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We discuss here a field-theoretic model of composite hadrons with quarks. The quark field operators
are assumed to be broken up into particle and antiparticle components at any time t similar to the large

and small components of a free-Dirac-field operator. This assumption is made consistent with equal-time
anticommutators. This implies that the Dirac Hamiltonian for quark field operators has four components:
the particle, antiparticle, pair-creation, and pair-annihilation components. For a simple ansatz for the field

operators, the latter two components need not vanish. The particle an& antiparticle components along with

some potential-like interactions are assumed to generate the hadrons as composite states. With the usual

form of weak and electromagnetic currents, this yields some corrections to the Van Royen-Weisskopf
relations and gives excellent agreement for the static properties of the nucleons. It is seen that the pair-

creation component of the Hamiltonian can generate P ~ KK decay, with a correct branching ratio for
I'(P ~ K'K )/I (tI5 ~ K K ). Thus, the pair-creation Hamiltonian seems to be the dynamical explanation

of the Okubo-Zweig-Iizuka rule. Further, the pair-annihilation component of the Hamiltonian with

minimal electromagnetic interaction also generates I"(m ~ 2y). With the mixing angle obtained from the

quadratic mass formula, I (q ~ 2y) also seems to have a reasonable prediction. We have considered only

nonrelativistic hadrons hoping that a potential-like description is valid in such a frame of reference.

I. INTRODUCTION

We shall consider here a field-theoretic model
of composite hadrons described in terms of
quarks. We first consider the quark field opera-
tors as four-component Dirac field operators
which need not satisfy the free Dirac equation. We

then break up these field operators into particle
and antiparticle components in a manner to be
specified. An ansatz for this breakup of the field
operators is made which is consistent with equal-
time anticommutators of the Dirac field and with

translational invariance. The "large" and "small"
components of these operators are consistently
retained without assuming that we have the free
Dirac equation.

We next consider the Dirac Hamiltonian corre-
sponding to these operators. This Hamiltonian can
have four components: the particle Hamiltonian,
the antiparticle Hamiltonian, and the pair-creation
and pair-annihilation Hamiltonians. For the free-
Dirac-field Hamiltonian, the two latter components
vanish. However, we note that, consistent with our
ansatz, these need not vanish in general. The par-
ticle and/or antiparticle Hamiltonians, together
with a potential we do not know, or with a poten-
tial-like interaction we do not understand, are as-
sumed to yield composite hadrons as eigenstates
of the Hamiltonian. For an interaction capable of
being written with an effective potential, conven-
tional field-theoretic techniques' using only equal-
time anticommutation relations will yield the equa-
tions for the wave functions of composite hadrons.
This can give rise to the usual mass-eigenvalue
equations of the nonrelativistic quark models. '

Here in this paper we do not enter into this aspect
of hadron spectroscopy since we regard this as a
very difficult problem, in spite of the many fairly
successful attempts. ' On the other hand, we as-
sume that suitable solutions exist, and attempt to
exploit the consequences.

Here we note that we are essentially using the
Schrodinger equation. We prefer to do so because
we want to obtain the composite hadronic state in
terms of constituent-quark field operators at any
fixed time l. We consider that the composite state
should be capable of being described on a space-
like surface as a functional of the constituent field
operators on that surface. For simplicity we have
taken them as equal-time surfaces. Partovi' has
given a covariant formulation of bound-state prob-
lems which in the c.m. of the bound state yields a
Schrodinger-type equation. For covariance we have
essentially such a picture in mind, instead of the
usual Bethe-Salpeter equation, ' where the time de-
gree of freedom is known to yield extra energy ei-
genvalues' and the problem of physical interpreta-
tion of the wave functions. '

The above comments, considered in the context
of the present paper, do not constitute an essential
assumption. What is really assumed is that a
potential-like interaction for the quark field opera-
tors exists in the rest frame of the hadrons. Hence
we do not attempt to maintain covariance for the
quark field operators. Instead, we try to retain the
whole Dirac field operator which could describe
the quarks as constituents of hadrons at rest, in-
cluding relativistic motion of quarks inside the
hadron. ' We are looking for an essential parame-
trization of this field operator that will yield some
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known properties of the hadrons.
We use these quark field operators in the usual

form for weak and electromagnetic currents. This
gives the usual Van Royen-Weisskopf relations'
with corrections coming from "small" Dirac com-
ponents. Also, m' - n'+ e' + v, is uniquely deter-
mined in this model with no arbitrary constant
involved and is consistent with the usual symmetry
property of the conserved vector current.

It is known that the three-dimensional harmonic-
oscillator wave function describes the composite
hadrons fairly well, ' particularly for baryons. We
note that g~/g), magnetic moments, and the charge
radius of the proton come out extremely well with
a simple parametrization of the Dirac field opera-
tor for the quarks.

With this parametrization, the quark-pair-crea-
tion term of the Hamiltonian does not vanish. It is
noted that thisterm alone canpredict a I ((t) -K'K )
width for a reasonable harmonic-oscillator wave
function if we do not take colored quarks. Even
when colored quarks are there, the disagree-
ment can be understood in a qualitative manner.
This also yields a correction to I'(P-K'K )/
I'(Q -K K o) as would otherwise be determined
from phase space only, and is in better agreement
with experiments. The fact that the quark-pair-
creation term in the Hamiltonian does not vanish
can be a dynamical explanation of the Okubo-Zweig-
Iizuka rule. " Any violation of the same will be a
higher-order effect (for which we have at present
no prescription), or, more likely, is due to mix-
ing. In the latter case it will be closely related to
hadron spectroscopy of mass levels, which we have
not yet discussed.

With minimal electromagnetic coupling, the pair-
annihilation term of the Hamiltonian also generates
a Hamiltonian which describes I'(rr -2y) in a rea-
sonable manner, when the correction term for the
Van Royen-Weisskopf relation is ignored in the
pion weak decay. If the wave function at the space
origin for pseudoscalar mesons remains unaltered,
this also correctly predicts I'((I-2&). However,
these results seem to involve a modification of our
ideas on gauge transformations, and thus, in the
context of a unified picture of electromagnetic
and weak interactions, need further investigations.

In all cases only first-order calculations are
made using equal-time anticommutators of the
quark field operators along with translational in-
variance. The agreement, although mostly good
for the eases investigated, must be regarded as
tentative and qualitative. However, this gives an
opening through field theory to hadronic dynamics
which would be useful. In fact it is nice to see that
a simple field-theoretic model with only equal-
time anticommutators and translational invariance

is as successful as seems to be the case here.
This method through field theory not only gives
better insight into the conventional way of retaining
large components in wave functions as has been
done by many authors, "but gives a much broader
perspective to hadronic dynamics.

II. GENERAL THEORY

and

f( ~')-
Q(x) = .- - -, Qr(x)-i(r ~ Vg —V')

~

Q()= F
Q ().

f(-V') J

(2)

In Eqs. (2) and (3), f and gare, as noted, differen-
tiation operators. Q, (x) and Q, (x) are two-compon-
ent field operators introduced so that they have
translational invariance in the usual form. Thus
g(r(x) has normal transformation under translation.
Differentiation operators are chosen to maintain
translational invariance. The above operators will
describe "constituents" of hadrons in their rest
frame or at nonrelativistic energies in an obvious
manner which we shall specify later.

We next consider the operators at time 1=0, and
take their Fourier transforms as

and

f k')
Q(r)=(2 )

' fi *q (k)
kg(k') (

x exp(ik ~ x)d'k (4)

()(r)=(2~) '*f '

)
0 (r)

f(k')
& exp(-ik x)d'k.

For the two-component operators, we assume the
anticommutator s

[Qri(x) ) Qr~ (y)l+ =(Qri(x), Q„(y)], =&,J)(x —y),

We shall consider here a spin-& four-component
field operator for quarks in the presence of a po-
tential. We first consider a simple ansatz regard-
ing the quark field operators as follows. We as-
sume that the quark field operator go(x) can be
broken into two parts,

go(x) = Q(x) + Q(x),

where Q(x) stands for annihilation of the quark and
Q(x) stands for creation of the antiquark. We next
take the two-component form of the quark field op-
erators as follows:
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and that all the other anticommutators vanish. The
corresponding anticommutators in "momentum
space" for equal times will also be valid.

For a moment we now use the notation

Q (k) l( Qr(k))l
0 j

as a trivially four-component object and rewrite
Eq. (4) as

o(«)=(«) ' 'f (f «r)o, (r)s p(:i )d'«

( I)

Then from Eq. (6) in momentum space one obtains

[o.(«), o's(i)[. =(«) 'J r* «@ ~ («%*) +i«a r «««I'r ( -r)[« «. '

We also use

Qr (k) =

[), Qr(k} j
for a moment as a four-component object and re-
write Eq. (5) as

o(«) («) ' =J(r «*«lo (rl»«(-(r «)«'«

This yields, again using (6) in momentum space,

[Q.(x), QB(y }].

(2 ), f. ( -P), ,k, ( +P)

even when interaction is present. Hence, in the
ansatz (2) and (3), f and g will not be independent;
rather, we must have

f '(k') +g'(k')k' =1, (12)

x exp[-ik (x y}]d'Ir-

Thus from (1), (8), and (10}, one obtains

[r«.( ), (g'«(r)] =(») ' f (i '«*"*).«*
x exp[ik ~ (x —y)]d'u

Equations (14) and (15) are consistent with equal-
time anticommutators for the Dirac field ([)q(x).
g may depend on the quark chosen, which we have
now included in the notation.

We now consider the Dirac Hamiltonian density

3' (x) =:(j)q(x)( iZ ~ V+-pmq)gq(x):

—= 3cq(x) +X@(x}+11q+ q(x) +1Iq,q(x) . (16)

In (16), we have broken the Hamiltonian into four
components: Xz and X+ are respectively the quark
and antiquark Hamiltonian densities and 9+ and
Q~+& are respectively pair-creation and pair-anni-
hilation terms which may not vanish identically.
We shall subsequently see that these Hamiltonians
can give relevant physical processes for composite
hadr ons.

We then use the breakup (1) with (14) and (15) and
substitute in (16). Then, ignoring space-divergent
contributions in the Hamiltonian densities, we ob-
tain

Xq(x} = Qr (x)[mq( fq' +gq'V') —2fqgqV']Qr (x),

(17)

&q(x) =:Qr (x)[-mq(f ' q+g' q~)+2fqgq'rr']Qr (x):,
(&s)

'Uq'q (x) = Qr'(x)[(-io V)(fq'+ gq'V'

—2 mq gqfq)]Qr (x),

or

f '(- &') = I +g'(-~') ~'. (13)
&qtq(x) = Qi'(x)[(-i(i &}(fq'+gq'&'

(14)

Hence, in a formal manner Eqs. (2) and (3) are
now rewritten as

Q(x} = . —
l Qr (x)-iG ' Vgq

2mqfqgq)]Q—r (x) .
(20)

We note that for free-quark-field operators
—[2PQ(Po +m )]-1lo
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where

(21")

Let us now construct the state

-3 j'2a~(w;(0)) jvac)=- (2v)-'i2 qrt(x f)T(q (y t)

In fact, we write the particle component of the
free Dirac field as

@( ) =( ) "Jt
j

'
jQ (P) p(-iP~)d'P,

&go j

where fo and go are given by (21) and (21') and

Qz (p) = Q a, (p)ur„.
&=&1/2

(23)

In such a case, i.e., for free quark fields, one
gets from (17) and (21}

Xo(x) = pit (x}(mo' —V')'i'Q~ (x) . (

We have a similar expression for 3cq(x), and the
quark-pair- creation and quark-pair-annihilation
components identically vanish. However, for
quarks representing constituents of a hadron,
strongly bound in a manner we do not understand,
such an identification by taking Eq. (21) may be in-
appropriate. For a posteriori reasons, taking g~
as a constant depending only on the quark appears
to be more reasonable. Technically, our intention
here is to keep g as arbitrary, and see whether
we can associate meaning to these as constants
dependent on quarks and/or hadrons of which 'they

happen to be constituents.
We shall now consider hadrons to be composite

objects obtained as eigenstates from quark and/or
antiquark components of the Dirac Hamiltonian
(16) bound by some potential, the nature and the
origin of which we do not at present undeI stand.
For example, let us consider the Hamiltonian den-
sities &z(x), K(p(~), ~x), Km(x) and the spin-singlet
and isospin-triplet potential

v, (t)= f » (», ))»;» (j t)v„(- )»»

xu, (x-y}d'xd'y jvac) .
(27)

We easily see that for any t, {27) is an eigenstate
of

H~(t) +H&(t) +H(y(t) +Hz(t) +V„(t)

with an eigenvalue m„and with total momentum
zero provided

[2m, (f '+g'2') —4fgV'+ ()„(x)]u„(x)=m,u, (x).
(28)

Equation (28) is the Schrddinger equation written
down in a formal manner using {6)where both the
large and small components of the constituent field
operator have been retained. Equal-time anti-
commutators are adequate as long as we can ap-
proximate the interaction through a potential which
we have assumed here for the rest frame of the
hadrons. Equation (28) will give mass levels for
hadron spectroscopy, which we can write down in
a conventional form with heavy quarks with the
usual approximation for g as in (21). The relativ-
istic cox rections for quarks have been retained in
(28) in a formal manner. The advantage gained is
that we can use the operator expressions for elec-
tromagnetic and weak interactions through field
theory, and get suitable corrections from "small"
components which we shall proceed to demonstrate.
We regard pair-creation and pair-annihilation com-
ponents of the Hamiltonian as "perturbations'*
which will yield decay amplitudes.

III. APPLICATIONS

A. Mesonic interactions and Van Royen-Keisskopf relations

Let us include a color degree of freedom and
write the m' state at rest as

x q,t(y, t)r;q, (x, f)d'xd'y .

ln (25) we have adopted the notation

q
(d', (x, t) )
(X,(x, t) j

(25)

(26)

I

'
(»)) = (» )

'*
~» f »'l ( ,) ' ))', (».) ,(», — .)

xd'x, d'x, jvac&, (2~

where i is is the color index. Similarly, we can
write the j v'(0)) state. For momenta k such that
jk j «m„we also have with (26)

0-js'(k}) =(2v) ' ' ~ u, (x, —x,) exp[ik ~ (x, +x,)/2] d'x, d'x, q,'(x,)tT,q,'(x,) jvac) .

With (6), Eq. (30) gives the usual normalization

&"(k ) j "(k )& = 6(k k ), (31)

provided we use the normalization

u x) 'd3g =1.

With Fourier transforms as in (4) and (5), and
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.( «) (=o)«i 'I*«„(«)e«p(i«x)o*«,

one obtains

(33)
8,' (x) =Z,', (x) —

igloo,

(x) -=3I'(x)y'y, (P'(x) . (38)

We take Fourier transforms (4) and (5) in (38) at
time 1=0, and thus obtain

)o'(«))= f o(«, «,)o'«, o'it, «,(«,)

~ q,'(k, +2 k) 'r, q,'(k, +-,'I)
) vac).

(34)

In the above, we construct the bound states with
field operators at time t =O. In our applications
we shall consider translational invariance of the
field operators and the equal-time anticommutators
(6) in coordinate or momentum space, with the
field operators being represented by (14) and (15)
for nonrelativistic hadrons.

The matrix element for the above decay process
is known from the SU(2} property of the weak vec-
tor current. Since the quark model is an explicit
realization of this symmetry, the same result is
derived; however, we do the trivial calculation
here to illustrate the method.

Taking the rest frame of the two pions, the r ele-
vant component of the weak current which will
contribute to the above provess is P, '(x) —i P,'(x},
which has the necessary term

If '(x)y' 6"(x) + X'(x)y
' (P'( x)

=X;(x) [f f+(gv) -(gv)](Pl(x)

+g~(x) [ff +(g%') ~ (gV})d",(x). (35)

In deriving (35), (4) and (6) have been used, and
the arrows indicate left differentiation or right
differentiation, as the case may be. From (29),
(30), and (35), one then obtains, using (6),

wo(O)) Po(0) —fl'o(0))w'(0)) =(2w) 'v 2 (36)

where (32) has been used. This yields (f,), =M2
=1.41, which is an agreeable result.

lf we introduce the Cabibbo angle and the Cabibbo
current, we then have'3

(f,), =)( 2cos8

&,'-(o) (o =) f*O(o(«')(f(«'*)f(«*l

+g(k")~(k')(o ~ k')(. ~ k)]

)& (P'(k)d'k'(f'k

From (39), using (29) in momentum space we ob-
tain

(v«c Io; (o) («'(o)) (««) =Ms/-'(y*-((«'), («)o'«

%e thus obtain

=(2w} 'hv 6(l+2g'V')u, (0)

= f (2w) "c-,(m, )'~
(40)

(41}

c (m )'~'
)(1 +2g2gw)u (0)) ((( 'i(

)( (42)

In Eqs. (40) and (42), u, (0) is the meson wave
function at the space origin. %e notice on the left-
hand side of (42) a term dependent on the deriva-
tive of the wave function at the space origin as a
correction to the nonrelativistic-quark-model re-
sult of Van Hoyen and %eisskopf coming from the
small Dirac components. Substituting c, = 0.094
GeV, we get

)(1+2g'(«'}u, (0) ) =0.0141 GeV'~' (43)

3. EIeetromugnetic coupling 0f vector mesons

%e take e.g. the p -meson state with spin 1 as

I)o',(o)) =(2w) '~'

Qp X~ X o d X~d X2QI(~/2) X~

In the above, we have taken g =gfp =g~. %'e shall
have occasion to use (43) to estimate I'(w'-2y) ig-
noring the correction term to the Van Royen-%eis-
skopf relation later.

( f, )»=)( 2 sin8.

2. m ~e +pe

%e shall take n' at rest. Then the necessary
annihilation component of the weak current is

" roA&«&2)(X2) )v«) .

The above state is assumed to be constructed in a
way similar to (27) with no knowledge of the forces
which bind to give rise to such states. Now the
space part of the pair-annihilation component of
the electromagnetic current is given, e.g., for the
6 quarks~ as,
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e 6"(x)'Z6"(x}=e 4" (x)t[(/ff +2(&~%)gg+gg[(/(& ~}—(/((7 &)-((T. ~)~]}(f",(~)

Thus (44) and (45) give us on simplification,

(45)

(vac IJ)(0) Ip', (0)) =(2v) '/' 3 (.,2(, /2) o, +2 2((/ ~ (d') ((,(, /2)&(x)((2(x)d2x
6

2 2

=(2)() 'i' l+ (d" 22(0}.
M6

%'ith the field-current identity we have

{vacIJ)(0)Ip',(0)) = ' )( )((2s) '/'x
PÃ

p

From (46) and (47) one gets

(47)

.~ 3/2
I(l+ iZ'&'), (0)I =

~ey., ' (48)

which is the corrected Van Royen-Weisskopf rela-
tion with a correction coming from the space deri-
vatives of the wave function at the origin. In fact,
if we substitute experimental numbers, we obtain

(i + 2g2V2)((, (0) =0.048 GeV2/2. (48')

Thus, the paradox of different values in (43) and
(48') is not really there. This comment is in addi-

tion to the fact that the singlet and triplet wave
functions u, and u~ may not be equal, as appears
to be the case from a comparison of (43) and (86),
which seems to indicate the corrections to be rela-
tively small.

The corrected Van Boyen-Weisskopf relations
(42) and (48) can be more relevant if we have a
determination of the meson wave functions in the
neighborhood of the origin, i.e., valid for also
large quark momenta. One can satisfy oneself that
the harmonic-oscillator wave functions are not good
approximations at the space origin in spite of its
many agreements elsewhere.

8. Static properties of the nucleon

We note that with colored quarks, the SU(6} ei-
genstates for proton and neutron can be written in
momentum space as

~d, i,(D)) = ~ dd f ll(k, k, k, ) (k„k„k)d'l,,d'l, d'k,

x I(p/(1/2)(kl) (p/(1/2)(k2) &1 ( 1/2)(k2) - 6'l(l/2)(ki) (p/(-(/2) (k2) &1 (1/2)(k2) ] I
vac& (49}

I d. (M&= k~ k„, fdtk~ k k) (k k.,, k).d'k, d'k.„d'k.

[ /(1/2)( 1}+/(1/2) ( 2) 3(l(-1/2)( 2) /( 1/2)( 1}5f/ (1/2)(k2} 3f/ (1/2) (k2) ] I
vac) (50)

The other states can be similarly written. The
harmonic-oscillator wave function may be taken
as"

3g4 3/4
M{k„k„k2)=, exp --2(ft2 g(k, —k, )' .

1. n~p+e +v,

We shall calculate g„/g„ for the above process
We have, considering only the relevant component
here,

J..(x) = s ((x)) y,3f((x)

= a/((x) ff()f+gg[(o'~)~+~(o V)

-&(& &)]}Of((x).

We now consider J„(0)for f =0, take Fourier
transforms (4) and (5), and explicitly evaluate
(p, /2(0)

I
J2,(0) I)2, /2(0)) using (49) and (50) and

thus estimate g„/g„. We then obtain

(52)

ki + sC' k~ ~~

d' &d, = —.'f d(k, k. +k)I (k„(k, k)~*d'k, d'k. d*k.
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which, upon using (51), yields

5 4 g 2

gg/gv 3
1 2 (s3}

In (53), we have assumed that g is a constant.
This is an ad hoc assumption which seems to yield
g„/g„, magnetic moments, and the charge radius
of the proton simultaneously.

A remark here is worthwhile. Assuming that

g is a constant for quarks inside hadrons along
with (12) implies that quark momenta inside had-
rons remain strictly finite. This is inconsistent
with the wave function (51) where quark momenta
have a Gaussian cutoff. We simultaneously make
both assumptions which will be valid when only
comparatively low quark momenta will be probed
in integrals of the wave functions. We shall see
that our estimates of g and R' will be consistent
with this picture particularly for baryons.

and

p.„=-1.90 nuclear magnetons. (60)

and

P 9 g(P 2R2 9 g+ 2R2

2 2
gg ~ got

Cy 1 —
2R, -9g~ 1 —

2R, ) (61)

The above three equations are quite well satisfied
experimentally if we take

g~=1.63 GeV ',
=1.71 GeV ',

The agreement above is good. " If we further take
g(p4g~, we then have

2. Electromagnetic properties and (62)

We consider the electromagnetic interaction to
be given by

X,(x) = -ega'(x) o. XQ (x) . (54)

&' '(x)=-e&g&Q'(x)Ro (&x&)]0 ( ) (55)

On taking g~ =gn=g, as for (53}, one then obtains

r .= ("&'(r, r ((((I Q ear;a(rl(~('(Tv, @,'(0( /( „,(((()

2&
exp —

2
k, ' k, ' d 'k,

— (- ) (56)

In the above, we have taken f(k, ') = 1 ——,'g'k, '.
Further, as usual with SU(6), p„=-—',t(~. If we take
R'=15 GeV-' and

g=1.67 GeV ',
we obtain from (53) and (56) that

g„/g, =1.2S,

p, ~
= 2.85 nuclear magnetons,

(57)

(ss)

(59)

We note that for magnetic moments which we want
to calculate now, we need matrix elements of elec-
tromagnetic currents between moving hadrons.
In the following paper we develop these ideas which
include relativistic boosing of the states as well
as the quark field operators, ' which thus include
the effect of Wigner notations. However, here we
proceed in the spirit of the nonrelativistic quark
model.

Equation (54) implies that the magnetic moment
is obtained from the effective Hamiltonian

R'=15 GeV '

Also, if we make the usual identification for A,
we obtain

2

~h 3 g}t 1
2R2

so that, substituting p.h = -0.67 nuclear magne-
tons, "one obtains

g„=1.12 GeV '.
If we identify me = (2qo) ', we then obtain from
(62) and (64)

m~ = 307 MeV,

m&= 292 MeV,

and

(64)

(65}

m„=446 MeV.

It may be seen that the decuplet mass level spacing
of about 146 MeV appears to be completely due to
the A. quark being heavier. However, the isotopic-
spin breaking of the (P and X quarks seem to be
larger than expected, and the sign of the mass dif-
ference also does not appear to be correct on the
basis of masses of isotopic multiplets of hadrons.
We expect that these results may have only quali-
tative validity without the details being valid since
from deep-inelastic electron scattering we know
that for the octet a mixing of 56 and 70 of SU(6)
is expected. " We include the results of Eq. (65)
tentatively since these parameters will play a role
in (19) for describing strong decays of hadrons,
particularly in the following paper; however,
we may regard the average mass of nonstrange
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quarks as reliable, and not so much as the iso-
topic breaking.

We can also obtain the charge radius of the pro-
ton. With t = -4p, taking the Breit frame, for

t«—m~', we get from (51)

G"'(I) = (»)'(p, /, (-p)
l
&(0)

l f, /, (p))

exp — k, ——,p)'

3R'
d

4

Now, Q -K'K or (It} -K'K" are kinematically non-
relativistic problems, so that the present model
can be thought of as being useful without modifica-
tions or generalization, As in (65), we take mo
= (2g&)

' and approximate (19) by

'Uo(o(x) = —,'g()'Q/(x)t(-ia' ' &)&'Q/(x) . (70)

Equation (70) will be our interaction Hamilton-
ian, where we do not have any unknown constant
to be determined. We shall. take (It) as a pure
strange quark-antiquark pair, and thus write

= exp(—6R't),

so that we get from (62)

(r '),„'/' = R = 0.77 f m .

(66)

(67)
x x/()/p)(k() )(/((/ )(k )

l
vac) .

If, instead of (66), we take the result of Licht and
Pagnamenta" and write

Also, we take

G(P) ( 1
t R't

4 ' 6[1 — /(4 ')] I
'

(68)
x (P/((k, + X,p)tX/((k, +)(,p) vac) .

then we obtain

The agreement seems good, but we would like tu
stick to the earlier comment that all results should
be regarded as qualitative, and whatever under-
standing we gain here is incomplete. This is so
because gluons seem to carry half the proton mo-
menta, and in our approach, in the same manner
as all other workers with similar approaches, we
have ignored the gluons. Also Eq. (68) is to be
viewed with reservations in the context of the pre-
sent nonrelativistic model ~

C. Q decay and the Okubo-Zweig-Iizuka rule

We have noted that the Dirac Hamiltonian (16)
has associated with it a pair-creation Hamilton-
ian, which, as given in (19), does not vanish when

g is a constant. This Hamiltonian e.g. , can gen-
erate strong decays, automatically associated
with the Okubo-Zweig-Iizuka selection rule. To
illustrate this, we first note that space integra-
tion over 'oo)o(x} will imply that the quark pair
created will have total zero momentum. Further,
total energy-momentum also will be conserved
since we are maintaining translational invari-
ance. Hence the quark-antiquark pair created
in decays due to 'Dot()(x) will belong to different
hadrons; otherwise, from kinematic considera-
tions, the contribution vanishes. Hence the pair-
creation component of t:..e Dirac Hv. ~iltonian can
give rise to hadron decays which obviously be-
comes equivalent to the Okubo-Zweig-Iizuka rule.

where

jW, = —j(2x} (K'(p)K (-p)lg &-(0)l(]),(0})

=27TSX 2g(p X X ~ X3
v3

x I ft, kx ~&*„kx+~~p ~&K kz+

xu,', /, () (k, +p)(k, +p)'v/, /, d'k, . (74)

We next take all the meson wave functions as
2 3/4

u(k) = exp( ——,'R'k') . (75)

We then obtain from (74) on integration

W3
~z, = (iv) x ge2xilpl sin//e'~x

1+2&, (, ),/,

x 2+ 9
' . Ipl' exp(-'R'/('Ipl').5 (1+2)(,}'

3R

This yields, neglecting lpl' terms,

W)( x50)((1+2]()) m&lpl ~g'
3 x27X27 R

(76)

(77)

(72)
In (72), )(, and ](, are respectively proportional to
(P and A. quark masses, with A, +X, =1. We can
similarly write down the other K-meson states.
Using now (70) as the interaction Hamiltonian and

taking into account translational invariance, we
now obtain
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If we substitute A~=0.41 and g~=1.63 GeV, and
use that" F(iti-K'K ) =1.9 MeV, then we obtain
that

R'=1 GeV '.
We note that (78) is not acceptable in usual har-
monic- oscillator models.

Gn the other hand, if one does not ta,ke colored
quarks for mesons, then the right-hand side of
(77}gets multiplied by 3, and thus (78) gets re-
pla, eed by

decays and be a dynamical expj.anation of the
Gkubo-Zweig-Iizuka rule. %e shall also make
use of the pair-annihilation component of the
Hamiltonian in the next section to describe
r(v'-2r).

%e write the quark-pair-annihilation com-
ponent of the Dirac Hamiltonian (16}as

KI ~ 'W--mo j i,
-I'o' %go j

(81)
which is quite reasonable. In such a case we ex-
pect that mesons may have indistinguishable color
isotopes. This speculation implies that e.g. we
have three types of P mesons, red, blue, and

white, and a red P meson decays into two red
K mesons, and so forth. This will happen be-
cause U~~z cannot change the color. However,
for N*-¹,~here N~ and N are color singlets,
a, pion of all three colors will result with equa. l
prollRtllll'ty. II1 BUch R plctul'e (mostly) lllesolls
will be mixtures of three color states instead of
being a superposition of them, yielding a. color
singlet. %e recognize that such a, hypothesis ls
far from compulsory, but we keep in mind such a
speculation since off hand we cannot reject it. Gn

the basis of such a speculation, we obtain also,
from (62),

I'(Q-K'K )/I'(Q-K K ) =phase-space factor
x (g&/g~)'

= j. ,53 x0.826

= 1.27. (80)

Equation (80) is an agreeable result in view of the
fact that the above ratio is 1.33 +0.14. However,
this value is far from settled.

However, we note that in ('78) fjl' ~g~e, and thus
is extremely sensitive to slight changes in the

value of gz as determined in (62). Thus, we may
'have the mesons as color singlets, and qualita-
tively we may have the ideas of the present sec-
tloll still vlnd1cated by (80), where we llllagitle
that a more complete determination will increase
the value of g~ and g . Also, we note that we
have used a completely nonrelativistic foxm for
the quark-pair-creation term, excluding any ef-
fect of the motion of K'K pair, which may not

be a valid approximation.
It is of course always true that the forces which

bind may also be responsible for decay. But the

appearance of a pair-creation term in (16) with

a simple ansatz makes it aesthetically appealing
that this may automatically describe the strong

X, (x)=—Q go eo'Qi(x) Q 1(x)X(x) ~ ( VXA(x}).

Now from (30}we get

(k„Z,;k„e,(S(II'(0))= 6,(f,—PI)m„

where, taking gz =gz~ =g,

(83)

1 I
Mfl ——

(2 ),~2 x ~ x6x 0 u~(0)g (e~ e~ )

x[., (k, xe,)+e., ~ (k, x&,)] .
%'e note that, summing over polarizations,

Q jM~, )'= Ix' g')u, (0))',

I"(II'- 2r) = Il'
3

g'lu. (0) I' (85)

We now compare (85) with (43), which is the cor-
rected Van Royen-Weisskopf relation. In fact (85)
yields, with (57), and I' = 8 eV.

iu„(0) i=0.0153 GSV'i' . (86)

The right-hand sides in (43) and (86) do not differ
appreciably. Thus the correction in the Van
Royen-Weisskopf relation is seen to be about 20%,

%e intx oduce electromagnetic interactions through
minimal electromagnetic coupling, replacing V'

by V —led in (81). This generates a two-photon
component along with quark pair annihilation
given as

g~'oQ, (x)Q, (x)A (ixX).
Tile tel'Ill (82) cRI1 descr1be II decRy illto two pho-
tons in the quark model. In fa,et one may easily
satisfy oneself that this is the only term from (81)
which can give a finite contribution to such a pro-
cess. Thus, in the quark model with color we
shall ta,ke
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and we may have reasonable confidence in estimat-
ing two photon decays from the Hamiltonian (83).
We note that the framework of the quark model, for
(43), I'(&'- p, '+ v) and for (86), I'(v'-2y), are the
experimental inputs respectively. It has not been
necessary to invoke the hypothesis of partially con-
served axial-vector currents with the modifications
suggested by many authors. " However, minimal
electromagnetic coupling has been utilized starting
from the quark pair-annihilation Hamiltonian in the

form (81).
Another comment is worthwhile. The relation-

ship between (43) and (86) will remain unaltered
whether we take colored quarks or quarks without
color, or whether mesons have color isotopes as
was speculated in Sec. III C. Thus, with this way
of looking at &'-2p, when pion weak decay width
is used, color does not seem to be necessary. "

We now consider q-2y. Similar to (30), we now

take

~q(0)) = (2s) '~' ~ qz'(x, )t qz(x, )+ &,'(x, )~X,'(x,) u„(x, -x,)d'xd'x, (vac} (87)

where 9 is the mixing angle for nonstrange- and strange-quark-antiquark pairs. The interaction Hamilton-
ian is taken as (83} and we shall use (62) and (64). We then obtain

Mf, (7)-2y) = — .,&, x6xu„(0), [e, . (k, xe,)+e, (K, xe,)]

cosa ~ ~ ~ 2 slnO
(88)

Hence we obtain

„(0) '
~(4g '+

m, o' ~u, (5) ' (4g '-g ')'

= 47 )u q(0) J'/Ju, (0) /' . (89}

In (89), we have taken 8= 25', as obtained approx-
imately from the quadratic mass foryseudoscalar
mesons. " Thus we get, if u„(0) =u„(0).

I'(rL —2y) =(376+25) eV, (90)

which is in reasonable agreement with experimen-
tal value" of 323+48 eP. Alternatively, (89) may
be taken as a way of determining u~(0).

We note that the present assignment agrees with
the conventional mixing and not with q being almost
completely a strange-quark-antiquark pair. "

IV. DISCUSSION AND OUTLOOK

We would first like to comment on some obvious
limitations of the present model. Although we have
taken "large" and "small" Dirac components, ind
thus the quarks inside hadrons can be "relativis-
tic,"we have really a nonrelativistic theory, which

may explain phenomena with hadrons at rest.
However, we have applied this theory to tmo cases
where hadrons are not at rest: the magnetic mo-
ments of baryons and charge radius, and the P de-
cay. Even though hadrons have small velocities
while in motion, Wigner rotation in quark space
mill come into the picture. Hence, in these two
cases the present model is really incomplete. We

have constructed a relativistic version of this
model" which takes into account these features. In
the present paper we ignore these effects, proceed
in a manner strictly parallel to nonrelativistic
quantum field theory, and examine the results. We
consider it worthwhile to retain these results since
what we have done in Ref. 15 may not be the actual
description of hadrons for relativistic boosting.
We note that in Ref. 15 the final results regarding
magnetic moments remain broadly correct, but the
description of Q decay gets substantially altered.

When we talk about the quark model of hadrons,
we usually have three models in mind: (i) heavy
quarks, (ii) comparatively lighter observable col-
ored quarks, "and (iii) quarks that are permanently
confined, "which thus could be as light as needed.
We have not distinguished these models in our ap-
proach, since we have not raised this question and
have specifically avoided mass eigenvalue equa-
tions beyond just giving such an equation for poten-
tial-like interactions. In view of the "known" mag-
netic moments of quarks, in models (i) and (ii) the
effective mass of the quark inside the hadrons is
always assumed to be small. The quarks are as-
sumed to have one-third the baryon mass inside
the baryons and half the meson mass inside the
mesons. In such a case the agreement of (43) and
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(86) is to be regarded as accidental, since in the
later equations we have taken gz and gz as deter-
mined from nuclear magnetic moments and have
extrapolated these values for & mesons.

If we do not regard the results of Sec. IIID as
accidental, we are led to an interesting conclusion
that the quarks inside the nucleon and the pion both
have the same magnetic moments. This conclusion
favors (almost) permanently confined quarks with
common magnetic moments whether they belong to
baryons or to mesons, and bound in a manner we
do not understand. Chromodynamics with infrared
slavery" may be a possible mechanism, but we
are yet to understand how it really happens, since
this mechanism should simultaneously generate the
mass spectrum. " The fact that quarks have the
same magnetic moment inside mesons as in nucle-
ons is not a new observation as is known from
electromagnetic decays of vector mesons. " This
point of view gets further support here.

We note that if quarks are permanently confined,
the vector space spanned by them will be an un-
physical vector space. The physical vector space
will consist of the vector space of known hadrons,
and other particles. However, now there will be
nonvanishing triangular vertices for three hadrons,
arising from the quark-pair-creation Hamiltonian
along with its Hermitian conjugate. Such vertices
will be consistent with the prescriptions of the
Okubo- Zweig-Iizuka rule. This dynamical explana-
tion of the above rule seems to us to be an attrac-
tive feature of the present model. Further, the
relativistic generalization of these triangular ver-
tices may as well give the S-matrix theory with
usual analyticity and, probably, crossing symme-
try. Thus the relevance of such approaches for
many physical processes can be understood.

When g is a constant, as we have very often
taken in our applications, (14) and (15) indicates
that the quark must always lie inside a sphere of
radius g ' in momentum space. Such a system
evokes the memory of a degenerate Fermi system.
We have not exploited any such idea here. How-
ever, intrinsically a finite-momentum bag does not
appear to us to be any less physical than the finite-
space MIT bag. " Further, here we have made it
consistent with equal-time anticommutators and

translational invariance, and thus here we have an
automatically quantized system, which was not
true of the MIT bag.

Obviously, in the applications the present model
is a generalization of the non~elativistic harmonic-
oscillator quark model. It is a field-theoretic ver-
sion of the same when "small" Dirac components
are retained. We take the attitude that this should
be suitably Lorentz boosted to describe hadrons in
motion. " Feynman et al. have also considered a
relativistic harmonic-oscillator model" on which
a lot of work has been done. This has the time de-
gree of freedom, which gives rise to difficulties of
interpretation"'" as well as to too many eigenval-
ues." Kim and Noz" suppress this degree of free-
dom by a subsidiary condition and are able to give
a relativistic probability interpretation with such
equations. However, the author believes that re-
taining the time degree of freedom to construct
bound states is unphysical. This is particularly
relevant in the context of a bound-state equation
proposed by Partovi which is a relativistic equa-
tion similar in its derivation to the Bethe-Salpeter
equation, but which reduces to a Schrodinger-type
equation in the rest frame of the bound particle.
We have essentially such a picture in mind for the
relativistic version of what we have done, in the
rest frame of hadrons.

We believe that the nonrelativistic quark model
is quite reasonable particularly since Kim and Noz
have shown that most of these results can also be
derived with covariant harmonic-oscillator wave
functions with a relativistic probability interpreta-
tion.

Thus it seems to the author that the model pro-
posed is rich in possibilities where we should be
willing to try unfamiliar properties for quark field
operators until we understand them better. Exper-
mental results rather than our predispositions
should decide what those properties are. A possi-
ble relativistic version of the present model is
proposed in Ref. 15.
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