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Using a modification of the standard %'einberg-Salam model, we compute renormalization corrections to
the 8' and Z masses proportional to differences in the Higgs-particle mass squared. This contradicts the
expectation that superheavy particles should be undetectable in low-energy phenomena.

I. INTRODUCTION

Weak-interaction theories with spontaneously
broken gauge symmetry include scalar Higgs par-
ticles. There is no experimental evidence for such
particles, although their detection is notoriously
difficult. (See, for example, the review by Gaii-
lard, Ellis, and Nanopouios. ') One might attempt
to exorcise these particles by assuming their
masses to be extremely large. Here we point out
a phenomenon in perturbation theory that allows
one to put constraints on the way in which Higgs-
particle masses are made large. In particular,
we examine the renormalization contributions to
the W and Z masses as the Higgs particles become
heavy in a Weinberg-Salam model' with two Higgs
doublets. We calculate terms in the vector-meson
propagators which are proportional to the squared
mass of the Higgs particles, and show that when
some of the Higgs-particle masses are made very
large there are physical renormalization effects
of this order in one-loop perturbation theory. The
standard model, with one scalar doublet, has ef-
fects which grow with the Higgs-particle mass as
lnM„,, ', not nearly as fast as ~„,,„,'.

One might expect that as the mass of any particle
became large it would decouple from the low-en-
ergy theory in the manner demonstrated by Appel-
quist and Carazzone. ' The presence of a physical
effect on the 8" and Z masses proportional toM„„„'indicates that this is not necessarily true.
We emphasize that this is a physical effect and
cannot be removed by redefining the parameters
of the theory.

In brief, the argument of Appelquist and Caraz-
zone is that convergent graphs containing an in-
ternal heavy particle will be proportional to an
inverse power of the large mass and hence will
vanish as the mass becomes large. The effects of
internal heavy particles on divergent graphs may
be removed by adjusting the counterterms used to
remove the infinities, which is equivalent to rede-
fining the parameters of the theory. This argument
depends upon our ability to subtract each primi-
tively divergent Green's function independently.
The difficulty is that in broken-symmetry theories

there are more divergent Green's functions to
which heavy particles can contribute than there
are counterterms available. We are assured by
the underlying symmetry that the infinite parts of
these Green's functions can be removed, but there
will be finite physical renormalization effects left
over.

A general feature of spontaneously-broken-sym-
metry theories is that mass ratios are proportional
to coupling-constant ratios. When Higgs-particle
masses are made large with the 8' and Z masses
and the gauge coupling constants kept fixed, the
scalar self-coupling constant A. becomes large.
However, the computation presented here does
not involve scalar vertices, and so does not ex-
plicitly involve X.

Veltman has demonstrated a similar effect on
the W and Z propagators when the theory contains
a superheavy lepton with a light neutrino. ' In
this case it is a Yukawa coupling which becomes
large, but again the coupling does not appear ex-
plicitly in the computation.

In Sec. II we sketch the model used in the calcu-
lation. Section III describes the calculation and
contains some comments on the results.

II. MODEL

We use the Weinberg-Salam model, except that
we include two complex doublet scalar fields 4,
and 42q both with hypercharge ~. This ls a simple
extension of the standard model, but it has a richer
Higgs phenomenology. In order to simplify the
scalar potential we require a discrete symmetry
4, —-4, and d'„--d ~, where d ~ are the right-
handed charge ——,

' quark fields. This discrete sym-
metry also ensures the condition derived by Glas-
how and Weinberg for the absence of flavor-chang-
ing neutral currents mediated by scalars, namely,
that quarks of a given electric charge couple only
to a single Higgs field. '

The most general potential for the scalars con-
sistent with this symmetry is
v(c„c,) = m, '4', c,+ m, 'c', c,+ ~,(c,'c,)'+ g(e', c,)'

+ ).,(4~t4, )(4t4,)+ —,
'

X,[(CtC,)'+ (Ct@,)'j
+ X,(4', 4,)(CtC,). (&)
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If m, ', m, ', A and X, are negative and X, + X, + X,
is not too large, this potential will have a minimum
at

x y, ~2 v sy, ~2 v za, v2
(2)

y
'

g, ~2 v sy, ~& 'v zc, ~2

1
4X,g- (~, + g+ ~,)'

x[ 2x,m, '+(x, +g+x, )m, '],

1

4x, x, —(x, + x, + x,)'

(2)

x [ 2y, m, '+(A.,+ y, + y,)m, '].
To find the physical Higgs particles we expand

4, and 4, about the minimum of the potential, and
find the eigenvectors of the quadratic terms in the
shifted potential. We parametrize the fields as

where v= (x'+ y')'~'. y and n represent complex
charged fields, while the other fields are real and
neutral. n and n, are unphysical scalars which
mix with the 8" and the Z mesons, respectively.
X is a charged Higgs particle and X, is a neutral
pseudoscalar. If A =0 the discrete symmetry im-
posed on V becomes a continuous symmetry 4,-e 4„d~-e dR. The X, is then a. Goldstone
boson: the axion of Wilczek and Weinberg. ' 4o
and q, are not eigenvectors of the quadratic poten-
tial, but mix together to form two neutral scalar
particles. These physical particles are

4'= ~4o+ ~'0o~ 0= -~4o+ f90 ~

where e = cos(, s = swan, and

-X,x'+ gy'+ [(X,x' —X, y')'+x'y'(X, + X, + X,)']"'
xy(X, + ~, + ~,)

(4)

The masses of the physical scalars are

ping x
= -2X4p

m„'=-(~,+ X,)v',

m —2A,~x +2k.~y

~ [(2x,x' —2X, y')'+ 4x'y'(x, + X,+ X,)']"'.
The Feynman rules for the interaction of the

scalars with the gauge mesons are found from the
scalar covariant derivative part of the Lagrangian,

+(e, -c,). (6)

We substitute the expanded form of C, and @, [Eq.
(3)] into this expression and perform some tedious
algebra to find the Feynman rules for the physical
particles. Figure j. and Table I contain the Feyn-
man rules for vertices involving W' or Z and

physical Higgs particles.

III. CALCULATION AND COMMENTS

%'e need to examine only the graphs in the vec-
tor-meson propagators involving physical Higgs
particles, since these are the only ones that could
be proportional to M„,.„,'. There are three classes
of such diagrams, shown in Figs. 2, 3, and 4. The
tadpole diagrams of Fig. 2 will not change the Z-
to-8'mass ratio, since the couplings of P and g to
the 8" and Z are proportional to the squares of the
tree-approximation masses of the 8' and Z. This
is equivalent to saying that the tadpoles may be
removed by redefining x and y. The diagrams of
Fig. 3 contain explicit factors of M~' and M ~'
from the vertices and are only logarithmically
divergent, so as the Higgs-particle masses go
to infinity they will have parts proportional to
M»'lnM „'.This logarithmic effect is also
present in the standard model with one physical
scalar.

We are left with the diagrams of Figs. 4(a) and

4(b), in which H represents a physical or an un-
physical scalar. The integrals for these diagrams
can be easily evaluated by dimensional regulariza-
tion, and we call the results I, and I,:
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—see Table T.

Hp

p&G. 1. Feynman rules for the two-Higgs-particle model.

dA 1 i
fl

(2 )n 2 2 (4 )2 (m —m lnm )q

d"u (2u +p)"(2f +p)"
(2w)" (0' —m, ') [(k+p}' —m, ']

( )2 (-gp +m~ +m2 )g +
(4 )2 gp p

do. [(-2n(I —o.)p'+ 2(1 —o.)m, '+ 2o.m, ')g'"
(4w}'

+ (1 —2n) p p"]In[-a(1 —o)p +(1 —o)m, '+ om2'].

In Eqs. (I) and (8) we have subtracted the part proportional to Euler's constant yz as well as the infinite
part, which amounts to a trivial shift in the arbitrary renormalization mass p, . Euler's constant arises
in one-loop integrals through the expression (4wiJ, ')'~'I (q/2}, where q = 4 —n, and p is defined by writing
the coupling constant in n dimensions as gg' '. This expression is just 2/q —yz+ ln4w p, , and Euler's con-
stant and the factor of 4m may be removed by introducing a rescaled renormalization mass p.

' such that
lnu" = ln4~p, '

y~. Therefore, dropping y~ and ln4z from one-loop integrals just amounts to making a fi-
nite change in the counterterms.

In the limit where pn, or m, is much larger than M~ or M~, we may drop the p' and the p "p" terms in Eq.
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(8) and evaluate the integral over o.. In this approximation

4 2 4 2
m2 lnm —m) Inm

fermi )m2 & 2 2 + p(my +v/2 J ~

mj ~ vl2

Note that when m, =m„ f(m, ', m, ') is equal to -2m, 'lnm, ' and I, is proportional to I,. However, if m, is
large and rn, is not, f becomes -m, 'lnm, '+ —,'m, '. For the unbroken theory, or for sets of diagrams where
both the scalar masses are equal, the diagrams of Fig. 4(a) cancel against those of Fig. 4(b), and we get no
contribution to the vacuum polarization proportional to m', as is required by gauge invariance. However,
if there are large mass differences among the Higgs particles, the structure of f is such that the cancel-
lation will not be complete; there will be terms of order m' left over.

We compute in the Feynman gauge, so the unphysical scalars have the same masses as the W and Z.
For the graphs of the type in Fig. 4(b) where one of the particles is unphysical, we set f(m„',M~')
= -m„'lnm„'+-,' m„'. For physical Higgs-particle masses that are large relative to the W and Z masses,
the m' terms in the vacuum polarizations of the W become

P

I

2

2

+ -m „'ln m, '+ ~ m„'+ 2m „'ln m„'
+m~'lnm~ +m„lnm„+m„ lnm„'

X() 0

For the Z propagator we find

+m@ lnm@ +m~ lnmq +m)( lnplxX() 0

where

R'=(g +A' )

In the tree approximation the squared masses of the W and Z are —,'g'v' and 2g'v', respectively. A

contribution to the W and Z masses that is equivalent to a change in g would be unobservable, unless we
could measure the three- and four-Higgs-particle couplings to independently measure v. Therefore, the
quantity of interest is the change in the mass ratio of the W and Z. This change is given by

I
2

[ f(m, ', m „')—f(m ~', m „,') ]
W' V

We see immediately that if the mass of the
charged Higgs particle X is the same as that of
the pseudoscalar Xo, there will be no effects pro-
portional to m„, ,'. However, if the mass dif-

ference between y and ~ becomes large, &(M~. '/
M~') may be large. In particular, if m„becomes
very large but the masses of all other Higgs parti-
cles are near the W and Z mass scale, the expres-
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TABLE I. Feynman rules for diagrams of Fig. 1(c).

Vector meson

W„

Wu

Hg Hp Vertex

2g PC —XS
( )u

2 v

p —q
$g XC+PS

( )u

zV ZP Zv

W„ Xp X -g(p -q)"

Wu
Sg XC+PS

( )u
2

W„ ig gC —XS
( )u

2 v W W

W'„

W

Zu

zu

zu

Zu

Xp

Xp

Ckp

ZggC XS
(

V

ig XC+yS
(

V

-&(p -q)"

tg xC+ $S
( )u

2 v

p —q
Zg PC —XS

(

/2 2

— g:g (p-q)"
2g

ggC —XS
( )u

V

g XC+PS
( )u

V

g XC+gS
( )u

V

ggC XS
( )u

2 v

FIG. 2. Tadpole diagrams.

masses near the W mass, there is about a 3% cor-
rection to the Z-to-W mass ratio. This means
that for small momentum transfers the strength
of the neutrino neutral-current interactions, g'/
M z would be 6% larger than the strength of the
charged currents, g'/M~'. However, these effects
become significant before the Higgs self-coupling
becomes too enormously large. Using the rough
formula M«„,'/M~' —X/g', for a Higgs-particle
mass of order 750 GeV, we find X/(4r)' =0.25.

The relations among masses and coupling con-
stants may be used to write the vacuum polariza-
tions of the W and Z in an intriguing way. If the
model has large mass splittings among the Higgs
particles, and fermion doublets with large mass
splittings as in Ref. 4, we have seen that the
vacuum polarizations take the form

m 2 m 2

II - g2g + g2g Hikas + g2C fermion
1 M MW W

(14}

sion in curly brackets in Eq. (12}approaches m„',
since it follows directly from the definitions of v,
c, and s that

xc+ys ' yc —xs '
W

Curiously, if f, q, and y have the same super-
heavy mass and y, is light, there is no effect, but
if X and only one of the scalars are heavy, there
is an effect.

We hasten to note that the experimental conse-
quences of this phenomenon are not large until the
mass differences become truly enormous. For
example, if the mass of the charged Higgs particle
is 1000 GeV and all other Higgs particles have

Zv Zk

FIG. 3. Logarithmically divergent diagrams.

Zv



I8 RENORMALIZATION EFFECTS FROM SUPERHEA V Y HIGGS. . . 1631

w" z"

H)

FIG. 4. Quadratically divergent diagrams.

where the C,. are numerical constants and g is a
gauge coupling constant. Using the relations

m 2 ~ 2 h2
Hi aa s y/ 2 f ermion

M g
(15)

where h is a Yukawa coupling constant, this may
be rewritten in the form

The one-loop corrections to the W and Z propa-
gators contain terms of order A. and h', as well as
order g'. We recall that in becoming massive via
the Higgs mechanism, the vector mesons absorbed
three scalar particles, and scalar particles have
self-couplings and Yukawa couplings as well as
gauge couplings. In some sense, these couplings
reappear in one-loop corrections to the masses.

The one-loop corrections to the 5' and Z propa-
gators place some not very stringent constraints on
weak-interaction model building. In addition, they
illustrate that in a theory with spontaneously bro-
ken symmetry, where renormalizability depends
upon relations among coupling constants and
masses, the decoupling of a particle from low-
energy phenomena as its mass becomes large may
not be taken for granted.
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