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The associated production of hadrons containing heavy quarks is studied in the framework of a model based
on quark-gluon color gauge field theory [quantum chromodynamics (QCD)]. We assume that the dominant
mechanism for the production of heavy quarks in real and virtual photon beams is y(Q') V~ cc where V
denotes a vector gluon and c an arbitrary heavy quark. For m, p, and P beams we consider the mechanisms
VV~ cc and qj—+ cc. The cross sections for the internal subprocesses are calculated at lowest order in the
perturbation expansion for QCD. We include a brief discussion of higher-order corrections to our calculation.

I. INTRODUCTION

The associated production of new, heavy, fla-
vors of quarks in photon and hadron beams affords
the opportunity to study the hadronic interactions
of massive quarks. A small, but growing,
body of experimental information on these pro-
cesses already exists. There are indications for
the production of charm by virtual photons in the
observation of events of the type p,N- @AX.' The
observation of a charmed antibaryon, Z, (2.26),
ha, s been claimed in photoproduction' but it has not
yet been possible to deduce the corresponding
cross section. Indirect evidence for charm in
photoproduction can be obtained from the energy
dependence of do/dt(yp - if') near charm threshold'
or, perhaps, from the behavior of Ir„,(yP).' There
is evidence for the production of charm in hadron-
hadron collisions from cosmic-ray experiments'
but, at this time, no accelerator experiment using
hadronic beams has reported a charm signal.
Perhaps the. most restrictive bound on this cross
section comes from an emulsion exposure' which
gives

ir(pp charm, X;Ws= 25 GeV) & 1.5iib (90% G.l ) .

However, the observation of g and it
' production

in hadron beams has become quite commonplace
and there has been a recent report of an enhance-
ment, T(9.5),' which presumably is the harbinger
of still another flavor of quark.

There have been several model calculations of
the cross sections for processes involving heavy
particles but there does not appear to be a theo-
retical consensus on what the underlying production
mechanisms should be. We shall d-iscuss here a
model for the associated production of heavy quarks
which is applicable either in photon-hadron or
hadron-hadron collisions. We assume that the pro-
duction of heavy quarks occurs through the inter-

action of the fundamental fields in quantum chromo-
dynamics (QCD)—quarks and gluons —and that the
cross section is dominated by the lowest-order
perturbation-theory contribution. For real or
virtual photons this assumption means that the
dominant internal production mechanism is
y(Q') V cc where V is a vector gluon and c a.

heavy quark. In hadron-hadron collisions we as-
sume that the important mechanisms are VV- cc
and qq-cc where q denotes a light quark (u, d, s).
The model is largely motivated by a similar cal-'
culation of large-P ~ hadron production in QCD."
A naive justification for the approach can be found
if the threshold invariant mass of the produced
hadrons which carry the new flavor is large enough
that the renormalization-group-improved QCD
coupling constant cr, (ks) is smalL In practice, the
requirement that n, (m,„') be small may be satis-
fied in the production of charm or of a heavier
flavor such as that associated with the T(9.5). One
advantage of treating simultaneously photon-had-
ron and hadron-hadron collisions is that the depen-
dence of the cross section on the main input to the
calculation, the distribution G~&„(x) of gluons in a
hadron, is different in the two cases.

The outline of the rest of this paper is as fol-
lows: In See. II, we discuss our calculation for
photon-hadron collisions and introduce in more de-
tail the assumptions we make. The different gluon
distributions used in the calculation are presented
and we make several comparisons between our
calculations and those based on the generalized-
vector-meson-dominance model. In Sec. III, we
present our calculations for hadron-hadron col-
lisions. The constraints on our model from the
experimental bound (1.1) are discussed. Section
IV gives abrief discussion of possible effects associ-
ated with higher-order corrections to our calcula-
tion. We include appendices which give the details of
our perturbation-theory calculations of y(Qs) V- cc,
VV-cc, and qq-ct.".
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II. REAL AND VIRTUAL PHOTOPRODUCTION

In this section we will discuss the associated
production of heavy hadrons carrying new flavors
by real and virtual photons. Some experimental
information on the photoproduction of charm al-
ready exists. The observation of a charmed anti-
baryon' provides direct evidence for the produc-
tion of charm by real photons although the rate is
not yet known. Indirect evidence for a charm
signal comes from the observed energy dependence
of do/dt(yP -$P) near the threshold for charmed-
hadron production. ' Arguments based on general-
ized vector-meson dominance allow an estimate
for the cross section" while unitarity and the
Okubo-Zweig-Iizuka (OZI)" rule provide a lower
bound on this quantity.

Virtual photons should also be effective in pro-
ducing charm or other heavy flavors and there
exists some evidence for the production of charm
in this manner from the observation of events of
the type p.N- p, pX. ' A knowledge of the size and
Q' dependence of this cross section is important
in determining whether charm production is an
important background at small Bjorken x to the
scaling violations in do(pN- pX) expected in field
theories of the strong interactions.

( t-channel exchange j ( u —channel exchange )

FIG. 1. Diagrams for y*N —cc in /CD perturbation
theory.

For charm production we take

p, t
' =—13 GeV' . (2.1)

(cy(rQ) N-cc) X)= dxG„)~(x)

If we define the probability that a gluon carries
a fraction x momentum of the nucleon which con-
tains it to be Gv»(x) we can write the cross sec-
tion defined by the diagrams in Fig. 1 as

The basic calculation

We shall discuss our calculation of the cross
section for the photoproduction of heavy particles
in some detail in order to illustrate the techniques
and assumptions used. Our starting point involves
the diagrams of Fig. 1, where V is a vector gluon
and c denotes any heavy quark. We shall tend
to refer to this below as charm, but our results
should also apply to the production of heavier
quarks. These diagrams constitute the first-order
perturbation-theory approximation in QCD to the
associated production of free charmed quarks.
In order to relate this to an observable cross sec-
tion we assume that the outgoing charmed quarks
are dressed to form charmed hadrons with unit
probability, independent of their momenta. We
also assume that no other flavor of quark may
dress to form a charmed hadron. We further as-
sume the mechanism by which quarks are forged
into hadrons is sufficiently soft that the invariant
mass of the cc pair is approximately the effective
mass of the charmed hadron system containing
them. The threshold invariant mass p, ,„can then
be taken to be either 2m~ or (m, —m~+m~) (cor-
responding roughly to the associated production
process y*N-CD where C is the lightest charmed
baryon) rather than being given by the effective
quark masses appearing in the matrix element.

max df 1
16& '(0+Q')'

where

s = -Q'+ 2xm„v ~ p, ',

2

[s(s —4m, 2) j'~', (2.3)

and

s+ t+u = 2m, ' —Q',

m&n 2m p

For simplicity we consider the photoproduction
of heavy quarks only from transverse photons.
In the deep-inelastic region this corresponds to
calculating the effect of charm production on the
structure function W, (x, Q'). In the spirit of the
parton model we assume that the gluon is on its
mass shell. The calculation of the spin-averaged,
color-averaged ~M (s, f, 0) ~' for the subprocess
yr(Q )V cc is given in Appendix A. The result is
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~M (s, t, u) ~'=(-,')(-,')(-', eg)'(t —m, ') '(u —m, ') '

&&
i
(-(t —u)' —4(s+Q')(t+u)(t —u)' —4(s+Q')'[(t u—)'+ 2(t+u)'] —12(C'+Q')'(t+ti) —3(s+Q')'j

2+, [2(t —u)'+8(i+Q')(t+u)(t —t))'+8(8+Q')'(t —u)'-2 (s+Q')']s+Q'
2 2

+ „, [-2(t, -A)'+2(C+Q')'] ~.S+ i
(2.4)

For Q'=0, the expression (2.4) reduces to that
given by Jones and Wyld. " Except for the overall
factors (—,'), (due to color averaging) and (-,g/e)'
the cross section is the same as that for the pro-
cess yr(Q')y- ee.

To evaluate the cross section given by (2.2) we
must choose a value for g, the QCD effective cou-
pling constant and a form for G„&„(x). Motivated
by a study of the application of QCD to similar pro-
cesses, we use a running coupling constant. By
allowing the coupling to be a function of the invari-
ant mass of the exchanged quark or gluon in a
given diagram we are including some contributions
from a set of higher-order diagrams in our nomin-
ally lowest-order calculation. We shall allow a
range of possible 'values for g which reflects the
uncertainties in its determination, '

~my, g g2 0.50
4z 1+0.36 In' 4k' (GeVz) I

'

(2.5)
+mi n(k2) 4+max

Our results are fairly insensitive to the 0' depen-
dence of the coupling constant. For example, in
i eal. photoproduction with Ey ~ 200 GeV, the value
for the charm cross section with a running coupling
constant is less than I%%uo lower than that with a
coupling constant fixed at its threshold value,
o.,(m,„'). The main situation in which the k' de-
pendence given by (2.5) is important is thus in
comparing the production of different flavors.

Gluon distributions

on the gluon distribution. Since we are forced
to make theoretical models for this distribution
we will present results for a variety of models
representing different schools of thought. The
first possible choice for G«„(x) is

G "(x)=—(1 —x)'
x (2.7)

where thebehavior near x= 1 is motivated by con-
stituent counting rules" and the behavior near
@=0by a correspondence with Regge theory. "

It is also possible to calculate in the spirit of
the scale-invariant parton model the gluon distri-
butions which arise from a given valence quark
distribution from processes of the form shown in
Fig. 2. We then have

dg x
GvfN(x) = Dvi G i~(X).g

(2.8)

where D«, (z) is the probability that a quark emits
a gluon carrying a fraction z of its momentum.
Some authors would omit the factor 1/y which is
included here to mimic the phase-space integra-
tion. A massive particle with momentum p decay-

/

ing into two massless particles, gives a particle
with momentum zp (0 & z & 1) with a probability in-
dependent. of z. That is, it has D„&,(z) = const. If
instead, a prescription based on constituent-count-
ing rules which ignores the complications due to
the spin of qua, rks and gluons is used, we have

Dr&, (z)- (1 —z). There is some uncertainty, there-
fore, in the exact relation between valence quark
and gluon distributions in this approach. One es-
timate of this relation gives"

The most important input to our calculation (2.2)
is the gluon momentum distribution, G«„(x).
In fact, we need to know the probability Gr&„(x,Q')
for a gluon to be seen by a photon of (mass)2
= -Q' but we will defer a discussion of the scaling
violations associated with the Q' dependence of this
function until Sec. IV. From the amount of missing
momentum in deep-inelastic scattering one can
conclude

1
Gh~'(„'(x) = 12.6(1 —x)'+ 1.6

x
(2.9)

pl
xGvg„(x)dx =0.5, (2.6)

(a) (b) (c)

but there are no other experimental constraints FIG. 2. Bremsstrahlung of gluons.
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(g) e (x/0. 15)3.8
x (2.10)

To obtain a significantly softer distribut'
re uire coq

' operative effects among the gluons.
ri u ion would

More frequentl wen y we wil. l use a distribution wh' h
combines the idea of

nw ic

bremsstrahlun
i ea of nonperturbative effect 'thcswi

hlung from valence quarks (which is
smaller by a factor a,/v)'4:

The o
b 2.6

overall normalization of (2 8' '

y ( .6) while the behavior near =0 '
o . y is determined

b the r
near x = is determined

y e relation between gluons and t'
plied b dia

ns an antiquarks im-
y iagrams such as those in Fig. 2.

The softest lug on distribution we consider is
obtained by assuming th 1e g uons to be confined
within a rigid bag of radius 0.7 fm with
tion fixed by (2.6):

The results for real photoproduction

Our results for thethe energy dependence of the
cro c ion o charm by realcross section for the product f
p otons are shown in Fig. 4 For the bag -brem
gluon distribution (2.11 we

g-brems
ion . we show the range of pre-

ic ions corres ondinp g to our range of estimates
or the strong coupling constant (2.5).

curv
wo g uon distributions we show 1 th

rves corresponding to o.', = ", he
wony e

, = n, and the

Also shown on the ra h
lo ical

grap are some phenomeno-
ogical constraints which can b d

reliability of the model. Usin a~ ~ ~

n e used to jud e th
o e . sing an argument based

n uni arity and the OZI rule indicated he sc ematical-
., one can derive

~ t 12
ive e rigorous inequal-

bag-br ems fx 'iv/„(x) =—[0.4(1 —x) +3.2e(x) =— . . e ' }. 2.11)

This is only slightly different than (2.1) and
usi e soft distribution of gluons. The

. gluon distributions (2.7), (2.9) and 2.
s own in Fig. 3 where they are compared with a
parametrization due to F ld die and Feynman" of
quark and antiquark distr'but'
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Im

I

/

m ~m

OZI rule ( m containing charmed- p

hadron pair )

/

m lm

F&G. 5. Bound on charm photoproduction from unitarity and the OZI rule in g photoproduction,

16m (yp-gp;s, t=t „)
cia

~ (1+e)'(I+ p')
@s

x o(yP - charm, s)o((P - charm, s), (2.12)

where c is a parameter which measures OZI-rule
violations and should be quite small, p = ReA/ImA
where A is the diffractive amplitude for yp-t/rp,
and

q,"~ [s —(m, +m, }']' '[s —(m, —m„)']' '
q",~ (s —m~')

(2.13)

Using data" on der/dt(yp -gp) and the nuclear ab-
sorption measurement"

o„,(gp)= 3 mb = cr(gp- charm, X), (2.14}

Eq. (2.12) yields an empirical lower bound on the
charm-photoproduction cross section. This is
shown in Fig. 4.

Also shown in Fig. 4 is a band of 2-5 p, b which
is due to a careful experiment' which measures
o'„,(yp, s) for E„=20—100 GeV and compares it
with an extrapolation of low-energy data. Depend-
ing slightly on the parametrization used they find
a surplus in o„,(yp). One interpretation of this
surplus is that it is due to charm production. . Al-
so, the generalized vector-meson-dominance
(GVMD) model" predicts

a»~(yp —charm) = 2.5 pb. (2.15)

It is significant, therefore, that our QCD cal-
culation gives results approximately a factor of
10 lower than this GVMD estimate or the surplus
of the cross section observed experimentally. Our
calculation is, in fact, consistent with charm pro-

duction approximately saturating the lower bound
derived from unitarity. The saturation of this
lower bound for charm production was argued for
on the basis of the photoproduction of strange '

particles and it is interesting that we have a cal-
culation completely independent of yp - Pp which
gives this result. Our results in Fig. 4 agree
with those of Jones and Wyld" and we find approxi-
mate agreement with the sum rule of Shifman,
Vainshtein, and Zakharov. '

The experimental measurement of the charm
signal in yp collisions at Fermilab or the CERN
SPS should therefore distinguish quite easily be-
tween the GVMD result and the range calculated
here. If experiments find the lower values pre-
dicted here it would be significant support for the
validity of simple QCD perturbation theory for this
type of calculation. If the results of QCD are
born out at high energy, we can see from Fig. 4
that a measurement of the charm signal at Ey
= 20 GeV would be able to discriminate between
the gluon distributions (2.7), (2.19), and (2.11).
Since gluon distributions are not very accessible
experimentally, this is a potentially valuable cap-
ability.

It is important to note that the cross section
(2.6) is peaked near threshold where the outgoing
charmed quarks do not have a large relative velo-
city. There is, therefore, little justification for
the assumption (which we are for'ced to make) of
ignoring the final- state interactions between the
quarks. We will return to this problem in Sec. V.

Photoproduction of a flavor heavier than charm

If we assume the existence of a new flavor of
quark (b) associated with the Y(9.5) we can use
our formula, (2.2) to calculate the production of
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serve that the internal cross section for y(Q')V
-ce peaks near threshold. This means that we can
approximately evaluate charm production in the
high-energy limit where the detailed shape of the
gluon distribution is not important to obtain

o(yN- bb) 1 m, ' a, (4m, ') ln(s/4m, ')
„o(yN- cc) 4 m, a, (4m, ') ln(s/4m, )

'

(2.18)

where m, and m~ are the masses of the quarks.
This gives

o(yN - bb) 1 m, ' ln(4m, '/A') in(s/4m~')
„o(yN —'cc) 4 m~ In(4m~'/A') ln(s/4m, ')

10, I (s/4m, ')
(2 19)

ln(s /4m, ')

for m, =1.65, m, =5.0, and A=0. 5 GeV. This is
somewhat similar to (2.17), but it is important
to note that specific GVMD models make much
larger predictions for o(yN-bb). An estimate
due to Margolis" is

o(yN —bb) -0.1-1 gb. (2.20)

)0-10 I

50
I

loo
I

200
E„(Gev)

I

500

FIG. 6. The energy dependence for the cross section
0 (yN bb, X) calculated using (2.2)-(2.5) with m&
=5 GeV and charge ( 3)e.

hadrons carrying this new flavor by photon beams.
In what follows we shall assume that this quark
has charge (—se), but our curves can be adjusted
trivially to take into account other possibilities.
We take m, = 5 GeV and m D„= 5 GeV.

Figure 6 shows our prediction for the energy
dependence of the cross section for the photopro-
duction of this new flavor. The curve given is for
the bag-bremsstrahlung gluon distribution (2.11).
We may again compare this calculation with a
simple prediction based on the vector-meson-dom-
inance model:

o (yN —bb) I'(T(9.5) - ee)lim .

, „O(yN-cc) mT

m„o...(r (9.5)N)
I'(P- ee) o„,(gN)

(2.16)

If we assume that I'(T(9.5)- ee)/I'(g-ee) =-,' and

o'~„(yN)/o„, (gÃ) m&'/m -thTis gives

Virtual photoproduction and deep-inelastic scattering

4m a 8mo,(Q, ~)= (, @./2 )
II';"(~,Q ). (2.21)

In the deep-inelastic region it is possible to in-
terpret our results in terms of the absorption of
a photon by a charmed quark or antiquark in the
sea of the nucleon. We believe that for some
range of length scales the sum of the first few
terms in the series represented by the diagram in
Fig. 7 may give a reasonable estimate for the mo-

(a)

+ 0 ~ ~ ~

We now turn to the cross section for the produc-
tion of charm by virtual photons. For simplicity,
we calculate only the production of charm by trans-
versely polarized photons. The transverse cross
section is related to the deep-inelastic scattering
structure functions by

v(yN bb)
(1)(I„)'- (2.17)

(c)
In our QCD calculation using Eq. (2.2), we ob- FIG. 7. Diagrams for cc pairs in the proton.
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FIG. 8. Diagram for cc pair production absorbable in-
to given momentum distribution.

mentum distribution of heavy quarks in the sea.
Note that, for example, diagrams of the form of
Fig. 8 are already taken into account through the
choice of the gluon distribution in (2.2). Our re-
sults for o[yr(Q')N-cc] are plotted at fixed x»
—= Q'/2M„v=0. 1 as a function of Q' in Fig. 9. The
cross section shows some evidence for scaling
[W, (Q', v) a function of x» only] when Q'& 20
GeV'. As in the case of real photoproduction we
can compare our prediction with ones based on
GVMD. According to the generalized vector-me-
son-dominance model, the cross section for the
production of a heavy flavor is"

o v~(y*N ccX) = —1'($ - ee)m '3,o...(Pr)
(&m, ')'

(2.22)

Io-'

VIRTUAL PHOTOPRODUCTION

X. . = O. I

b)

-4
IO

IO

THEORY

where g is the lowest vector meson containing
a quark and antiquark carrying the new flavor,
&m~' is the splitting between vector-meson radial
recurrences, and f(a, b) is the generalized Rie-
mann f function. The series for the f function is
truncated when m & p; vector mesons with larger
masses should not be excited.

The magnitude of the charm-production cross
section predicted by the GVMD-model calculation
(2.22) is significantly larger than that implied by
the present QCD calculation (2.2). This difference
between the predictions of QCD and GVMD is
relevant to the question of the contribution of
charmed hadron production to the observed rise
of the deep-inelastic structure functions with Q'
at small x. If the GVMD estimate for charm pro-
duction is correct, then a significant fraction of
the apparent scaling violations observed at small
x can be attributed to this process. However, our
QCD calculation gives a rate which is a factor of
5-10 smaller, suggesting that it may be reason-
able to interpret the experimental results for the
rise in W, (x, Q') at small x in terms of nonscaling
effects not associated with hadronic thresholds.
The size of the nonscaling effects is then in rough
agreement with predictions" based on the short-
distance behavior of QCD.

Preliminary results from an experiment at
Fermilab on events of the form pN- p, pX appear
to indicate that the charm production cross section
is smaller than that predicted by the GVMD model
and smaller than would be needed to explain the
observed rise in the structure function. ' However,
a quantitative comparison of experimental results
with our predictions for the charm-photoproduction
cross section based on QCD is not yet possible.

III. PRODUCTION OF HEAVY HADRONS

IN HADRON-HADRON COLLISIONS

In this section we consider the problem of cal-
culating the cross section for the production of

IO

10

IOO
I

I I

IO 20

NAIVE GLUON
MAX

a, = a,
BAG Gl UON

v@eV)
200

I

I I

30 4O 50

Q (GeV )

300
I

I

60

(u)

FIG. &. The cross section for 0 zy(Q )N gc,X for
transversely polarized virtual photons at fixed x&&

=Q /2mv= 0.1. The value for @CD perturbation theory
is shown with two different gluon distributions. The
GVMD curve is obtained from Ref. 10.

FIG. 10. Lowest-order diagrams. for hadronic
charm production.
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massive hadrons carrying new flavors in hadron-
hadron collisions. Unlike photoproduction for
which there exist some sketchy experimental data
with which to compare our theoretical predictions,
there are, as yet, no indications of the hadronic,
production of charm in accelerator experiments
using hadron beams.

The calculation

The lowest-order diagrams in @CD perturbation
theory contributing to the process (hadron)(hadron)- charm, X are shown in Fig. 10." We may write
the cross section for the production of heavy
quarks in the form

pl ~l
o {aN —charmX, ) = g dx G «, (x)

4m / S 4'
dyG&~~(S), , ~M„(s, t, t))~',

2D/ sx . y 16&t
min

where

(i,j )=(V, V), (q, q ) and (q, q ), a=u, d, s,
S =XgS ~ (3.2)

t-"=~ I ~ -'[4(e —4m ')]'~'.t'2~ '-s&
m~n=I

2 ) 2 g

We use the quark and antiquark distributions in-
ferred from deep-inelastic scattering data by
Field and Feynman. " The gluon distributions we
use are discussed in Sec. II. The matrix element
and its calculation are presented in Appendix B.
We find

4 4

~M(VV- cc)(s, t, il) ~' = » (+)(-2m —6tm' —2tlm'+ 2tit) +» (+)(-2m' —2tm' —6Am'+ 2ut)~t m2)2 12
(sc —m')'

2

+ „2 (+)(-28m + 20tlm +20tm —4(t+ti) +4tit)

4

+ -, , (-. ,—',)(-8m' —4tm' —4tlm')
(t m')(tt —m'—)

4+, (++/(-12m +4tim'+ 12tm —4t )
(t m')0' '—

4+,„(-—,',)(+12m —12tim' —4tm'+40 )
(tt —m')s

and

4

~M(qq-cc)(P, t, ti) ~'= ~ (+)(12m -8m'tl —8m't+2tt'+2t ), (3.4)

where s, t, and u are the kinematic invariants for
the 2 2 subprocess, m is the effective mass of
the heavy quark, and s + g+u = 2m'. The angular
brackets indicate numbers arising from color
averaging.

Our remaining assumptions are essentially as
described above for photoproduction. We take
the charmed quarks to have unit probability to form
charmed hadrons and assume that no other quarks
may become charmed hadrons in the final state.
Further, we assume that the invariant mass of the
cc pair is the same as that of the hadrons which
contain them. Figure 11 shows our results on the
energy dependence of the cross section for the as-
sociated production of charmed hadrons. We show
the band of values corresponding to our range of
a, in (2.7) for the "bag-bremsstrahlung" gluon
distribution (2.11) while for the "naive" (2.7) and
"bremsstrahlung" (2.19) distributions we given only

the curves corresponding to a, = e, . Also shown
ls the 1 esult obtained by conslderlng only the sub-
process qq -ce; this corresponds roughly to the
estimate for charm production made by Fritzsch. "
Curves from early model calculations due to
Sivers and Bourquln and Gaillard are given
for comparison. The experimental upper bound
on charm production shown is that obtained from
an emulsion exposure at Fermilab. ' This upper
bound,

a(pp —charm, X; s = (27 GeV)') S 1.5 p b (90%% C.L.),
(8 5)

appears to favor small values of the strong coupling
constant and/or soft gluon distributions in our
model. It is significant that for ~s& 40 GeV the
value obtained in the calculation is not sensitive
to the shape of the gluon distribution. Below the
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dynamics. Table I gives our predictions for
o(pp- charm, X) for a, variety of inputs at values
of ~s corresponding to those available at various
experimental facilities.
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FIG. 11. The cross section pp charm as a function
of energy. Early model calculations from Sivers (Bef.
25) and Bourquin and Gaillard (Bef. 26) are shown for
comparison. The experimental upper bound is due to
Coremans-Bertrand gt al. (Ref. 6). The result using
only the qq mechanism is essentially the same as that
of Fritzsch (Ref. 24).

crossover point, the "bag" gluon distribution func-
tion (2.10) gives the smallest cross section, fol-
lowed by the "bag-bremmsstrahlung" one. The
"naive" gluon distribution gives a rather larger
cross section, and the "bremmsstrahlung" one
(2.9) gives the largest of all. This ordering is to
be expected, since the function given by the last
integral in (3.6) tends to increase with x and y,
so that the hardest gluon distributions give the
largest cross sections. At some value of x and

y, however, the function begins to decrease again.
As vs increases, this critical value decreases,
so that only the small-x behavior of the Gv&„(x)
is relevant, and under these circumstances the
roles of the different gluon distributions are inter-.
changed. The origin of this damping is the cross
section in (3.3), which disfavors the interaction
of high-energy gluons. The cross section at CERN
ISR energies is seen to be a factor of 10-20 larger
than would be obtained with the qq mechanism
alorie. Experimental measurements in this energy
range will thus be important in determining whether
gluons play a role similar to partons in hadron

Gvg j(x) = Gv/p(x)

G-, (~(x)=G, (~(x),
(3.8)

and inserting these into (3.1) we obtain the cross
section shown in Fig. 13. The greater importance
of the qq-cc mechanism in Pp collisions is evi-
dent, but above Y s =40 GeV, VV cc is still the
dominant mechanism in the cross section because
it is.almost the same as for pp - charm, X.

In order to calculate the charm-production cross
section in sp collisions we must make some furth-
er assumptions regarding the m' gluon distributions.
In the absence of any theoretical or experimental
guidance we will assume that the fraction of mo-
mentum carried by gluons is the same in the pion
as it is in the nucleon. If we neglect any difference
in size between the m and the N, we can obtain
a gluon distribution analogous to (2.11),

Our results also depend on the value for the
charmed-quark effective mass used and, since
this cannot be extracted directly from experiment,
it is important to see how our prediction for the
cross section depends on its value. This is shown
in Fig. 12 for v s = 25. Because we are calculating
the cross section for the production of quarks by
hard scattering, our assumption that the effective
mass of the charmed-quark pair is the same as
the hadrons which contain them may be questioned.
One way to test this assumption is to change the
value of the threshold s,„=4m~' used in the cal-
culation. Even if our assumption were strictly
correct, we would still have to consider varying
the threshold since we do not know the proportion .

of D's (mn= 1.87 GeV), D*'s (mn*= 2.0 GeV), F's
(mz= 2.1 GeV), and F*'s which is produced.
Probably predominantly D's should be produced,
because of their slightly smaller mass. The vari-
ation of the cross section with m~ effective at
vs =25 GeV is shown in Fig. 12. In view of the
fact we can change our prediction by a factor of
2-3 by reasonable variations of these parameters
the question of whether current experimental limits
rule out a hard gluon distribution remains open.
This range gives some idea of the overall sensitiv-
ity of our calculation, and therefore, if the experi-
mental bound on the charm-hadroproduction cross
section were improved by a factor of 5-10, we
would find it very hard to understand in our model.

Ke now turn to predictions for charm production
in PP and wp interactions. The quark and gluon
distributions in antiprotons are easily obtained
from those in protons by charge conjugation,
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TABLE I. Cross sections under various assumptions.

Input

mc
(Ge V) g yp(X)

&{pp charm, X) (pb)

v s=25 GeV v s=53 GeV v s=200 GeV
(Fermilab) (ISR) (ISABELLE)

min

max
min

min

min
max

1.65

1.4

1.65

2.0

1.75

2.25

2.0

Bag- brems
Naive
Brems
Bag
Bag-brems
Naive
Brems
Bag
Bag-bre ms

Bag-bre ms

+scaling
violations

QQ only

1.5
3.5

0.9
0.5
0.9
1.0
0.2
5
1.2
0.6
0.14

1.5

0.5
0.12

21
22
15
23

5
5
4
6

56
]4
11

3

41

10
0.6

166
106
61

200
45
30
15
45

300
76

106
23

1.2

min
Sivers model (Ref. 25)

Borquin 5 Gaillard model {Ref. 26)
Experimental bound {Ref. 6)

0.03
37
20

& 1.5

0.2
100

54

0.3
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FIG. 12. Dependence of the cross section on m
effective and mD effective at ~@=25 GeV.
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FIG. 13. Energy dependence of z (Pp charm, X) with
distributions given by (3.6).
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G~v(' "' --—[0.16(1 —x)+3.2e '~""].1 2

V/g (3.7)

The analog of the bremsstrahlung nucleon dis-
tribution (2.9) is chosen to be

6~v(', '(x) = [x lux+ (1-x)(1+x)].1.2
(3.8)

Our results for o(mp-charm, X) for these two
gluon distributions are shown in Fig. 14. We again
use the Field-Feynman distributions for quarks
and antiquarks.

Production of flavors heavier than charm
in hadron-hadron collisions

Io'
I I I I

Usin'g exactly the same methods as for charm
production, we may compute the cross section for
pp - bbX where b denotes a new type of quark with

m~ = 5 GeV, carrying a new flavor which could be
contained in the Y(9.5). Our results for the energy
dependence of the cross section for the production
of particles carrying this new flavor are shown in
Fig. 15. The variation of the cross section with
the mass of the produced quark for v s = 53.GeV

and Vs = 200 GeV is displayed in Fig. 16. For this
graph we have taken a, = +~" and used the "bag-
bremsstrahlung" gluon distr jbution. From Figs.
15 and 16 one can see that the production cross
section for flavors heavier than charm in hadron-
hadron collisions should be quite small. Cross
sections 'of this magnitude will be rather difficult
to measure unless distinctive triggers can be
found.

Large-p& production of charm and direct leptons

We can use the basic mechanisms illustrated
in Fig. 10 to estimate the production of charmed
particles at large transverse momentum (pr). If
our basic model is correct, this calculation should
be somewhat more reliable than the estimate of the
total charm-production cross section. The reason
for this is that any final-state interactions occuring
near the subprocess threshold which could be im-
portant in the evaluation of the total production
cross section should not significantly affect the
form of the p~ spectrum. for large p~.

We write the differential cross section for the
production of a decay product (a, charmed meson
or a muon arising. from semileptonic charmed-
particle decay) of one of the charmed quarks in
the form

77 p = CHARM, X

IO

IO

rrr IO I =

E lo'—
b

IO
~—

l04—

IO
0 IO 20 50 40

Qs(Gev}
50 60 70

IO

IO

mb 5GeV

—.—-—BREMS

BAG- BREMS

~~

pp = bb. X

/ r'

~

FIG. 14. Energy dependence of 0. (zp charm, X).
Quark distributions are those of Field and Feynman
(Hef. 17). Gluon distributions for the g are defined in
(3.7j and (3.8) and for the proton in (2.11) and (2.9).
If we use the "soft" bag-brems distribution for the r
we also use it for theP.

IO'
0

l l I l I I

IOO 200 500 400 500 600 700

js.(Gev}

FIG. 15. Energy dependence of 0 (pp charm, X) and
o (pp bb, X) with m&.=5 GeV in our model.
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1

dxa,
&

(x) dyG
& (y), D«, (z) —(ij -cc;P, t, tl)6(s+t+ft —2m, '), (3.9)

where

s =xys, t=xt/z, a=yu/z (3.10)

momentum to be negligible, we should not take

(3.12)

2m '-g 2m '-xt
+m

C

s+t ' xs+u (3.11)

are. the Mandelstam variables for the hard-scatter-
ing subprocesses

Dpi, (z) = (1 —z)' (s.ls)

as is commonly done for m production. Instead
we take the simple form

and

xt+yu8=
.22mc -Les

suggested by constituent-counting rules.
We can also use (3.9) when g is a lepton (e or

p, ) which arises from the semileptonic decay of
a charmed hadron. In this case we normalize

1

dz D„,(z) =1.
g~D, F, ~ .~ 0

(3.12)

Since we expect the production of charmed had-
rons with a small fraction of the charmed quark

The form of (3.9) is a simple modification of the
usual hard- scattering-model formula which takes
into account the masses of the produced quarks.
The function D«, (z) gives the probability that the
detected particle f carries a, fraction z of the mo-
mentum of its parent charmed quark. We assume
that one and only one charmed hadron arises from
each charmed quark so that

~ 1

dz D, i,(z) = B("D"- Ivx),
4 0

(3.14)

where B is the average semileptonic branching
ratio of the produced hadrons. Experimental data
from e't." production of charm" gives

B(D evX) =—0.11+0.03. (s.15)

Folding the probability for producing a D with mo-
mentum fraction z' followed by its decay D- lA
where X is a hadronic system (probably a K* with
mass =1 GeV) we have"

D, &,( )z—= 96B(1—8r'+ 8r' —r' —12r'lnr') 'mD

i'P(

x B(z')dz' '"
d& mg &'(m~' —m„' —2m &)') '

"«min "'mi& y 2 Ipg l mD- IA,
(s.16)

where

2 2

4m~'z' I p, I' —(mn' —mx')'
. min & 4 lp l2( & 2)

In the limit ~p, I
-~, mx= 0 this reduces to

D, g, ( )=zB( 14+36z —18z'——4z '
—61nz+ 18z' lnz), (3.18)

I

man to Ed'a/d'p(pp- vX) multiplied by 10 '. If
this curve is taken to be representative of the
cross section attributable to electromagnetic
sources of muons, me mould predict that between
1 and 10% of the prompt muons obser'ved in pp
collisions at ~s= 53 GeV should arise from charm
production and consequently not occur in pairs.
This exercise verifj. es the hypothesis that it should
be possible to enhance the charm-production sig-
nal in high-energy hadron-hadron collisions by
triggering on a prompt lepton. If our calculation
is correct, the occurrence of p, e coincidences due
to charm production can be expected at about 10 '
times the direct p signal at v s = 53 GeV.

IV. HIGHER-ORDER CORRECTIONS
which gives a slightly harder lepton spectrum than
the expression (3.16). Using (3.18) we calculate
the differential cross section for inclusive lepton
production. This is displayed in Fig. 17. Also
shown for comparison is the fit of Field and Feyn-

In the calculation presented above, we have used
lowest-order perturbation theory for our calcula-
tion of the cross section for the hard-scattering
subprocesses. We have therefore implicitly as-
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FIG. 16. Dependence of 0 (pp —QQ, X) on the mass of
the quark at Wg= 53 and 200 GeV in our model. Curves
calculated using the bag-brems gluon distribution (2.11).

FIG. 17. Direct leptons from charmed-particle decay
compared to 10" x (Field-Feynman pp m-x).

0(g )

sumed that nonperturba'tive and higher-order cor-
rections to our expressions are small. We do not
have good justifications for either of these assump-
tions, but must make them if we are to calculate
anything.

In Figs. 18 and 19 we indicate the types of dia-
grams which contribute to qq-cc(X) and, VV- cc(X) through order g' in the amplitude. Just
as in QED, when calculating a cross section to
order g', cancellations between terms g' && g' and
those of the form g' &g (Ref. 29) are known to be
e ssential.

We must, of course, consider the processes
represented by the diagrams in Fig. 18 as portions
of hadronic processes of the type depicted in Fig.
11, and their interpretation is inexorably tied up
with the physical content of expressions such as
Eq. (3.2)." Consider, for example, the second
diagram in Fig. 18 in which a gluon is emitted by
an incoming quark. This diagram contributes to
deviations from scaling. From the analysis of
scaling violations in the framework of the quark-
parton model by Altarelli and Parisi" we may infer
that the contribution of some of this dia-
gram may be absorbed by the choice of G,&„(x)
at the expense of allowing this to become a func-

0(g )

0(, )

FIG. 18. Typical diagrams for the amplitude qq
cc(x) classified by order in perturbation theory.
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0{g )

0 {g )

vv+j'

with 0,'-= 3 GeV' for both quarks and gluons. The
ensuing viol. ations of the gluon momentum sum
rule (2.6) are insignificant. We have explicitly
tested the result of calculating pp -charm X using
the "bag-bremsstrahlung" gluon distribution (2.11)
both with and without the scaling violation given in
(4.1). At large v s, the cross section is found to
increase due to the softening of the quark and gluon
distributi, ons. At low energies the cross section
is suppressed as indicated in Table I.

Some of the diagrams in Figs. 18 and 19 contain
parts which in the limit Q'- -~ contribute to the
running coupling constant g„,'(k'). The leading
(at least for k'--~) terms of these subdiagrams
may be approximately obtained simply by making
the replacement g' g,«-'(k2)

Since the production process we consider is
dominated by the subprocess threshold region
0 =—s,„, there may well be signifi;cant final-state
interactions between the slow, heavy produced
quarks. It is unclear whether low-order terms
in the perturbation expansion can give a good es-
timate of these effects. On the whole, we expect

FIG. 19. Typical diagrams for the amplitude VV
t..c(x) classified by order in perturbation theory.

tion of 0' as wel. l as x. 0' gives the distance scale
on which the G functions are observed, or per-
haps the invariant mass of the virtual particle
in the scattering subprocess. Similarly, it seems
probable that diagrams in which a final-state par-
ticle emits a gluon may be at least partially ab-
sorbed into the definition of the decay (fragmenta-
tion) distribution D~&,(x, k'). We should be wary,
however, since many diagrams must be combined
in order to obtain a gauge-invariant amplitude.
This could be a signal that the scaling violations
are process dependent. Nevertheless, for the
Drell-Yan process Politzer". has shown that the
expected violations of scaling are similar to those
found in deep-inelastic lepton- hadron scattering.

In view of the above, we congider it important
to test the sensitivity of our results to possible
scaling violations in the quark and gluon distribu-
tion functions. For simplicity we take these to be
the same size and type as the scaling violations
in leptoproduction. There are some expectations"
that the quark and gluon distribution (and decay)
functions should have slightly different jg' depen-
dences, but we shall ignore this possibility here.
We use the empirical parametrization of scaling
violations due to Perkins, Schreiner, and Scott,"

G,I„(x,k') = G, q„(x)exp[(0.2 —0.9x) Ink'/k, '],
(4.1)

final-state interactions to enhance the probability
of finding two quarks in a color-singlet state since
the color forces tend to be attractive in this chan-
nel. Evidence for this is seen in the production of
charm in e'g annihilation where resonances and
other effects raise the cross section above the
value predicted by the naive parton model. In
contrast, repulsive final-state interactions be-
tween cc in a color-octet state should depress the
cross section. Since our model for yr(Q')N-cc
produces only color octets we may be overestimat-
ing the cross section by neglecting final-state in-
teractions near threshold. In hadronic production
the mechanism VV cc produces a mixture of
singlets and octets and there should be both at-
tractive and repulsive corrections. We have tested
for the effect of final-state interactions by changing
the effective quark mass (and hence moving the
subprocess threshold) as discussed in Sec. III.
We have also inserted oscillations in the cross
section near threshold representing resonances,
but these did not change the overall result by
more than a few percent indicating that it is gluon
distribution functions which represent the mogt
sensitive part of the calculation for the cross sec-
tion. One particular class of diagrams deserves
further attention. The first of these qual. itatively
new diagrams appears at 0(g') and at 0(g') a
large number of this class of diagram occur.
Examples are given in Fig. 20. Their distinguish-
ing feature is that it is gluons or light quarks which
undergo hard scattering but these generate a cc
pair in the final state. Note that-, because of their
unusual final states, such diagrams will only occur
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'c ~e
C

FlG. 20. Diagrams for qq qqcc.

at 0(g") in the matrix element squared. Never-
theless it seems possible that the large number
of analogous diagrams in higher orders will cause
the class as a whole to be not unimportant. A

higher-order member of the class would be, for
example, that shown in Fig. 21 in which the q

". fragments" into a c in the final state. One may
only guess that, just as the z-integrated prob-
ability for a u quark to fragment to an s quark is
less than that for it to fragment to a d quark, then
so it will be much smaller for it to yield a c quark.

V. SUMMARY AND CONCLUSIONS

We have discussed here a. simple model for the
associated production of heavy new flavors in
photon-hadron and hadron-hadron collisions. Our
fundamental assumption is that the subprocesses
of lowest order in the QCD perturbation series
dominate the production of heavy quarks. For real
and virtual photoproduction this fixes the internal
mechanism to be y(Q')V cc while for hadron-
hadron collisions we consider a mixture of qq
-cc and VV-cc.

The major unknown quantity in the calculations
is the shape of G„&„(x), the distribution of vector
gluons in a nucleon. We calculate with a range of
shapes for this function discussed earlier in the
context of @CD gluon contributions to large-Pr
production. With this range for the input gluon
distributions, the internal process VV- cc is found

quickly to dominate over qq - cc in the hadropro-
duction of heavy flavors at high energy. This re-
sult contradicts the hypothesis of Fritzsch" and
of Halzen" that qq processes always dominate.
Our results tend to support the original idea of
Ellis and Einhorn" that the production of heavy
flavors offers an opportunity to estimate empiri-
cally the shape of the gluon distribution. How-
ever, we find that the precision to which mea-
surements of charm production (or the production
of flavors heavier than charm) can really be said
to determine the gluon distribution is limited be-
cause of unknown effects attributable to higher-
order corrections not included in our calculation.
These effects may be important.

However, it should be within the capability of ex-
periments to test soon the basic idea that gluons
participate in the production of heavy quarks.
Vector gluons have often been assigned an ambig-
uous role in parton-model calculations. For
example, in the constituent-interchange model for
large-p~ production, gluon exchange is used to
determine the shape of quark distributions, but

, gluons are not considered in that model to be con-
stituents themselves. " In our approach, the dif-
ference in the cross section for pp - charm, X at
v s = 53 depending on whether or not we include
the VV- cc mechanism or not is about a factor of
50. It is difficult to envision a mechanism not
involving initial gluons which could contribute this
much cross section. Similarly, it is hard to
imagine a fundamental process for photoproduction
of heavy quarks which does not involve gluons and
which is consistent with experimental constraints.

We have not included here a discussion of the
cross section for the production of heavy quarks
bound together in the same hadron, ( production,
X production, Y production, etc. These processes
are conceptually more difficult since we have to
deal with both the production and confinement of
heavy quarks. Ther' are several models which
are roughly consistent with our approach here
which make different predictions for these pro-
cesses." Since there are available good data on

P production in different beams and there will
probably be more information on Y production
soon, this is a potentially rewarding area in which
to generalize the calculations presented here.

FIG. 21. Higher-order diagram for qq qqcc

APPENDIX A: MATRIX ELEMENT FOR THE PROCESS

V~(Q )~~ee

We consider the matrix element represented by
the Feynman diagrams shown in Fig. 22, where
the encircled letters give the color indices of the
particles and run from 1 to 3 for quarks and anti-
quarks and from 1 to 8 for gluons. Using the
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FIG. 22. Diagrams for y V cc.

Feynman rules for QCD summarized in Fig. 23
we find for the matrix element

(p )
T'(,(~(„,[(g„-P;)™](t'(„)

a, l

b)N

b, p

d
. 2 abe cde
Ig f f (gk 9 —

gk g j
. 2 ace bde

. 2 ade cbe

g Pf
abc p,

, Tb g
t(gt. -P';)+m]&(.) ( ) („,)+ (J (r) (@ b) +Pb

c' 'a
a, p.

"Igf

where E&„) and E&„) are, respectively, the polariza-
tion vectors for the photon and gluon and

s = (q„+ q„)'= (p, +p,-)',

t = (q„-pe)' = (p, —q„)'

(7= (q„—p;)'= (p, -q„)',
s + t+u = 2m'+ q„' = 2m' —Q'.

As always, m is the effective mass of the charmed
quark (c) and -Q' =q„' is the virtual-photon in-
variant mass squared (y refers to both real and
virtual photons). The factor (—', ) denotes the charge
of the quark in units of the electron charge.

The matrix element M can be written in the fol-
lowing, form:

FIG. 23. The Feynman rules for @CD perturbation
theory.

The ff"e(q„, q„) assures transversality for the pro-
ton in the virtual-photon-gluon center-of-momen-
tum frame.

The numerical factor arising from the sum over
final color and the average over initial color de-
grees of freedom is simple in this case since the
color matrix element T~&& may be factored from
both t- and u-channel matrix elements so that the
complete color factor in the squares of the matrix
elements becomes

M = ~(v)~~r)M~le

which gives

(A4)
e Z &t)&O*=&e&

b, i, r
(A7)

~ ~(v)~(v) ~.~(r)~(r) M~v Mop
Xv . Xt

(A6)

(We shall throughout put angular brackets around
numbers arising from color averaging. ) The rest
of the calculation is standard. The result is

upon squaring and averaging over photon and gluon
polarizations. We calculate the cross section for
(transverse) real gluons and (transverse) real
and transverse virtual photons. The sum over
gluon helicities (Xv) simply gives a -g", while
the sum over photon helicities (Xy) gives a —g
for real photons and R"e(qr q„) for virtual ones
where

pre(q q ) re+ I qr 'qe qrqv+qrqe qr q~P~]
(q„q„)'

&o»

'2 '2 'C

{t channel}

2'2
{u channel)

'c

{s channel )

(A6) FIG. 24. Diagrams for VV cc.
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(-')(l) p Z ~M~'=(l)(!)(i g)'.
color syins

-(t+u)' —4(s+Q')()t+u)(t'-u)' —4(s+Q')'[(t"- u)'+ 2(f+u)']

—(2(s+Q') (i+i'i) —3(s+Q')I

2+, [2(t —u)'+ 8(s+Q')(t+u)(t —u)'+ 8(s+Q')'(t" —u)' —2(s+Q')']s+Q'
2 2

(-) (i—I)' + 2 (s + () ')')js+Q

This formula is appropriate for both virtual photons with q'= -Q'& 0 and real photons (after setting Q'= 0).

APPENDIX B: MATRIX EI.EMENTS FOR THE PROCESSES VV-+cc AND qq ~cc

'The lowest-order Feynman diagrams for the process VU- cc are shown in Fig. 24 and the correspond-
ing matrix element is

y. y, )t'.[(g, —P.-)+~]It'. . . )((,[((f', -P.-)+m]~t,

~i~~2p (al)

where C'""(-q„-q„q,+q, ) is the three-gluon
vertex defined in Fig. 23, and

s = (q, +q, )'= (p, +p;)',

t=(q p&)'=(p. q-2)'-
u=(q, -p, )'=(p, —q, )'.

Once again, we can write M as Cf,'6",~„„and

(a2)

Qe;e;"=R" (q„q, )

=R (q q )
X2

where

got 2 p aR" (q,q, )=-g +—(q", q, +q, q,").

(a4)

(a5)

(a8)

(as)

The true sum over polarization states is given by

If the two polarization sums are taken as g"
and g "~, respectively, then using the trace in-
dicated in Fig. 25 for the ~s ~' term in the matrix
element squared. in which a closed loop occurs,
two further diagrams containing "ghosts" must
be added. These are shown in Fig. 26. Ghost
terms, in fact, may be avoided by using one full

I

I

I

...I

I

I

I

I

hhhNV. I MINI
I

I

I

FIG. 25. Gluon loop for polarization sum. FIG. 26. Ghost loops for polarization sum.
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i
"-

~ =(,'.) H-:-:—
tr[(p, + m)tf', (p; —m)(-g, )]

.1, 3 1 —iu —m')'+ (t —m')' '
2 16' s

Finally we have

(s channel}

FIG. 27. Diagram for qq cc.

IMI"= Ltl'+ Iul'+ Is I'+2Re«*u)

+ 2 Re(u*s)+ 2 Re(s*t),

where

polarization since gauge invariance demands that

(B7)

IMI'= lt I'+ lul'+ ls I'+'Re(t *u)

+ 2 Re(u*s)+ 2 Re(s*t) .

For example, the color factor for the ltl' term

(B8)

1s

( Q Q Q TqbTb. (Tb)T~b. ——(gP) .
8

(Bo)

Other examples of color sums are presented in

Appendix C. The explicit ghost term used was

TABLE II. Identities for matrix representations of
SU(3). 7 represents the 3 &&3 identity matrix.

T'= where ~' are Gell-Mann matrices
2

Tb) ~f b

{Ta Tb) f.~abt+dabaTa
3

TaT —+(j-g bI +pa"c+jf abcTc)
2 3

trT =0

trTaTb
2

aT Tc &4~a c+zf

rTaT TaTc ~g c
12

f abb 0 gabb 0

facdf bcd 3gab

This was verified by explicit computation. The
calculation was done in tmo mays: first with
R» (q„q, )( g+)M -„M

&
and second using

(—g" )(—g "b)M„„M b +ghost terms. The same re-
sult was obtained by both methods, but the answer
presented here is in the form obtained directly
from the second one.

It is convenient, because of the different color
matrices in (Bl), to express the matrix element
squared in the form

4

Lt I'= - » (+)[—14m'+ (8u+6s)m'(t-m )' "
—2u(u. +s jJ,

4 "(—,',&[-6m'+ 2sm' —2u(u+s)1
(u —m')'

I

4

ls I'=, (—,',)(-4m'+ (8u —4s)m'

—4[s'+ u(u + s )]],
(B10)

2 Re(t *u) = -, , (- a'b)(-16ma+4sm'),
(t m' u ——m')

4

2 Re(u*s)=,„(-b'2)(4m' —8um'

+ 4sm'+ 4u'),
4

2 Re(s*t ) = (-, - (—,',)(-4m'+8um'+ 4sm'

—4u' —4s'- 8u s).

Note that the particular division of terms here is
that coming directly from a calculation involving
ghost terms. The division depends on the gauge
used, and no single term should be considered on
its own. The Feynman diagram for the process
qq -cc is shown in Fig. 27, where a and P are
flavor indices

&, P=(u, d, s, u, d, s).

Using the Feynman rules of QCD the corresponding
matrix element is .

2

T&,T'„u(p, )r„~(p;)~(p,)r"u(p, ),

and the amplitude squared is given by

4

IM I'= g, (-,')[2(P+u') —8m'(u+t)+12m'].
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APPENDIX C: COLOR SUMS

%e give explicitly the color sums associated
with the various terms in Eq. (Bl0) (all repeated
indices are summed over).

T(bTbb, T,', T~b) = tr(T'T'TaTb) = ——,
'

T' Tb T T' =tr(TaTbTbTa) za
jp of ft lf 3

Ta T T' —zfabc=-zfa" tr(TaTbTc) 6

fabcTc Td fabd fabcfabd tr(TcTd)

T'b Ta T'c zf abc = zf a c tr(TbTaT ) = 6ik ag

The color factors in angular brackets in the text
are obtained by dividing the above color sums by
8' to average over initial color states.

Table II gives the identities for matrix repre-
sentations of SU(3) used to derive the color sums
given above.

*Present address: Physics Department, California In-
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