S. F. Tuan was supported in part by the U.S. Department of Energy under Contract No. E(04-3)-511.

- ¹R. F. Peierls, Phys. Rev. Lett. 6, 641 (1961).
- ²M. Nauenberg and A. Pais, Phys. Rev. Lett. <u>8</u>, 82 (1962).
- ³We use more recent experimental references taken from the Particle Data Group, Rev. Mod. Phys. <u>48</u>, S1 (1976).
- ⁴A. Salam, private communication to S. F. Tuan, 1961.
- ⁵S. F. Tuan, Phys. Rev. 125, 1761 (1962).
- ⁶C. J. Goebel, University of Wisconsin report, 1962 (unpublished); Phys. Rev. Lett. 13, 143 (1964); G. F. Chew and F. E. Low (unpublished); see also C. Schmid, Phys. Rev. 154, 1363 (1967); J. L. Basdevant and R. L. Omnès, Phys. Rev. Lett. 17, 775 (1966).
- ⁷F. E. Low, private communication to R. C. Hwa.
- ⁸D. D. Brayshaw, Phys. Rev. Lett. <u>39</u>, 371 (1977); SLAC Report No. SLAC-PUB-1994 (unpublished).
- ⁹D. D. Brayshaw, SLAC report, 1978 (unpublished).
 ¹⁰P. V. Landshoff, Phys. Lett. 3, 116 (1962); F. R. Halpern and H. L. Watson, Phys. Rev. <u>131</u>, 2674 (1963);
 I. J. R. Aitchison, *ibid.* <u>133</u>, B1757 (1964); see also R. Aaron, Phys. Rev. Lett. <u>10</u>, 32 (1963); P. V. Landshoff and S. B. Treiman, Phys. Rev. 127, 649 (1962).
- ¹¹I. P. Gyuk and S. F. Tuan, Nuovo Cimento <u>32</u>, 227 (1964).
- ¹²Since $\sqrt{s_{\bullet}} = \sqrt{s_c}$ is expected to give the mass of the A_1 ($\rho\pi$) state at 1100 MeV, there is some *dynamical* understanding of the Weinberg sum rule [Phys. Rev. Lett. <u>18</u>, 507 (1967)] $m_{A_1} = \sqrt{2}m_{\rho}$ if we ignore the small m_{τ} correction in $s_c = 2m_{\rho}^2 + 2m_{\tau}^2$.
- ¹³We have identified here the position of the predicted state with $\sqrt{s_o}$. This is an approximation since there are width corrections, etc., to be taken into account (cf.

Ref. 8). However, a detailed check by one of us (D.D.B.) supports the approximate version here outlined.

- ¹⁴A critical comparison with the experimental situation would be entirely analogous to the detailed analysis for the $(K\pi\pi)$ system $[Q_1(1200)]$ recently performed by one of us [D. D. Brayshaw, Report No. SLAC-PUB-2130 (unpublished)].
- ¹⁵M. Jones, R. H. Dalitz, and R. R. Horgan, Nucl. Phys. <u>B129</u>, 45 (1977); R. Horgan, Nucl. Phys. <u>B71</u>, 514 (1974).
- ¹⁶J. S. Ball and W. R. Frazer, Phys. Rev. Lett. <u>7</u>, 204 (1961).
- ¹⁷I. Peruzzi *et al.*, Phys. Rev. Lett. <u>39</u>, 1301 (1977).
- ¹⁸J. Finkelstein and S. F. Tuan, Phys. Rev. D <u>15</u>, 902 (1977).
- ¹⁹A. De Rújula, H. Georgi, and S. L. Glashow, Phys. Rev. D 12, 147 (1975).
- ²⁰D. D. Brayshaw and R. F. Peierls, Phys. Rev. <u>177</u>, 2539 (1969).
- ²¹It was pointed out in Ref. 20 [Eq. (B3)] that s_{\bullet} can be physical when two *different* resonances are involved $(m_X \neq m_Y)$ and hence has no bearing on the cases we are treating.
- ²²D. D. Brayshaw, Phys. Rev. C <u>11</u>, 1196 (1975).
- ²³R. J. Hemingway, in *Proceedings of the Topical Conference on Baryon Resonances at Oxford, 1976, edited* by R. T. Ross and D. H. Saxon (Rutherford Laboratory, Chilton, Didcot, Berkshire, England, 1976), p. 354.
- ²⁴M. Primer *et al.*, Phys. Rev. Lett. 20, 610 (1968);
 M. Derrick *et al.*, *ibid.* 18, 266 (1967);
 D. C. Colley *et al.*, Phys. Lett. 24B, 489 (1967).
- ²⁵G. J. Feldman *et al.*, Phys. Rev. Lett. <u>38</u>, 1313 (1977).

FIG. 1. Rescattering diagram which generates the Brayshaw singularity. The vertex blobs correspond to off-shell scattering amplitudes, and A', B' are at threshold. The situation in which the subenergy $s_{A'B'}$ coincides with a resonant energy of A' + B' gives rise to the Peierls singularity.

FIG. 2. Rescattering diagram which generates the Peierls singularity. The vertex blobs correspond to off-shell scattering amplitudes, where Y is a resonance.