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Quark-antiquark interaction at all momentum transfers
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The running coupling constant of quantum chromodynamics a, (q ') is obtained for all q
'

by integrating
the renormalization-group equation. The P function in the asymptotic-freedom region is given by
perturbation theory through order g

' and at large coupling by the string model with string tension related to
the Regge slope a'. %e incorporate these features into a Pade approximant to the P function thereby
obtaining it for all g. The constant of integration A of the renormalization-group equation is chosen to be
about 500 MeV, as required by deep-inelastic phenomenology. a, is thus completely determined by n', A,
and the first two terms of the P function. The resulting charmonium and T spectroscopy is in excellent
agreement with experiment. In particular the 'p'-7 mass difference is forced to be nearly equal to the ltd'-llf

mass difference. In addition, it is shown that the structure of a, (q) signals the presence of instantons.

I. INTRODUCTION

Quantum chromodynamics (QCD) has become a
serious possibility as a theory for strong interac-
tions. A large number of studies have associated
@CD with diverse theoretical and phenomenologi-
cal developments. In this paper we are concerned
with the unity of a number of these developments.
This unity is approached by a construction of an
expression for o.', (g'), the strong coupling constant
of @CD, as a function of the momentum transfer.

The principal theoretical ingredients in our
construction of a, are @ renormalization-group
method incorporating asymptotic freedom, string-
model confinement, and the analytic structure of
the Callan-Symanzik function p(o.', ). A single ex-
pxession for o., applies to deep-inelastic scatter-
ing, Regge behavior, and heavy-quark meson
spectroscopy Th. e structure of p(n, ) is related to
instanton physics.

The construction of o, (g'), carried out in Sec.
II, proceeds as follows: The short-distance be-
havior can be calculated in perturbation theory by
virtue of asymptotic freedom. The string model,
which is accommodated in lattice gauge theory, re-
lates the large-distance behavior of +, to the Reg-
ge slope e'. o., at all scales is then determined by
simple analyticity assumptions about P(o.,) defined

where n, (q') =g'/4&. With those assumptions we
can find a Pads approximant (to jl) which is con-
strained by the small and large distance behavior
of 0, %e finally integrate the P-function equation
to find n, for all O'. The only remaining free
parameter becomes fixed once we specify the
value of the scale-fixing parameter A, which

arises as the constant of integration and is mea-
sured in deep- inelastic s catte ring exper iments.

We will, then, have determined j3(o.,) and n, (q').
In Sec. III we examine some of the properties of
those functions and among other things, discover
that P has structure signaled by a pole in its Pade
approximant o.', /2&= —0.08. This pole might be
expected to be of order unity, since n, /2& is gen-
erally regarded as an expansion parameter. Our
explanation of this low value is that, in fact, field
theory doe& have structure at such a low value of
a, /2v —namely the structure induced by instantons.
ballan, Dashen, and Gross' have estimated that
instantons become important in the range o.', /2v

to l 0 Our results, then, support the idea that
linear confinement (which, after all, is respons-
ible for the small pole of P) is an effect related to
the existence of instantons.

In Sec. IV we apply our results to meson spec-
troscopy. The charmonium and & systems pro-
vide important tests of the quark-antiquark inter-
action. Only for these dominantly nonrelativistic
systems can the energy levels be calculated rela-
tively unambiguously. Even in the charmonium
system, the relativistic effects are significant
(for instance, the X states, ' degenerate nonrela-
tivistically, are split by about 150 MeV). The
relativistic corrections are dependent on such

things as an anomalous color magnetic moment and
as a result relativistic effects tend to obscure the
form of o., (q'). For this reason, we need as much
data as possible from heavy-quark mesons, and the
& system helps to fulfil this need. In our model
of the W interaction, we find that ~(T') —+T)

~(0') —+4)=0.58 GeV. ' This is to be compared'
with the early predictions of Eichten and Gottfried'
that ~(T') —'n(T) 0.43 GeV. Thus our form of
o.', (p') not only predicts correctly the value of f'
—g (within the limitations of relativistic correc-
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tions, indeterminacy of ~, etc. , all of which will
be discussed in Sec. IV} but it agrees with the mea-
sured value, ' T' —Y- 0.60 GeV. We will conclude
by showing that as the quark mass increases be-
yond m, =8 GeV, the quarkonium energy spacings
increase, rather than remain constant as would be
the case if the potential were logarithmic. '

II. THE CONSTRUCTION OF n, (q )

Our construction of the strong coupling constant
of QCD o, (q') will rest on the assumption that
quark-antiquark binding can be described by the
interaction kernel

ff(q2) ~ (1)) y (2)~P 3 ( )4 (q2 l
)IV q2

9 1

H, =-16(, ).

It is well known" that these values are independ-
ent of the definition of o.', (see Appendix A). In
terms of the natural expansion parameter '
n, /2v =g'/8v', the renormalization-group equation
can be rewritten as

2n a, P
~lnq 2F g

where &„„is the dimensionless propagation ma-
trix (for instance, in Feynman gauge, &„,=g„,),
and ——', is the SU(3), factor. This assumption is
true in the static limit through order n, ' (as was
shown by Appelquist et al. , Feinberg, and Fisch-
ler' (in independent calculations), the order which
suffices for our calculation below. If only two-
body quark forces exist, the confining potential
must be octet exchange in order to have no residu-
al confining force between color singlets. For
large u, (small 0') it may be that some color-
singlet exchange is present in the kernel, as well
as anomalous magnetic moment and nonvector-
vector pieces. However, we assume that these
effects do not, to lowest order in (U/c)', affect
the smoothness assumptions that we will make on
the P function.

In developing an expression for o.', (0') we in-
corporate as many of the current theoretical ideas
of @CD as we are able. Our purpose is to test the
whole fabric of these ideas, so we include specu-
lative features along with established ones.

Our construction is based on the renormaliza-
tion- group equation

where n, (q') =g'/4&. The first two terms in the
power-series expansion of P

)l(g) =Pg'+)l, g'+ ~

have been calculated. ' These coefficients are
functions of the number of flavors. The effective
number of flavors is that for which the correspond-
ing quark masses are not heavier than the energy
scale of interest. " For our purposes, this number
is three, corresponding to up, down, and strange
quarks. We neglect loops of charmed or heavier
quarks. The calculated values are

Two features to notice in this expression, which
become important in our later discussion, are that
both of the first two terms have the same sign,
and that the coefficients are significantly larger
than unity.

A common procedure' for estimating +, is to
truncate the power series for P and integrate the
renormalization-group equation. This procedure
only gives reasonable results for small values of
o.,/2s We w. ish to do better. It might be guessed
that a Pade approximant is much better than a
truncated power series. The validity of this guess
rests on the analytic and asymptotic structure of

The most reasonable analytic structure of P is
the familiar one from perturbation theory: a
branch point in )l/g at o.', /2& =0, with a cut along
the negative real axis. Since an asymptotic series
exists, the discontinuity of the cut starts more
slowly than any power of o)., /2& at the branch point.
Thus, a rational function, with the poles along or
near the negative real axis, can be expected to
represent the structure well. This, then, is our
Pade representation. (If the analytic structure
were somewhat more complicated, a Pade repre-
sentation could still be good, if, for example, the
singularities have negative real parts. }

In order to obtain the (large n, ) asymptotic be-
havior of P, we draw our cue from lattice gauge
theory. " It has been shown" that (on a lattice},
quarks are confined by a "string" of color flux.
The energy of this qq system increases linearly
with separation at large distances. Thus the in-
teraction &(q') of Eq. (1) implies the &-space
(large-&) potential Vo- &. Fourier transforming,
we find

a, 1 K
V(q') =—* ~ —or a

q2 q4 y s q2 ~
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This behavior occurs as g'-0 a, -~. Differen-
tiating to find P,

&45 ~8&

Q
4~0.'A2 (4)

d(a, /2a) a, P K„/27t
2g g q2

so we find p/g- —1 as g-~. Not only is the
asymptotic power of P found, but so is the co-
efficient. We obtain a further constraint by ob-
serving that the "string tension, " which we have
not yet used is obtained from the Regge slope n',
and we derive" in Appendix B that

hm V(r) =r/(2aa').
~OO

The constant limiting value of p/g suggests the
appropriateness of an (n, &) Pads approximant.
Since we know three terms in the power series

p/g=0 —-' (a, /2a) —16(a,/2a}'+. . . ,

a (1, 1) Pads approximant

9a, 32@,p/g=-- —'
2 2& 92&

can be made. Such a form, however, does not
approach -1 at infinity. Therefore, we extend the
approximation to a (2, 2) rational fraction approxi-
mation. The two remaining coefficients are deter-
mined by forcing the limit to be -1, and obtaining
the correct slope value. The first of these coef-
ficients is easily determined, but the second re-
quires some work. We express this one remaining
parameter as oo in the following expression:

n, (n, a

p/g =

81 —' + 18 —64~ —'+18
(2)

To determine a, (in terms of the Regge slope} we

must integrate the renormalization-gr oup equation
and express a, (q') in terms of V(r) [related to the
Fourier transform of a, (q')].

The renormalization-group equation is integrated
with P written as in Eq. (2) to give

With this value for a„wecan (numerically)
solve Eq. (5} to find a, (q'). The only parameters
we need specify are the parameters A and n'.

a', the Regge slope, is taken from the p f g--
trajectory' to be 0.9 GeV . A, is chosen to be
approximately 500 MeV,"although there is not
yet sufficient data to determine ~ very accurately.
Actually, it is consistent with data to choose 400
~A - 600 MeV and in Sec. IV we show meson
spectroscopy results using both A=550 MeV, and
A=420 MeV (corresponding to the choices of

a,/2x =0.040 and 0.070).
We will now take, as an example, A. =550 MeV

and will show that our definition of A is consistent
with the definition used by those who do deep-in-
elastic phenomenology. They" define A& by inte-
grating the renormalization-group equation with

P expanded only as far as the first nontrivial term

2 27T
in(q'/AD) =——.8 9 (5)

10 (q')—
(Mev)

500

We recognize the right-hand side as the first term
of Eq. (2). We use Eq. (5) to define the function
Aa(q'). From Eq. (2) we can then find A&(q') in

terms of A . With our parameters e' = 0.9 GeV
and A =550 MeV we draw Aa(q') in Fig. 1. We see
that at large q' (where the deep-inelastic experi-
ments are done), An is approximately flat with
value 0.55. Our definition of A is thos consistent
with that of deep-inelastic phenomenology. It is
interesting to note that if the right-hand side of
Eq. (2) were simply an expansion of P through order
g', the resulting graph of Ao(q') would be less flat
(at high q') that that of Fig. 1.

With our chosen (experimental) values of a and

A, we now proceed to study the structure of P.

9n, ~, 81 2
400

300

A is the integration constant which fixes the scale
of QCD and is determined by data from deep-in-
elastic scattering experiments. This will be dis-
cussed later. We express n, as a function of g',
carry out the appropriate Fourier transform and

finally determine a, as a function of a' (and A).
Details of this calculation are to be found in Ap-
pendix C. The final result is

200

100

0 2 3 4 5 6 7 8 9 10

q(Gev)

FIG. 1. The effective value of A, defined by z, (q )
= 471/9 1n [q /AD (q )]. AD(q ) is nearly constant and

equal to our integration constant A over the deep-inelas
tic range.
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III. THE STRUCTURE OF P

We have seen that

P(n) =- a (n, /2(() —16(n, /2v)'+

This expression has the following properties: (1)
the coefficients in P/g of powers of u, /2& are con-
siderably larger than unity, (2) the first two co-
efficients are both negative, and (3) the Pade ap-
proximant to P has a pole at n, /2v =- n, /2v
= —0.08, implying structure on this scale in the
real P. This might be considered a very small
value of n, /2& for the P function to have structure
(notice that the first zero of (3 is at -0.04, also of
very small structure). We consider these three
features to be closely related to each other and to
the existence of instantons.

The large values of the power-series coefficients
suggest structure on a small scale. Each of the
first two terms becomes unity at n, /2&=0. 25, only
a factor of -3 larger than the pole of P. Thus the
first two terms already seem to be indicating the
structure.

The terms in perturbation theory, especially the
high orders, generally oscillate in sign. Their
having the same sign (in the series for the energy
levels, at least) is an indication" of the possibility
of "tunnelling. It is reasonable that the conver-
gence properties of the series for the P function
are the same as for the energy; and especially,
since the first two terms seem to indicate the
structure, the pattern of signs may start at the
beginning of the series. This suggests that the
observed structure be associated with tunnelling.

If the second term had been positive, the Pade
approximation including the linear confinement
would have led to a P similar to that which we act-
ually obtained, but without the pole (and zero) at
small negative n, /2&.

There is, in fact, tunnelling in @CD, as is well
known. ' This tunnelling is related to the instanton
configurations of the classical Euclidean @CD
field theory. Callan, Dashen, and Gross' have
estimated that instantons become important in

the range u, /2 x= 6 to i'-„exactly the typical size
over which we find structure in the P function.

Since they use a different approximation to
u, /2v than our form, it is important to check the
compatibility of our expression and their estimate.
We do this by calculating the most likely scale for
an instanton. The amplitude for an instanton is
propor tional to"

5'—d4X =
d& 1 s

e y'

where r is the size of the instanton. Since we express

0., in momentum space, we maximize the expres-
sion

with n, = n, ((f'), where (f is the typical momentum
of the instanton. Using our expression for 0, , we
find the maximum occurs at n, /2& =0.08, on the
same scale as our structure, and the same scale
as the estimate of Callan et al. The smallness of
this value has to do with the large amount of phase
space available to the instanton. [The same cal-
culation using n, /2v = &in((f'/A'), as Callan et al.
do, leads to a maximum at n, (CDG)/2& =0.09. For
smaller a, both our definitions of e, are in close
agreement, hence their calculation of the onset
of instantons should not be much different if they
were to use our u, .]

Thus the various aspects of the structure in our
expression are consistent with the interpretation
of that structure as reflecting instantons. Since
this structure is most important for charmonium
and T spectroscopy, we conclude that instantons
are important in the structure of these states.

IV. MESON SPECTROSCOPY

Before we can apply our results to meson spec-
troscopy we must convert our expression for u,
to a potential V. To do this we make an expansion
of &((f') [from Eq. (1)] in powers of U'/&', where
& is the quark velocity. To lowest order this inter-
action is instantaneous —that is, it can be expres-
sed as a function of the three-momentum q'. For
a special choice of gauge, "the first-order term
[of Eq. (1)] is also instantaneous This .expansion
of & will be called V(q~).

Then we get the potential V to lowest order, by
simply Fourier-transforming V,

In Appendix B we discuss the details of this trans-
formation and in particular we point out that there
is an ambiguity created by the singularity of V at
q~ =0. This ambiguity is reflected in an arbitrary
constant V„which is to be added to V and is cho-
sen, for instance, to set the mass of f (Note.
that although Vo is present in all potential models,
it is not generally regarded as a parameter. A

change of &~, accompanied by a change in all
heavy-quark masses of —~VO/2 has little effect on
the spectrum. )

The order U'/c' term in the potential is taken
to be the generalization of the Fermi-Breit per-
turba, tion. We calculate' ' '
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5V =———(s +s ) L+ s s &'V — [3(s &)(s '&) —(s, 's, )]
3 1 dV — 2 ~ 1 - .- &V 1 dV

2m2 rdy' & ~ 3m2 & 2 3m2 GLr

1 d 1 dV dV p'
+ 2p) V r — - +—V 3V+r —+2—I

4 m' ' dr dr dr 4m' '

where V is the potential and m is the quark mass.
We now use our potential to calculate the nonrela-
tivistic quark bound state.

As mentioned before, the value of A measured
in deep-inelastic scattering is quoted in various
references as being anywhere between 400 and
600 MeV (in fact, the range of values is even
greater than that, but the values we mention seem
to dominate the literature). In this section we will
see that the value of A that we need in order to
agree with charmonium spectroscopy (i.e., 0 —$
=0.586') must lie in the above range. This result
is very important. It shows a unity between two
apparently unrelated pieces of phenomenology—
deep-inelastic scattering on the one hand, and
meson spectroscopy on the other.

Regarding the precise fitting of data, a word of
caution is necessary at this point. Unless we know
the precise structure of the vertex junction [y" in

Eq. (I)] we cannot accurately fix any parameters
(that is, if we allow A to become a free parameter,
not constrained by deep-inelastic phenomenology).
The reason is, of course, that v'/&' corrections to
the potential can cause energy shifts of as much
as 200 MeV. Without a model for the vertex we
can make at best a crude fit of A. Furthermore,
as we will mention shortly, even if we assume,
as we have done, that y" is the vertex, the v'/c'
corrections are not likely to be sufficiently small
to trust the perturbation. These remarks will be
illustrated in what follows by giving the results
for the two cases where (a) the zeroth-order po-
tential (no v'/c' corrections) is used, and (b) an
expansion is made to order v'/c' (so we use the
potential V+5V). As discussed below, the spec-
trum is insensitive to &~, ; we fix it to be m, =2.0
GeV. For this example, we choose n /2v=0. 040
(A =—550 MeV), and ~, =5.35 GeV. &„is chosen
separately for the two cases [(a) and (b)] so that
g =3.100 GeV. The potential is shown in Fig. 2."
(In what follows we use particle names and mas-
ses interchangeably. ) For case (a) (zeroth order),

g =3.100, Y =9.359,

(It) = 3.100, Y =9.400,

y' = 3.689, Y' = 10.068,

g" = 4.081, Y" =10.452.

Those are to be compared with the experimental
values' '

Three-peak fit' Two-peak fit'

$ =3.098+0.003 Y =9.40+0.02 Y=9.41 +0.02

$' =3.684 +0.004 Y' =9.99 +0.05 Y' =10.06 +0.04
Y" =10.41 +0.12

We point out some interesting features. In the
unperturbed case we find that Y' —Y=g' —P. As
we shall see shortly, this relationship (the equal-
ity of the mass difference between ground state
and first radially excited state) holds over a large
range of quark masses and, in particular, implies
that the value of g' —f is not sensitive to our
choice of m, . Hence~ also does not depend on the
choice of m, . Furthermore, we have demonstra-
ted the result ~ —Y = g' —P without recourse to
the ansatz logarithmic potential proposed by
Quigg and Rosner. ' Our result differs from the
early prediction of Eichten and Gottfried4 which
gives Y —&=0.42; Y" —Y -0.33. In Fig. 2 we
show our potential and superpose the Y and

(Gev)
I.O-

0.8

06
0.4

0.2

(GeVj

0.6—
0.4

0. 2

0

NTI AL

(Gev)
-3

g' = 3.785, Y' =10.039,

0" =4.141, Y" =10.340

(in GeV). In case (b) [0(v'/c')] the values are

I

0 I 2 3 4 5

RADIUS ( GeV )

FIG. 2. The potential V(r) and 4&r )4(r)) for the tt,

(', T, and 7'. A is chosen to be -550 MeV (ep/27(
= 0.04).
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charmonium wave functions. It is seen that the
wave functions are mostly supported in the "in-
termediate" region of the potential.

The results quoted are not particularly sen-
sitive to the value of ~. To see this we compare
the energy levels for charmonium and T in the
case that oo/2v =0.070 (ti =420 MeV}. In that
case (for the zeroth-order potential with the
same masses as before), g' —g =0.624 and
'F' —Y =0.600. Once again, the approximate equal-
ity in energy spacings is seen to hold true.

We must still address the question of the "per-
turbed" values for the mass differences [case (b)j.
In that case it appears that T' —& is slightly lar-
ger than g' —P (and, in fact, tends to support the
two-bump fit'). However, there is good reason to
suspect that the difference is due to an overesti-
mate of the effect of the perturbation. In fact, the

Fermi-Breit perturbation of f involves highly
singular terms (such as a &-function). This sug-
gests that higher-order U'/&' corrections are
large and act towards suppressing the perturba-
tion. It turns out that we compute g —q, (using
our expression for &V) to be 220 MeV, whereas
it is likely that the experimental value is less than
100 MeV (we prefer to reject the possibility that
X(2.63)22 is the q, . There are a number of well-
known difficulties with that interpretation. ")
Furthermore, we compute 'I', —'&, =2%0 MeV as
compared to the experimental difference of corre-
sponding X states' (-135 MeV). This too makes us
believe that the computed relativistic corrections
are a large overestimation.

We return to the mass differences of states A,
A', A", etc. , where A's are L =0 gg mesons, and
the primes denote modes of radial excitation. As
we have seen, in the model of Eichten and Qott-
fried, A'-A decreases with quark mass (at least
up to ~, =6 GeV) whereas, in a logarithmic poten-
tial, 'A' -A remains constant. We list, in Table
I our values of A'-A and A" -A' as functions of
quark mass. We find that although for 2.0& ~
& 8.0 the difference remains almost constant, it
begins to rise for heavier quarks. This behavior

canbe attributed to the fact that, as the quark mass
increases, the wave function "spends more time" in
the Coulomb-type region of the potential. For a
pure Coulomb potential, A'-A is proportional
to rq,, , so (up to logarithmic modifications) that
is the behavior we are to expect for our potential
at large quark masses.

V. SUMMARY

From theoretical considerations, we have found
a rational function which we believe is a good ap-
proximation to the QCD P function. From the P
function we find n, (q'), which is parametrized by
two quantities taken from phenomenology other
than heavy-quark meson spectroscopy, one from
the Regge slope and the other from deep-inelastic
scattering data.

This construction of P has led to the following
successes: (1) the constants A and n' suffice to
describe the g system, (2}we are forced to obtain
T' —T= P' —P, (3) we have succeeded in relating
the structure of the P function to instanton physics.

Finally we have made predictions of the energy
spacings to be expected from very-heavy-quark
bound states.
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APPENDIX A. UNIVERSALITY OF n,

The question arises as to whether the calculated
values of the P function are applicable to n, as
defined in our Eq. (1). What we show here is that

P3 and P, are independent of the definition of
Let

+&(g )' +'''

TABLE I. Energy spacings as a function of quark mass. A denotes qq (t =0) ground state. A' and A" are the first and
second radial excitations of A. The calculations are done with ~,/27(. = p.p4p azd energy levels are calculated using (i) V

(zeroth order in p /p ) and (ii) V+ (5V (first order in v /p ). All quantities are quoted in units of GeV,2 2 2 2

A' —A (zeroth order) A' —A (first order) A" —A' (zeroth order) A" —A' (first order)

2.0
5.35
8.0

12.0
16.0
25.0

0.685
0.680
0.708
0.760
0.812
0.928

0.589
0.668
0.712
0.774
0.832

0.456
0.391
0.383
0.377
0.381

0.392
0.384
0.379
0.381
0.387
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and t =in&. Both g and g are defined as coupling
constants of @CD but may differ in their definition,

APPENDIX C. TAKING THE FOURIER TRANSFORM

OF 0( (q2) -DETAILS OF CALCULATIONS

AND CONSIDERATION OF V

=P,'(g')'+P,'(g'}"+2 P,'(g')'+o({g')'),

but the left-hand side is I.HS= p, (g }'+p,"(g")'.
Upon expanding g" in terms of g, this becomes

I.HS =P ",(g'}'+SnP",(g')'+P", (g')'+0((g )') .

Equating coefficients of g~ we find that P"=P
Rnd p~ = p5.

Carrying out this procedure to one more order
it is easy to see that, in general, P, &P, .

The Fourier transform is

V (&)~fd'q e" ' V (q')

sinqr 4
( 2)

~

~8 ~

With the correct normalization,

V(r)= —— dq n. (q')
8 singr
31r qr

The potent;~l corresponding to a pure power n,
is

APPENDIX 8.THE "STRING PICTURE" AND THE SLOPE

OF THE REGGE TRAJECTORY

We consider a classical massless relativistic
string whose ends travel at the speed of light
(set & =1). If & is the energy per unit length
(string tension) then we show that E' =2n'M.

Let the string be of length 2L and consider a
piece of string a distance & from the center and
having length &&. Its motion is perpendicular to
its length, hence the effective energy of this
piece, whose rest mass id d~ =&di becomes
dm' =&ydf, where y =[1/(1 —~2&')]' ' (~ is the
angular velocity). Thus

dj g

Similarly,
I I )2J = (Ip )dl = (uk

a„V{")=-—
rPl + +7l

&(1 —n) cos—
2

(C»

As an example (to check normalization for in-
stance), let n =0, the Coulomb case. Then

V(r) =-—~4 g

145 1++, a

For + =-2, the confining case, the result is

V (r) = 3a t' .
Note that, with the same sign of n, (0'), the Cou-
lomb and confining potentials have opposite signs.

We used the above form of the linear potential
when we found, in the text, the relationship be-
tween the parameters eo, 0.", and &. The argu-
ment is this. Equation (2) of the text is

From this, E'/& =2».
The connection between this string model and

quantum mechanics is made in the following way.
In light mesons, the high-angular-momentum
states have large velocities and so ean be expected
to be relativistic. Rather than simply alter the
kinetic energy (which is the natural temptation) we
consider the elRssleRl relRtlvlstle string Rnd Rs-
sume that for high n (radial excitation number)
and & the correspondence principle holds. If so,
experiment dictates that 2» =1/n', where n is
the Regge slope. Hence & is known. The final
step is to apply the correspondence principle to the
QonrelRtlvlstic stllQg SlQce ~ l8 known so is the
potential.

At large n„n,=2'" "n, A'/q'. The potential due
to the tension of a string giving Regge slope o.' is
V =r/2nn'. Then, by the above Fourier transform
of the linear potential, this gives n, =3/4&n'q',
Identifying this with the previous expression, we
obtain

3 X 2 14$/81

4&0,'A2

as quoted in the text.
I.et us return to the Fourier transform and Eq.

(C2). For n =-1, the expression for V(&) has a
pole. Therefore, a term Iim, ,(e/q' ') gives a
nonvanishing constant part of the potential. This
limiting form actually corresponds to n, (q')
o-q2~'(q). Such a singularity is weaker than the
confining singularity n, (q'}~ I /O'. Therefore,
in doing a 9 integral, for example, in the Fourier
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transform, there is an ambiguity due to the possi-
bility of adding an arbitrary amount of the weaker
singularity. In position space this corresponds to
the potential V(&) being defined only up to a con-

stant. This constant has physical effects even
though it is arbitrary (for instance, it contributes
to the binding energy) and its value is determined
by fitting the charmonium spectroscopy.
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