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Even-wave harmonic-osci&gator theory of baryonic states.
IV. Structure functions versus slope of neutron charge form factor
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The structure of a mixed nucleon facilitated by the even-wave harmonic-oscillator model, which was shown

to be quite successful in explaining certain important low-energy parameters such as G„lGI„E~Nm width,

G», and a few hitherto unresolved cases of baryon photocouplings, is employed, without extra parameters,
to study the shape of the n, p structure functions as well as the neutron charge radius squared ((r„)).A
mixing angle close to the ideal (cot& = ~ (determined from earlier investigations) is found to give a good
account of the ratio R" (= F;"/F21') except for small values of the scaling variable (z) as well as of the
difference 6" (= F; —F;") over the entire range of z. However, the same angle (8 ) 0) gives the wrong

sign for (r„').The incompatibility of the sign of (r„')with the behavior of R ", as found by A. Le
Yaouanc et al. , thus remains unresolved in this simplest version of the even-wave model without further

assumptions.

I. INTRODUCTION

A mixed nucleon is required on several indepen-
dent counts. In the static limit (small q2) the most
obvious need arises from the problem of mutual
compatibility of G„/G&, the 6-Nv width, and the
&&m coupling constant. Photoproduction' of some
difficult cases, such as the Roper resonance, also
leads to a similar conclusion.

The simplest but nontrivial candidates for mixing
at the constituent (strong) SU(6) level are the 8,
members of 56 and 70, so that

~N)phy =
~
56)„cos&+[70)„sing. (1)

This formally breaks "strong" SU(6), but such
breaking must be distinguished from breaking due
to the relativistic motion of quarks inside the nu-
cleon. ' The latter apparently can be related' to
the effect of SU(6)-current mixing' which had been
considered in the mid 1960's, but which was sub-
sequently found by Melosh' to be basically com-
patible with almost pure states in terms of the
SU(6} strong classification. Most of the data in
the low-q' limit, such as noted above, do not de-
termine the sign of the mixing angle. On the other
hand, there are phenomena, viz. , the slope b of
the neutron charge form factor (Gz) as measured
in the limit q'-0, and the ratio R"~(= F;"/F,'~) of
the neutron and proton structure functions mea-
sured as functions of the scale variable z(= q'/2m&)
in deep-inelastic scattering, which are sensitive
to the sign as well as the magnitude of the angle ~.
The unmixed SU(6) nucleon wave function when
used in the conventional harmonic-oscillator (h. o.)
models (relativistics or nonrelativistic') predicts
b to be zero. Even when the internal motion of
quarks is taken into account, no significant de-
parture from the value b =0 seems to occur. '

Therefore, a significant value of b provides a
fairly unambiguous signal for a mixed nucleon
through SU(6} breaking, "with a sensitive depen-
dence of & on the sign of the mixing angle 8. For
the ratio R"~, the unmixed nucleon (with or without
internal quark motion) predicts R~) s " " Ex-
perimentally, '4 R"~ decreases monotonically with
the variable & from &" = 1 at z = 0 to 8 = —,

' at z
=0.8. Therefore, one is led to ask the interesting
question as to whether a strong SU(6) symmetry
breaking can bring about an understanding of these
diverse features.

Many attempts have been made to explain the de-
parture of R" from its SU(6) value of ~. Close""
considered two possible mechanisms, (i) a break-
ing of isospin symmetry" which allows one of the
two mixed symmetric isospin wave functions in
the (56, L =0) multiplet to dominate the other in
the deep-inelastic region as z- 1, and (ii) a chiral-
configuration-mixing effect'6 brought about by the
Melosh transformation. ' Altarelli et al. ,"on the
other hand, considered a (56, 0 ) and (I0, 1 ) parity
mixing in the I', =~ frame, and found a five-param-
eter fit (including the angle 8) to the deep-inelastic
data, including gluons and qq pair contributions.
However, these authors apparently were not in-
terested in the low-energy data, in particular the
parameter ~.

Le Yaouanc e~ a~.' have made the first detailed
attempt to understand both b and R" in terms of a
mixed nucleon, by using the conventional frame-
work of the h.o. model for the calculation of the
structure functions. "'" They have developed an
explicit formalism which relates the qqq wave
functions in the nucleon rest frame to one in the
frame I', =™via the Licht-Pagnamenta transforma-
tion" and thus have given a concrete realization
of the Bjorken scaling phenomenon" within the
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basic tenets of the simple quark model. For SU(6)
mixing, they considered the most obvious choice
within the h.o. framework, viz. , (56, 0 ) and (70, 0 )
of N =0 and 2, respectively. However, they intro-
duced some extra parameters to simulate the ef-
fects of internal quark motion. They were success-
ful on almost all counts but could not get the cor-
rect sign for the slope parameter &' of the neutron
charge form factor G~.

The purpose of this paper is to examine the two-
fold issue of &" versus the sign of the neutron
charge radius squared in the even-wave h.o. mod-

el,""in view of the notable success of the latter
in understanding several baryonic phenomena from
the mass spectrum"'" to photocouplings' and pseu-
doscalar couplings. " The natural facility of a
mixed nucleon that the even-wave model pro-
vides"" comes from the prediction of a low-lying
(V0, 0 ) as the new ground state of the 70 spectrum,
which seems to be the most natural counterpart of
the (V0, 0 )„=,state in the usual h.o. model, appro-
priately considered in Ref. 9. Such a breaking of
SU(6} provides a simultaneous understanding of
several low-energy parameters, especially G„/Gv,
& -N~ width, and the NNm coupling constant, '4 as
well as certain "difficult" cases of photocouplings
among baryonic resonances. ' The latter phenomena
are insensitive to the sign of the mixing angle,
which is now hoped to be determined through the
shape of R"~ and the parameter &.

Now the vastly different orbital structure of
(V0, 0 ) in the even-wave h.o. model from its full-
wave counterpart would a pmori seem to hold out
fresh prospects of reconciliation of the shape of
&"~ and sign of the (&„').However, as will be seen
further below, there is a reason to believe that the
sign discrepancy found in Refs. 9 and 20 may be a
more general feature than would appear to be the
case because of its derivation in the usual h.o.
model. The clue to the sign anomaly lies in the
phase change that occurs between the momentum
and coordinate representations of the (70, 0 }N-2
wave function in the usual h.o. model. ' In the even-
wave model, it would appear off-hand that the
quantity ~ has only a passive role in the corre-
sponding wave function22'~ and hence would not
have to carry the burden of a phase change between
the coordinate and momentum-space representa-
tions. However, a fairly general theorem, "which
makes use of the Gaussian structure of the 56 wave
function, indicates the result

(r ) = Z (p 2)

where the expectation values on both sides are
taken between g' and g in the appropriate coordi-
nate system. Therefore, in order to conform to
this theorem it would be necessary to take account

of the phase change between the coordinate (x, y)
and the momentum (p, q) representations of the
(70, 0 ) wave functions. ~ [A direct calculation with
~ expressed in terms of (, p variables, namely
tan~ =24' q/($' —tV'), also leads to the same conclu-
sion. ] Thus in the even-wave model too the above-
mentioned theorem seems to ensure that the prob-
lem of the sign anomaly is just as serious as in
the usual h.o. model. On the other hand, the re-
sults for R" and (&„')in the even-wave model
would appear to be worth recording physically be-
cause of its several other known successes, ""'"
and mathematically because of the different nature
of its dynamical assumptions.

For the calculations to be presented in Secs. II
and III we use an invariant volume element dr
which takes account of the constraints on the vari-
ables x; 7& which had been neglected earlier. "'~
However, the more refined volume element used
here affects the earlier calculations only mar-
ginally, while it is crucial for the present investi-
gation. This derivation is summarized in the Ap-
pendix. In Sec. II we sketch the derivation of the
neutron charge form factor in the even-wave mod-
el, drawing attention to the correction needed on
the overlap integrals described in paper II as a
result of the above constraints. Section III de-
scribes the corresponding calculations for &" but
without the inclusion of gluons and gg pairs. Sec-
tion IV gives a discussion of the present results
in relation to the above theorem as well as a sum-
mary of our conclusions.

II. CHARGE FORM FACTOR OF THE NEUTRON

The evaluation of orbital matrix elements in the
even-wave model within a sort of "zero-order ap-
proximation" which gives rise to certain orbital
selection rules has been described in paper II.
The selection rule of immediate relevance to the
present calculation, viz. , (P', P ) =0, for a (70, 0 )
—(56, 0') transition is, however, based on the as-
sumed independence of the variables (x;, y, ) defined
by22

&; = $; cos&~+@;sin2~,

x y=0 t

1 l
y, =g, sin2~ —g&cos~~,

(3}

(4)

as well as a hidden character of the cyclic vari-
able ~. This selection rule is adequate for most
"coarse-grained" quantities such as G„/G„,pi-
onic widths, etc. , which have been considered in
papers II and III, but not for the "fine-grained"
quantities under the present investigation which
depend crucially on a nonvanishing value of (4', ttj').
This can be achieved within our formalism by in-
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,),s ~ -(~2+ p2 g2+ —,e
N [' cosy(e9x '4v )/4+ &-(v'3x +v )/4)

0

——cos2X(e (*"~'"'l/4 —e (&~""' '}],
where

N, '=-,'v', N '=zzz'(2 —&3).

(6)

The "mixed" nucleon wave function including the
spin-isospin wave function is given by E(I. (1),
where"

corporating the constraints implied by Eq. (4) on
the invariant volume element which now reads as
(see appendix)

dT =d~z d y dX 5(2x 'y)8(z —y )(z —y ). (5)

Accordingly, the wave functions in the coordinate
space are

proceed as in LQPR. We therefore write the in-
variant volume element in momentum space, viz. ,
d P'(PP, in terms of longitudinal variables z', z
appropriate to the infinite-momentum frame' and
transverse variables pJ and g which are more in
tune with the structure of the (70, 0 ) wave func-
tions in our model. The derivation, which is
sketched in the Appendix, leads to the following
expression:

dpi dyN

=Sdz'dz dz, 6(v6 z" +Sz, —1)HAPP~ (f q, dl(~

x 6 (2''%3(pi qj. ) /(Pi 'L ) (12)

where

&2z' =z —z, &6z"=-2z, +z +z

and pJ and QJ are given by

I56&, =(IH~)(x'~'+z" ~")~',

I7o&. =-'[(4"" ~"")~'.(4"'- 4" ")~"l.
(8)

(9)

p I n
pJ =p. Cosy ~J +pJ sinp~J

p . I Il 1
gJ. PJ sinz~J -P cos~~

(14)

The neutron charge form factor now works out as'

Gz(q') =-W2 sine cos9

d& P"P'exp 2iq ' x sin&~ —y cos&~

=-~2 sin& cos»&0.86q' (for small q') .
(10)

With a value of cot'9 =2 which fits G„/G„,etc. ,"
as well as resonance photocouplings, ' E(I. (10)
predicts

-6 (&„'& =, ,2.,= 5 = -0.57 GeV '
&& & (e},dGz(q')

where &(e) is the sign of the angle e. It is clear
that the magnitude of b found above compares
rather well with the observed value" of (0.50 +0.01)
GeV '. As to the sign of (9 which was not quite de-
termined through the earlier even-wave investiga-
tions, ""'"a positive value, which corresponds to
the choice of /&0 of LQPR, ' gives the wrong sign
of b. Qf course we also have the option of choosing
«0 which is equally compatible with our earlier
results on G„/G», etc. ,"'" as well as photocou-
plings. ' But this choice happens to give a wrong
behavior for R"~, as we shall find in Sec. III.

III. CALCULATIONS OF THE STRUCTURE FUNCTIONS

For the calculation of the structure functions in
deep-inelastic scattering, we must resort to mo-
mentum-space wave functions, i.e., the Fourier
transforms of g' and g" defined in paper II, and

(»)
(16)

(17)g" = ( }Nz(cos&-F, —cos2&F },
where

F, =z[exp(-p, ' —z~ —z~ q,'/v3)

~ exp[-q, ' —(z
"+z "'+p,2)/WS] ],

z =a~/2,

N-z v z (z +1)
8 4

+ (&'tan 'e —tan 'I/z)
(e' —1)z

4
62 3

(i6)

(19)tan~-
]2 gg2 ]2 p]2—z +PJ -PJ

The difference between the exponents of Eq. (18)
from those of Ref. 24 is based on the following ap-
proximate, but in practice accurate, representa-

To define the momentum-space wave functions we
take partial advantage of the hidden character of
the cyclic variable l( of Eqs. (6) and (7) to intro-
duce a similar variable ab &n«&0 in momentum
space as in Ref. 24, without, however, implying
the equality of the corresponding variable in the
coordinate description. However, we must insert
separately a negative phase factor in the definition
of P', $" to tally with the results of Ref. 9, as well
as the theorem" mentioned in the Introduction.
With these precautions the momentum-space wave
functions, listed in Ref. 24, may be rewritten in
terms of the (z', z"), (p~, q~) variables as

P =N exp[ 1/2(z "+z -~+ P,'+ q,') ],
P' = (-)N„(sin&F++sin2&F ),
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tion

P —g =P~ —gj +z +z2 2 2 2 I II 2
(20}

The same approximation yields the following sim-
plified expression for cos~ in terms of the variables
of Eq. (12), one which is particularly useful for
the evaluation of the structure functions: SU (6)

z' -z' + (P,' - q, ') cos&,cos~ =
l2 II2

P~ —g~ +z + z
(21)

%e now define certain spatial distribution functions
A(z), B(z}, and C(z), viz. ,

(:( )=
2 f & II(('I* I("I'I'(*-,),

B(z) =3v6 du P"6(z -z, )&',

(23)

(24)

.2 .4 .6 .8
Z

FIG. 1. The ratio R"~ as a function of g . Present
results„solid line; LOP+ results: dashed l.ine. Data
are taken from ref. 12.

which obey the normalizations

&A(z) f d*(:(z)=1, 1B( Idz=0. (25)

IV. DISCUSSION OF RESULTS AND SUMMARY

In Fig. 1 we have plotted against experiment"
the ratio &"' of &'" and +,' as a function of z (0 ~ z
~ 1) for the same magnitude of 8, viz. , cot8 =&2

as determined earlier for photocouplings' and other
resonance parameters, "'"and a sign 6}&0 which
corresponds to LOPR's /&0. (Recall from Sec.
II that this sign of 8 yields the wrong sign but the
correct magnitude for &.) ln this sense our fit, is
parameter-free, since the mixing angle has been
determined in advance. Further, since we have
not considered the effect of the gfT sea as well as
gluons"' we should not expect agreement near
small z (where these effects play a dominant role).
Subject to this limitation of our model, the quali-
tative fit appears quite reasonable for z & 3. In
particular, we predict

The functions A(z), etc. , are related to the proton-
and neutron-type quark distributions 6'(z) and X(z)
inside the proton '" by

6'(z) =24 cos'8+2C sin'8+((2 Bsin8cos8, (26)

X(z) =2 cos'8+C sin'8 —v2 B sin8cos8, (27}

whence the structure functions &W, =E, (z) in the
scaling limit work out as

z 'E, '~ =[A cos'8+C sin'8+ (&2/3)B sin8 cos8],

(26)

z 'F, '" = 3[4 cos'8+C sin'8 —(W2/3)B sin8cos8],

(29}

B"~(-,') =0.65(-0.75), &" (1)=0.3(-0.3), (30)

which compares extremely well with the experi-
mental figures (in parentheses) for z near unity
and reasonably well for z near ~. Considering the
extreme simplicity of the model and an almost
total absence of any adjustable parameters, this
is not a trivial achievement. Of course our mixing
angle ~ is appreciably larger than I QPR's Q, but
a substantial decrease in 8 to provide a better fit
to the ~" curve would have to be at the cost of
disagreement on the other low-energy parame-
ters, "since in our model, unlike LOPR's, we do
not have any separate parametric handles charac-
teristic of internal quark motion.

A good fit is also obtained for the quantity &"
=F', —E'," which is shown in Fig. 2, along with the
data~ and the LOPR fit. In this case too, the good
agreement with experiment seems to be achieved
with the same value of 8, viz. cot8 =+&2. Under-
standably the neglect of qq-sea and gluon contri-
butions (which should cancel out for the difference
4~") does not appear to be important for this quan-
tity, as inferred from the quality of the fit without
these contributions.

Against this encouraging background must be
reckoned the negative result on the slope of the
neutron. charge form factor which, curiously
enough, agrees in magnitude but not in sign. Ac-
cording to the theorem (Ref. 26) mentioned in Sec.
I, it is apparently impossible to obtain the eorreet
signs of both the mean square radii characterizing
the neutron charge distribution in momentum and
coordinate spaces, at least within the framework
of this valence-quark model. It is entirely possible
that gg-sea contributions may change this result
significant&y. " However, in this paper we have re-
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FIG. 2. The difference g&"=I &+-E& as a function
of z. Present results: solid line (g= 35.5 ); LQPH re-
sults: dashed line. Data are taken from Bef. 29.

APPENDIX A

We outline here the transformation connecting
the volume elements in the g;, g& variables and
x;, p& variables, as well as for their momentum-
space counterparts. The variables && and 5& are
related to the 5; and g& variables in the following
way

(Al)

(A2)

frained from such an exercise, which would in any
case need some fresh parametrization over the
simple parameter-free premises of our model,
thus tending to obscure a clear-cut physical in-
ference in this regard.

To summarize, our purpose in the investigation
has been not so much to produce high-quality fits
to low- and high-energy data with the inclusion of
details of various effects"' as to examine in the
even-wave h.o. model the behavior of A"~ in the
limit z-1, the sign of the & parameter, and the
sign of the mixing angle 6), which had remained
undetermined in the earlier investigations with the
even-wave model. ""'"For this purpose we have
not attempted any comprehensive parametrization
of various effects (which are presumably needed
for high-quality fits), but rather have depended on

a single effective parameter 8 for a simple over-
all description of both high- and low-energy effects.
Since, on the other hand, a given choice of the sign
of 8 is incompatible with both & and &", we have
adopted the choice ~~0 which effectively repro-
duces R", though at the cost of a wrong sign for &.
The same is also the conclusion of I.OPR."20 To
this extent we have not succeeded in differentiating
between the full-wave and even-wave h.o. models.
However, the present results, together with those
of Refs. 1, 23, and 24, should help establish a
phenomenological viability of the even-wave model
in favorable comparison to the usual h.o. model,
in addition to a better theoretical raison d'0tre
for a mixed nucleon provided by its prediction of
('I0, 0') as the ground state of the 70 series.

with the constraints

x'y —0

In order to decouple ~ from x, y and to regard x
and y as effectively independent, the constraint
x'y =0 requires the introduction of a seventh vari-
able

+ =2x'y. (A4)

The Jacobian J of transformation connecting g, q, &

variables with x, y, ~ is given as under

J =[x'-y'/,

therefore, the transformation becomes

d( dq du = dx dy d~ I» y I,
which can be further written in the form

df dq -dx dy d~ lx2 - y'I6 (2x ' y)

(A6)

(A6)

-dx dye. (x'-y')6(x'-y')&(2x y}. (A7)

The variables P', P are canonically conjugate to

g, g variables, so the volume element in momentum

space with P', P" variables can. be written as

+ =@ ll Pl) +P j +Pj ~ (AB}

du =3dz' dz" dz, &(&6z" +3z, —I)d'P~ ~,",
(A9)

where the constraint z, +z, +z, = 1 has been incor-

Lorentz contraction of the P~~ variables and a nor-
malization similar to Ref. 9 leads to the expression
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porated in the & function and z', z are as defined
in Eq. (13) of the text. To transform PJ,P~ we de-
fine two related quantities p~, q, as in Eq. (14) of
the text, and proceed as in the derivation of Eq.
(A7) to obtain

d'pi Wi =d'P~ &qi d~i &(2''q. )(p~' —q')

XQ(p2 q2) (AlO)

This finally yields the full momentum-space vol-
ume element as given in Eq. (12) of the text.
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