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An analysis is carried out to extract the leading effective trajectories and residues in pp and 7 p elastic
scattering. The results are compared with the predictions of the constituent-interchange model and the
logarithmic dual model, which are shown to be the only two types of theory capable of providing a uniform
link between backward and forward Regge regions and the fixed-angle region. The hypothesis of a smooth
connection between forward and backward Regge regions puts strong contraints on a priori unrelated
trajectories and residues. The possibility of a connection between the two models is discussed. As expected
from interchange theory the extracted 7 p trajectory and residue behave quite differently than those for pp.
The dual model seems to give the best overall description of the pp trajectory and residue functions while the
7 p results agree completely with the interchange predictions. The two model fits to pp elastic scattering at
moderate energies (12-24 GeV) are used to extract an expected Pomeron term. The shape of the extracted
diffractive contribution is strikingly similar to the recent CERN ISR differential cross sections which exhibit
adip at t = — 1.4 GeV? and a slow falloff in the large-t region.

I. INTRODUCTION

Recently there has been a great deal of interest
in large-momentum-transfer processes. Two of
the more successful theoretical approaches have
been those of the constituent-interchange model
(CIM)'~* and of the logarithmic-trajectory dual
model (LDM).5 The parton-interchange theory
provides a good description of all experimentally
measured large-angle exclusive scattering pro-
cesses; the dual model has been shown to provide
a precise fit to the nondiffractive component of
pp elastic scattering at all angles.®’

In both theories the fixed-angle behavior pro-
vides a smooth link between forward and backward
Regge behavior. However, they differ in their
predictions at higher energies and momentum
transfers. The LDM predicts, for instance, that
the effective Regge trajectory falls logarithmical-
ly for all momentum transfers, while the CIM
predicts that the effective trajectory should ap-
proach a calculable, process-dependent, constant
(provided the form factors have fixed power law
falloff).

In this paper we analyze the pp and mp elastic
scattering data extracting effective trajectories
and residue functions. For this purpose it is very
important to distinguish between

s and (—y)o®) (1)

in order to treat the large-momentum-transfer
region properly. The results are then compared
to the predictions of the two theories. In addition
we complement the two models by including a
Pomeron contribution and in each case present

a fit to the full momentum-transfer range of pp
elastic scattering. Having performed this fit at
low energies, s below 60 GeV?, the resulting
Pomeron extrapolates very well to CERN ISR en-
ergies.

II. PROPERTIES OF THE CIM AND LDM

In this section we will review the properties of
the parton-interchange and logarithmic dual mo-
dels with emphasis upon their predictions for
asymptotic effective trajectories and residue
functions. (See also Ref. 3.) We begin by de-
monstrating that the interchange and logarithmic-
trajectory models are the only ones that provide
a uniform fixed-angle link between forward and
backward Regge behavior. The argument is es-
sentially the same as that given by Arik.® In gene-
ral, of course, the non-Pomeron part of the cross
section could be the sum of two unrelated terms,

do non-Pomeron do forward do fixed angle
= +

dt dt dt ’
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the forward piece dominating at small angle,

fixed ¢ while the second piece dominates the
fixed-large-angle regime. However, it is an at-
tractive possibility that there is only one analy-
tic term which smoothly connects both regions,
and it is amusing that the solutions to this criteri-
on are so restricted.

Consider an exotic s-channel amplitude. For
small (~¢) and large (—u) the leading asymptotic
term is presumed to have the standard Regge
form

By () (—u) ) (2)

whereas for large (~¢) and small (-u) (i.e., in the
backward direction) the leading term is

By(u)(~t)*u™), 3)

[ Throughout this paper we define the Regge form
to have scale factor =1. Any power dependence
of 3(¢) can be absorbed by choice of a different
scale factor.] If one now requires® that the fixed-
angle amplitude be obtained either as the large

t limit of the forward Regge form or as the large
u limit of the backward Regge form we obtain

Be(t) (=)t ® =B, (w)(=£)"u ™ | (4)

when both ¢/ and « are asymptotic. The only solu-
tion to this functional equation is

Be(E) (=)t () = Bo(=t /1t,)"u (=40 (=uu/uo)* ", (5)
with
@ (t) = ay(=t,) =dIn(=-t/t,),

with the u-channel results obtained by ¢~ u inter-
change. If nonleading contributions are also con-
sidered, the trajectories become more general
functions of ¢ but approach the above form at large
t (Ref. 9).

The general result with a nonzero d corresponds
to a logarithmically decreasing trajectory (as in
the dual-model amplitude). while the special case
with d =0 is the prediction of interchange theory
that all trajectories approach a constant at large
negative {. In addition we see from Eq. (5) that
B¢ (£) of Eq. (4) has the form

Be(t) = Bo(= t/tg)*ul "V ()~ t(~%0) | (6)

That is, the effective residue function for, say,

the ¢ channel, is an increasing or decreasing
function of negative ¢ depending upon whether or
not the crossed-channel trajectory, extrapolated
to -1 using the forms of Eq. (5), is positive or
negative. In particular, for the interchange case,
in which effective trajectories are negative asymp-
totically, the residue function always decreases
for increasing (asymptotic) negative {. Nonasymp-
totic corrections can have a considerable effect,

(a) (b)
FIG. 1. (a) Interchange topology—ut diagram, (b)
Interchange topology—st diagram,

however. In practice, the asymptotic interchange
amplitude can take the form (up to logarithmic
modifications) of a sum of two such terms, both
of which are important at fixed angles with only
one dominant in the “Regge” regions (the coupled-
channel problem exhibits this behavior'®), or the
form of a convolution integral which reduces to
Eq. (5) (with d =0) in either “Regge” region.

The interchange contribution to bound-state
scattering is depicted in Fig. 1(a), the two scat-
tering states simply interchange two of their res-
pective fundamental constituents. In many res
pects this is the simplest possible theory of deep-
elastic scattering since, for simple wave func-
tions, it requires a knowledge only of the form
factors of the colliding particles, and not a de-
tailed understanding of the underlying forces
which bind the constituents together to form the
physical hadrons. Furthermore, constituent in-
terchange inevitably occurs in any composite mo-
del of the hadrons.

To the extent that it is not necessary to explicit-
ly exhibit vector gluons (or other binding forces)
either because of a weak coupling constant or some
type of selection rule, Reggeization in the small-
angle region must proceed via {-channel iteration
of the interchange amplitude. This is discussed in
detail in Ref. 10. On the other hand, vector gluon
exchanges (such as those depicted in Fig. 2) could
well result in the Reggeization of the scattering
amplitude.'* Since this type of Reggeization pre-
serves the topology of the usual duality diagrams,
one might expect that there exists a dual ampli-
tude with Regge behavior which in the limit of weak
gluon coupling strength reduces to the parton-
interchange amplitude.

If in analogy with the Coulomb trajectory'! one
identifies the coefficient d as being proportional

(a) (b)

FIG. 2, (a) ut and () st vector-gluon-exchange dia-
grams which could contribute to Reggeization.
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to the coupling constant (g?/4n), then we shall
show that the dual amplitude discussed here does,
in general, reduce to the form of an interchange
amplitude in a particular limit.

We begin by reviewing the general form of the
interchange contribution to deep-elastic hadronic
scattering. The (u-f) topology contribution, Fig.
1(a), to the invariant scattering amplitude,

M(s ,t,u) for hadrons composed of two spinless
constituents may in the simplest'? covariant mo-
del be expressed in the form

M(s,t,u)x< ftdeB(x)[xu +(1=x)t]Palocu +(1 = x)t)
0

X e (xup((1 —x)t), (7)
with

No(e)ex (s =)t et et - e,
For asymptotic values of ¢ > u > m?, this reduces to
Mo (=t)!"PA(-u), B>D+A -1

« (=t)B(~u)!"¢*, B<D+A -1, (8)

while for u >t > m?,

Mo (~u)"CA(-t)®, B>C+A -1

o (—uyB( =)D, B<CtA-1, ©)

where ¥,, which describes the breakup of particle
A into its constituents, behaves asymptotically
as 1/t*. Up to possible logarithmic modifications,
this same power law characterizes particle A’s
electromagnetic form factor, F,(t)x< 1/t* if the
hadronic constituents are pointlike. This ex-
pression must be symmetrized in the particles
A, B, C, and D. In the case of identical-particle
scattering, there are additional singular end-
point contributions and we obtain (for > ¢ > m?)
by keeping both Ny terms

M lELlQ (_t)l-ZB + L_é)(_u)l-?.ﬂ] , (10)
(-u) (=)

with the result for ¢ > u > m? obtained by ¢ — u
interchange. A particularly important example
is that of p-p scattering which corresponds to
B =2 (dipole form factor for the proton) for which
we obtain

do_ 1 [u In(-u) +t 1n(—z)]2

dt  (fu)® s
as an adequate approximation for arbitrary
(asymptotic) ¢ and u. If we neglect the logarith-

mic modifications in the region of 90°, this is
equivalent to

do_1 1
dt s—ﬁ(l—z) :

The above discussion has assumed that only (u ~¢)

(11)

(12)

topology graphs contribute to p-p scattering. This
is certainly the case if, as argued elsewhere, only
valence quarks are present in the proton’s wave
function at high transverse momentum.

The effects of spin complications and more de-
tailed dimensional-counting models for the proton*
can be significant. A detailed calculation in such
a model yields fixed-angle 1/s!° behavior with an-
gular behavior of 1/(1 -2z%)%, i.e.,

do_ 1 1
dt s (1-z%8"

The 1/s!° result depends upon assuming no pairing
of quarks in the proton wave function; if the 9t
quark is paired to one of the ® quarks (as deep-
inelastic data may be indicating) the two-particle
approximation used in deriving Eq. (12) is valid
and 1/s'? behavior results. Theoretical models
involving specific vector-gluon diagrams which
preserve the ®3 quark pairing within the inter-
change diagram can be used to verify this result.

Equation (12) and especially the spin-3 dimen-
sional-counting result are in fact quite close to
the fixed-angle fit proposed by Landshoff and
Polkinghorne!®

doc 1 1

t = sO (=27 (13)
For the quark-pairing case, the 1/s!? behavior of
the fit can be viewed as the effective power behavi-
or exhibited by (s +m?)™? for the range of s (s <45
GeV?) considered by Landshoff and Polkinghorne, !¢
Note that unrestricted use of Eq. (13) implies that
that a,{—=<)= —0.5 when, of course, s> —¢.

The other special case with which we will be
particularly concerned here is 7 p scattering, cor-
responding to B=D =2, A=C =1 in the simplest
model, in which the pion has a monopole form
factor as expected in a two-quark model with no
anomalous dimensions. Since B=D +A -1 the
simple formula of Eq. (8) is logarithmically mo-
dified to

In(-)1_. .1
M o (—t)z u—l’,(t)u,

which is valid for arbitrary (asymptotic) ¢ and u.
Also, for 77p scattering there is in general a
(s-t) topology'” interchange graph [ Fig. 1(b)] which
yields a contribution of the same form as above
but with u— s. The relative size of these two
contributions depends upon the quantum numbers
carried by the constituents of the proton and pion.
Inclusion of quark spin and a dimensional counting
Born graph framework modify the above results
slightly; for instance the (u —t) topology alone
yields (do/dt)(@p = 7p) e 1/ (t1su’).

We should also note that the form
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Nplx) < G(x —%) (1 —x)"a"+9(§ - )x"a" , (14)

with ng=B, while valid in either the x -0 or x - 1
limit may be too simple for intermediate x values.
In general there are other contributions to Ng(x)
of the same form but with nzg>B. This does not
affect the 77p result [ except to remove the In(t)]
but would modify the pp result. In the latter case,
for u >t >m?, there is no longer a 1/u®, 1/u?
term arising from scaling x near 0 and the domi-
nant contribution toM is

1 11
Mcc F’(t)F o« vl (15)

For arbitrary ¢ and « this type of contribution is
best approximated as

1

in the case of pp scattering.

The above results may be reexpressed in terms
of the behavior of effective trajectory and residue
functions at asymptotic momentum transfer as
follows. We are going to make an analysis using
Regge theory at large angles where the criteria
for the validity of the Regge expansion are not
satisfied. However, the validity of the expansion
used here depends only on how rapidly the Mandel-
stam double spectral functions approach their
asymptotic form. This can occur even if the Regge
criteria are not met. We define the spin-averaged
differential cross section as

do 1

ECZ s—z val'z

and take
Me (=) OB (t), |ul>|t]
o (=) B @), [t > |ul.

For pp scattering we then have for the naive calcu-
lations described above,

1
a(—.oo):—z’ B(t)cr_-:?; (17)
(=)
though there are important, perhaps temporarily,
dominant terms for which
a(=w)==3
and
B s (18)
(-1)*

The more sophisticated three spin-3-quark model,
with fixed-angle power behavior do/dt o 1/s°
yields

a(=w)=~1
and

1

B (t)cc [ R (19)
Even if the dipole behavior of the form factor and
hence of the wave functions breaks down as t—= —o,
the above a,;; predictions shouldbe approximately
correctover the sizeable kinematic regime for which
the form factors exhibit dipole behavior. Formp
scattering we obtainin the spinless case the asymp-
totic £-channel results for meson trajectories

a(=o)=-1

and
1
Beoe (L (20)

while for the u-channel baryon trajectories,
y(=0)=-2
and

1
ﬁu‘x(_—u)"- (21)

In general, all of the above effective trajectory
predictions hold for both the I=0 and I=1 ¢-chan-
nel trajectories and I=% and 3 u-channel trajec-
tories.

The above mp scattering results are modified
in the case of spin-; quarks. One finds that
@, (=)= -3 andp, o« 1/(-u)*’?in the backward di-
rection (essentially because of the necessary he-
licity change in going from meson to nucleon)
while the forward direction results are unchanged.
The limiting values and forms given above depend
sensitively on the detailed quark model assumed,
especially on the angular distribution of quark-
hadron elastic scattering. Dimensional-counting
rules for a(-«) and (t) have been given in Ref.
3, Sec. V 4.

Unfortunately, currently available data cannot
necessarily be said to be fully asymptotic in the
above sense. Thus comparison of the interchange
predictions to the effective trajectories and resi-
dues extracted (as described later) from the data,
must proceed (particularly in the pp case) via
performing exactly the same extraction procedure
upon the full interchange expression—thatisby trea-
ting the full theoretical result as data. These
predicted trajectories should also hold in inclu-
sive scattering where the increased data rate
should allow the analysis to be extended to very
large momentum transfers.

In addition one must not forget that an examina-
tion of the effects of higher-order iterated dia-
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grams and of hadronic bremsstrahlung® indicates
that interchange theory Reggeizes smoothly at
small momentum transfers. Thus, even in a
theory in which the interchange amplitude domi-
nates at fixed angle for asymptotic energies, the
leading trajectories may well be sufficiently high
near ¢~ 0 to produce the normal Regge intercepts
while at large (—¢) joining smoothly on to the li-
miting values given above. Thus a direct ex-
traction of the effective trajectories from experi-
mental data will yield values which should de-
crease toward the above limiting values as ~¢
gets large. Secondly, it is quite clear that the
effective trajectory behaves in an essentially dif-
ferent fashion in the pp and np amplitudes. Consi-
der pp scattering for a moment. At fixed s as ¢
decreases from its value at 90° the iterated mp
interchange process will begin to couple (see Fig.
3). Since a.yx(mp) > aer(pp), it is clear that this
effect will increase rapidly in importance as —¢
decreases towards zero. It is only for quite large
—t that the effects of the higher-lying mp trajecto-
ry are very nearly canceled in pp scattering.'®
Thus as t decreases to moderate values the effec-
tive trajectory extracted for pp scattering should
rise to the level of the higher-lying coupled 7np
trajectory. In contrast the np effective trajectory
(in the ¢t channel) does not receive iterative con-
tributions from any coupled channel with a still
higher large ¢ limit for its effective trajectory. In
addition the mp effective trajectory limit is high
to begin with. Thus, the complications due to
coupled-channel iterative contributions are not
likely to be phenomenologically significant except
at relatively small {.

In cases where exotic trajectories are ex-
changed, suchasbackward pp (and K ~p) scattering,
one might expect that the rise of the Regge tra-
jectory as u decreases is small. Thus backward
scattering should show a behavior characterized by
ag, @~ 0)~ ag,(—») = -4, with a constant residue.
Thus the backward cross section is predicted to
behave as s™!°, which is consistent with the data
even in the (exotic) backward peak region.

We turn now to the logarithmically trajectoried
dual model (5) which can, for our purposes, be

e

1
1
I +-e
|

N

FIG. 3. Illustration of the coupling between pp— pp
scattering and p7m— pr scattering as f-channel iterations
become important.

P P

most transparently written as

M=Cl@)g™ WP,

p- 3 (-5)0-5) (-2
-_Ga/me)
Ga/NGa/e)

(22)
7=b-at, €=b-au,
_Int_ 1 1-t/4M?
o) =g @)+ g N T Ty AT
_lne
a(u)—lnq

Note that the trajectory has a branch point at
4M 2 which one might be tempted to identify with
the threshold for “quark” production.!®

It is apparent from the above equation that the
parameter 1/lng plays the role of d of Eq. (5);
in fact in the limit of large ¢ and u the factor P
of Eq. (22) becomes equal to unity and the dual
amplitude reduces exactly to the form in Eq. (5).
It has been argued'! that for Coulomb scattering
the Regge trajectories are logarithmic with the
coefficient of the logarithm proportional to g2/4m,
the coupling of the vector gluon to the bound con-
stituents. Then taking g?/4m— 0, in which limit
one might expect to obtain an interchangelike am-
plitude (i.e., the diagrams of Fig. 2 vanish leaving
those of Fig. 1), would be equivalent to 1/lng ~0,
i.e., ¢ -0 for the dual amplitude. It is apparent
from Eq. (22) that if a(¢,) approaches a definite
value a,, as ¢~ 0, an interchangelike result ob-
tains (a,<0 is required)

M~ C*(=t)0(-u)®. (23)

(This u — t=symmetric result is easily genera-
lized.)

This proportionality between 1/lng and g2/4n
is also suggested by the fact that the Veneziano
amplitude is the ¢ =1 limit of the more general
amplitude of Eq. (22) provided that o',

o' =1/4MIng, (24)

the slope of the resulting linear trajectory, is held
fixed, and that «(t,) approaches a definite limit.
Physically this limit corresponds to large “quark”
mass and large coupling constant. Infinitely mas-
sive quarks can only be bound to form finite
massed hadronic states on an indefinitely rising
linear trajectory if the coupling constant is infi-
nite, again suggesting that

£, 1 (25)

4~ Ing’

If the “quark” mass were finite and the “quarks”
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able to escape, there would exist at some energy
an ionization point near which the trajectory would
be very nonlinear.

Thus we see that there is a continuum of physi-
cally reasonable models with increasingly flat
trajectories at large momentum transfer. Suffici-
ent experimental information to distinguish be-
tween the dual models and the interchange model
(with Reggeization complications included), in the
case of pp scattering is not currently available.
Similarly, a mp dual amplitude has not been devel-
oped theoretically. The difficulties in making this
distinction will become apparent in the following
sections. Among these models, the interchange
model does have the advantage that results for
other types of processes, meson and proton initi-
ated processes as well as inclusive processes,
are easily and unambiguously obtained (once form-
factor behaviors are known or given) and appear
to agree well with experimental data. It is not
clear, however, that similar agreement cannot
be obtained with the dual model. Higher-energy
fixed-angle measurements (say for 60 GeV?<s
<100 GeV?) together with correlated form-factor
measurements would probably be definitive in the
proton case, and are certainly highly desirable.

As a final note, we should, perhaps, emphasize
one further complication which might be present
and would make the distinction between interchange
and dual models still more difficult. It is quite
conceivable that form factors do not have fixed
power law fall off at increasing momentum trans-
fer, but rather the effective inverse power, n in
1/t", could be an increasing function of —¢. This
is, in fact, expected in the above mentioned dual
models, as well as in “scale-invariant” parton
models.?® Thus the wave function damping em-
ployed in the interchange computation should per-
haps be a function of the kinematic range being
examined.

III. DATA ANALYSIS

This section is devoted to an analysis of the
existing data for pp and mp elastic scattering. Em-
phasis is given to the extraction of effective tra-
jectory and residue functions at high momentum
transfer. In performing this extraction it is es-
sential to understand the variable dependence of
the scattering amplitudes particularly when ¢ is a
substantial fraction of s. For large ¢ the differ-
ence between s® and «® is substantial. For in-
stance, if the amplitude actually was given exactly
by

BE)(=u)™" (26)

but the t-channel effective trajectory is extracted

using the variable s, one would obtain

-n
1+¢/s’

‘xeﬂ' = (2 7)
by neglecting masses relative to ¢t and s. That is,
because of an inappropriate choice of variable, the
extracted trajectory would be considerably lower
than its ultimate value (for large s>{) ift is a
resonable fraction of s. Correspondingly if one
has data for more than one value of s at any given
t, substantial variation in the extracted effective
trajectory should be observed in this example.

These considerations are of crucial importance
in the case of pp scattering. Most theories, in-
cluding the dual models and the interchange theory,
predict that the differential cross section should
have the form

s(s _4m2>§§’— = (=) OB (E)[2 (lu] > [¢]). (28)

That is, the invariant amplitude should reflect the
underlying (u —t) topology of the contributing dia-
grams. This requirement is equivalent to the re-
quirement that the nondiffractive component of
Regge behavior in pp scattering should be purely
real, there being no direct channel resonance
contributions. Thus as argued above power law
behavior of the invariant amplitude will be more
quickly revealed, and with less ambiguity, if ef-
fective trajectory and residue analyses are per-
formed using the variables u and ¢.

A direct extraction of the effective trajectory
from the data®! according to Eq. (28) yields the
results of Fig. 4. Figure 4(a) shows that the ef-
fective trajectory falls from 1 at small { in a non-
linear fashion to —2.7 at the largest ¢ value for
which the extraction can be performed. The pp
data employed is that available with s <60 GeV?.
There is now available data for |t| <10 GeV? at
ISR energies. As discussed in Sec. II, this region
of s and t is dominated by the Pomeron cross-
section contribution. The a.(f) extracted over
the range 0<|¢| <10 GeV? is expected to make a
transition to a relatively flat Pomeron-like tra-
jectory, a..(t)=1, at ISR energies. For s<60
GeV? this same ¢t range is dominated by the non-
Pomeron dual-interchange contributions on which
we temporarily concentrate. The indicated errors
on the s <60 GeV? analysis arise mainly from a
small s dependence of o, at any given ¢. [ Usually
Q. tends to increase slightly as s increases at
fixed t. In fact there is some evidence for a slight
break in the s dependence at approximately
In(-u) for various integer ¢ values.] The corre-
sponding residue funciton is presented in Fig. 4(b).
It is immediately apparent that the extracted resi-
due tends to increase with increasing —¢. This
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FIG. 4. (a) Extracted effective trajectory for pp elastic scattering.

Error bars indicate typical amount of s depen-

dence of extracted o,y at any given t. The variable (- ) is employed. (b) Extracted residue function, g(t). (c) Plot
of In [s?(do/dt)] vs In (—u), indicating a possible change in slope (for given ¢ value) as In (- x) increases.

behavior would seem in disagreement with the
interchange predictions, for asymptotic Regge
expressions, of Sec. I. However, from Eq. (11)
we see that in the region of 90° (z <0.5), secon-
dary terms are significant and a more careful
examination is required. We will return to this

point in a moment.

First we give the results of the effective-tra-

Effective a For pp Using (-s)2("

| | s Dependence

_{ﬁ

| T N S N T T T Ut

L

-20 -8 -10

-8

t (Gev?)

FIG. 5. Extracted effective trajectory using the

variable s.

Qeft

jectory extraction if the variable s is employed
for the Regge dependence instead of the variable
-u. These are given in Fig. 5. Two features of
the graph are immediately apparent. First the
effective trajectory falls much more rapidly in

—t. Second, there is considerably more s depen-
dence of the extracted trajectory at any given ¢

(as indicated by the error bars??). In addition to
which, a number of discontinuities appear which
can be traced back to substantial changes in the s
of the data corresponding to the { values on either
side of the break. The above anomalies, we argue,
are evidence in favor of the u-variable extraction
being most meaningful.?® However, regardless of
which variable, u or s, is employed in the extrac-
tion it is important to note that a.; and By, con-
sidered as local functions of # (or s) and ¢

(e.g., 20 (u, t) =Z%nl(ni(fz—)/‘El

ﬁz(u; t) = szd—g-/(_u)zaeﬂ("-‘)) s

do provide a unique local characterization of the
elastic-cross-section data and are capable of ex-
posing, cleanly, certain cross-section trends
which are less obvious in other types of analysis.
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Thus, a comparison of a.; and B extracted from
a given theoretical form with those extracted in
identical fashion from experiment will reveal the
extent to which the theory is a good representation
of the cross section.

Let us return to assessing the degree to which
interchange theory is able to describe the effective
trajectory behavior given above. For this purpose
we will take the form [see Eq. (12)]

g%oc (s +m?)~1%(1 - 22+ 4m?/s)"" (12%)
as representative of the interchange result in the
$<60 GeV? range. [Note in particular, that we
use 1/s%"(1 -z?%", instead of the asymptotically
equivalent form 1/(tu)". Also, ad hoc mass cor-
rections have been included.] We consider ¢>3
GeV? only, and take »Z=1 in Eq. (12a). Perform-
ing the a .y extraction using Eq. (12a) evaluated at
the kinematic points for which actual data is avail-
able, we obtain the results of Fig. 6. [Also given
in this figure are the corresponding results for the
Landshoff-Polkinghorne formula Eq. (13).] Two
correlated differences between these graphs and
those of Fig. 4 are immediately apparent. The
effective trajectory of the interchange result is
much flatter (for {>3 GeV?) and the residue func-
tion, while not falling very rapidly, certainly
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FIG. 6. (a) Effective-trajectory extractions performed
using the theoretical cross-section forms of Eq. (124)
(interchange model) and Eq. (13). (b) Extracted residue
functions corresponding to the above trajectories.

does not increase as for the actual data [{-channel
Reggeization of the interchange graph can be ex-
pected, as discussed earlier, to lead to a much
more steeply falling trajectory than the basic
interchange graph alone; if the natural scale factor
of the Reggeization, i.e., in (- «/u,)**, is then
larger than 1, the residue discussed here will
inevitably increase as (- t) increases].

The above type of difference is, in a certain
sense, second order. In the physical amplitude the
decrease associated with a falling trajectory is
compensated by the rising residue in such a way
that an effectively flat trajectory with roughly con-
stant residue gives approximately the same dif-
ferential cross section in the kinematic range con-
sidered. In fact, if we restrict ourselves to t/s
>0.2, the ratio of the experimental cross section
to the theoretical cross section, Eq. (12a), does
not change by much more than 50% from its central
value for s <60 GeV? and in the range 20<s <40
GeV? by no more than 30%. However, closer
analysis as done here reveals definite systematic,
and, as described earlier, expacted differences,
associated with the effects of Reggeization. These
differences can best be summarized by the graph
of Fig. 7 in which we schematically plot the loga-
rithm of the differential cross section associated
with a slowly-falling trajectory and constant resi-
due function, in comparison to that associated
with a more rapidly-falling trajectory and rising
residue. The ¢ range is chosen such that the fixed
angular range coincides more or less with that of
the actual data.

One sees that, for the lowest s value, over the
given angular range the true cross section divided
by the theoretical cross section (with flat residue,
as indicated by the s independent intercept) should
tend to increase as ! increases, while just the
opposite effect should be observed at high s. Care-
ful numerical examination of the above ratio re-
veals such a trend. The point of crossover is in
the vicinity of s =35 GeV 2. Examination of the
above ratio is also useful in evaluating the relative
merits of the 1/s'° behavior of Eq. (13), the Land-
shoff-Polkinghorne form. Use of this energy be-
havior introduces systematic discrepancies at the
highest s values (45<s <60 GeV?). To demon-
strate this we have plotted in Fig. 8 the range of
variation of the experimental-to-theoretical cross-
section ratio (in arbitrary units) as a function of
t for the various s values at which large-angle data
is available. In Fig. 8(a), Eq. (12a) is compared
to the experimental data (we require ¢/s>0.2 for
this case) while in Fig. 8(b) we employ the Land-
shoff-Polkinghorne form Eq. (13) (we require
t/s >0.1), For s <40 GeV?, Eq. (13) works as
well as Eq. (12a) did over the smaller ¢/s range,
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Ins

FIG. 7. Rough comparison of cross sections for which
(a) the residue function (i.e., intercept on a log-log plot)
is constant while the trajectory falls slowly (with in-
creasing —t); and (b) the residue function grows as —¢
increases but the trajectory falls more rapidly in such a
way as to approximately compensate, The solid portions
of the various lines indicate where in In s the cross sec-
tion is “measured”’. These “measurements” are extra-
polated back to Ins=0 to yield either (a), constant resi-
due, or (), a residue which grows with Ins and corre-
spondingly In |¢|. The respective curves are appropri-
ately labeled. We have chosen the intermediate-energy
curve to be common to the two cases. Note that the
solid-line “measurements” always have a point of over-
lap.

except for the appearance of a systematic s de-
pendence. (The ratio falls at high s indicating that
the 1/s'° power is too weak). The improved ¢/s
range of Eq. (13) is associated with its stronger

z dependence. Were we to modify Eq. (12a) by
increasing the power of the angle-dependent factor
from 6 to 7, as might be appropriate after spin
effects are included (the ® 9 quark pair probably
have spin 1 in any realistic model), the t/s range
over which 50% or less variation occurs is ex-
tended to ¢/s >0.1. However, we see no reason

to expect that fixed-angle formulas should work
for z>0.6 at present energies, in any case. [For
either choice of z dependence in Eq. (12a) the
systematic s dependence observed for Eq. (13) is
considerably reduced.]
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FIG. 8. Plots of the ratio of experimental cross sec-
tion to theoretical cross section as a function of ¢ for (a)
Eq. (12a) (b) Eq. (13) (c) Eq. (12a), modified to have in-
creased (1 — z%) dependence, 1/(1 - 22)7,

The failure of a 1/s° behavior, because of the
fixed-angle nature of the data, is roughly equiva-
lent to the observation that the Landshoff-Polking-
horne form, Eq. (13), will never yield an effective
trajectory as low as the value — 2.7 obtained at
t=-19 GeV/c?, even temporarily. [Recall that
a_ —- 0.5 according to Eq. (13) when s > {.] Equa-
tion (12a) does considerably better in this regard.
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For instance, at t=-19 Eq. (12a) gives a.q

=-2.1 while Eq. (13) gives a, =—1.5. Only for
the modified Ny form, however, of Eq. (5) with
a,, =—3 could the present trend of the extracted
trajectory be said to be indicative of the eventual
result. Of course, there exists the possibility
mentioned at the end of Sec. I, that the wave func-
tions employed in the interchange calculation
should be given stronger damping than dipole; when
probed in the s >40 GeV? kinematic range, in
which case a4 falls below — 2. Direct measure-
ments of the proton’s electromagnetic form factor
beyond ¢ =-25 GeV? would determine whether such
modification is necessary.

One should also keep in mind the possibility that
while the 1/s!? behavior, corresponding to pn
quark pairing within the proton, may be dominant
at present energies, a 1/s'° behavior in which the
pair is broken apart will, if present at all, ul-
timately dominate.

Finally we should note that if instead of 1/s2"(1
—2z%)" in Eq. {12a) we used the asymptotically
equivalent form 1/({«)" the results would have been
significantly different, the latter form not being
as consistent with the experimental data. This
again illustrates the significance of mass correc-
tions when s <60 GeV?. Given this fact, the un-
certainty in the form of the interchange formula
itself and the complications of iterative Reggeiza-
tion which are certain (particularly for pp scatter-
ing) to convert a fixed-angle formula such as Eq.
(12a) into one with a rising trajectory (as — ¢ de-
creases in the present range, — <20 GeV?) it is
difficult to decide whether or not an interchange .
description will work with precision for pp scat-
tering at fixed angle. Only higher-s measurements
will provide a definitive test.

The logarithmic-trajectory dual model provides
a better description of the effective trajectory and
residue. Though the full dual amplitude with no
asymptotic approximations can be compared di-
rectly with the data, as is done in the next sec-
tion, it is useful to examine an illustrative rough
description of the data in which we drop all non-
leading asymptotic terms. The large { and « limit
of the dual amplitude is exactly given by Eq. (3)
with d not equal to zero. That is the trajectory
continues to fall as — { increases in magnitude.
More precisely from Eq. (22) we obtain

M ocq"(“) alt) =(= u)a(”(b _ at)lnb/lnq
with a logarithmically falling trajectory

_In(b—at)

aft) g °

i.e., M is completely determined by the three
parameters a, b, and ¢ which characterize the tra-

jectory. We can determine the appropriate values
for these parameters as follows:

(a) trajectory intercept =3 implies that

1 _ Ind _1/2
2 mg T
(b) the passing of the experimental trajectory

through 0 at {=-2 GeV? implies
b+2a=1,
(¢) the trajectory curvature determines ¢
g=at/at,

where Atand At’' correspond to the ¢ intervals
between two successive changes of the trajectory
a by one unit. From (c) and Fig. 4(a) we obtain
q =0.75 which yields =0.86, a=0.07. We should
then have, roughly, at large ¢,

M o< (= u) @) (= )t /ina

In this formula «(¢), of course, fits the experi-
mentally determined a.s of Fig. 4(a) very well.
From Fig. 4(b) we see that the experimental resi-
due increases roughly only as ¢? though at the
highest ¢ values an increase of {8 would not be in-
consistent. However, this apparent disagreement
for modevrate ! is purely an artifact of our asymp-
totic approximation which is not justified there.
The small value of a [whichfrom Eq. (28) is equiva-
lent to a large Regge scale factor, «,=1/a| implies
that for the ¢ and « range of present data the ap-
proximation P=1 is not valid. Even for very large
u, where G(q/7), G(q/€) ~1, we should, for mode-
rate ¢, still include 1/G(¢/7) in the residue func-
tion. The decrease of 1/G towards its large (- )
limit of unity diminishes the rise of the effective
residue function.

Thus in the dual model the parameters of the
trajectory determine the residue function except
for an overall constant. For a trajectory of the
observed shape, the dual-model residue function
is predicted to rise as - { increases. This rise
is simply due to the fact that the natural Regge
scale factor («,) of the model is bigger than the
1-GeV scale factor used in the residue extraction.
[Note that (1/s,)® increases as — t increases if «
decreases.| Thus the dual model provides a sim-
ple explanation of the rising extracted residue
function. However, good agreement with experi-
ment requires use of the full dual-model ampli-
tude, which includes unambiguous nonasymptotic
terms in P of Eq. (22) (associated with daughter
trajectories). The most direct check of the ability
of the dual model to describe the data is to attempt
to fit the experimental data with the full amplitude.
For this reason we leave detailed discussion of this
case to the next section in which we will discuss
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more detailed fits to the full angular range of pp
elastic scattering which incorporate a Pomeron
type of contribution in addition to the interchange-
or dual-model amplitudes.

In the remainder of this section we turn to a
discussion of mp elastic scattering for which in-
terchange theory gives a fairly definite prediction,
Eq. (20), which should not be strongly modified
by effects of Reggeization except for quite small
—t. We have extracted the effective trajectory
in this case keeping in mind the fact that both (ut)
and (sf) graph topologies are in general present.
This complicates the matrix element which must
be used. Interchange theory predicts for np scat-
tering a large (- f) cross section of the form

SP 2 Z—c: = B2(t) [2(= 8) %err () 4 (=) %est (D2 (29)

where a.;—~-1as {~-«, The relative magnitude
of the two terms is fixed by simple quark-counting
rules. Determination of the effective trajectory
proceeds iteratively. First, a value for the o,
associated with the second term is guessed and the
data are then used to determine a,, for the first
term. The process is iterated until the two agree
(as they must in any theory due to the relation of
the two topologies by s-u crossing). The data of
Ref. 24 for 7 ~p were used and yield the effective
trajectory and residue given in Figs. 9(a), 9(b).
The trajectory values oscillate around o ~-1 for
(- t)>3 GeV/c?, as predicted by the interchange
theory and in agreement with the values obtained
by Owen ef al.?* in an analysis of their own data.
One should note that this description of the data
demands that both the 7=0 and /=1 trajectories
have the same limiting value. It is satisfying that
the residue behavior exhibited in Fig. 9(b) is in
accord with interchange expectations. The best
power law fit to the residue function, correspond-
ing to B<1/t2, is adequate over a substantial
range of t.

Interestingly, the mp trajectory shows no indica-
tion of continuing to fall as — ¢ increases.?® Such
a fall would most probably be expected were a
logarithmic dual model applicable. In mp scatter-
ing, the kinematic range for which o is observed
to reach its relatively high asymptotic value is
quite accessible, making this an important test of
interchange theory for exclusive processes. It
should be noted that the a,; =-1 limit depends
only upon the behavior of the pion’s wave function,
an object predicted to have simple monopole be-
havior for arbitrarily large off-shell masses by
the two-quark model. In addition this monopole
behavior has been indirectly verified by the suc-
cess of the interchange theory of high transverse
momentum production of pions at the ISR.2® The
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FIG. 9. (a) Effective trajectory for r"p elastic scat-
tering, extracted using Eq. (29). (b) Corresponding
residue function, As before error bars indicate s depen-
dence of extracted values: f and || in GeVZ,

above simplicity should apply also to processes
such as photoproduction of pions for which inter-
change theory predicts a high a(- =), as high,
perhaps, as — 3. [See Ref. 3 in which inclusive
evidence for high a ’s in y+p—~(K, p, ) +X is
discussed.]

Thus we have seen that effective trajectory
analyses can provide a sensitive and useful means
for describing data and pinpointing the nature of
any proposed theoretical description of the data.
The fit of Landshoff and Polkinghorne!® to deep-
elastic pp scattering, which is quite good on the
average, is revealed as systematically different
from the data. Inclusion of Reggeization effects
in interchange models is necessary to describe
the existing pp data with s <50 GeV 2. Higher-
energy measurements will be required before any
firm conclusion can be drawn concerning the
validity of interchangelike formulas at fixed angle.
It does appear, however, that forms with ultimate
1/s1° behavior are in trouble. In contrast, mp
scattering with its relatively high asymptotic ef-
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fective trajectory (resulting in the relative unim-
portance of Reggeization effects except at quite
small — ¢) appears to be well described by the
interchange result. A combination of Regge and
CIM terms has been used to fit pp—n*7~ by
Donnachie and Thomas.?

IV. PROTON-PROTON ELASTIC SCATTERING

This section attempts more complete pheno-
menological analyses of pp elastic scattering,
based upon the interchange and dual models. Both
models must be supplemented by a specific ansatz
for the forward diffractive contribution. This
forward diffractive contribution becomes more
and more important as s increases at fixed ¢ rela-
tive to the interchange- or dual-model contribu-
tions which dominate at lower s over much of the
t range. In fact the effective-trajectory results
presented in Figs. 4 and 5 do not include the ISR
data®”?8 with [f|< 10 GeV 2. Were this data to be
included a.; would show a marked s dependence
rising to near 1 at the ISR energies over this ¢
range. At ISR energies much larger values of {
are required before the interchange- or dual-
model contributions can be expected to dominate—
they are most important over a domain fixed in
angle, not in £ In fact in the phenomonological
analyses we demonstrate that by considering the
cross section as a sum,

do dg Pomeron
dt dt tar ’

do dual or interchange

one may use low energy s <60 GeV? data plus the
well determined dual-model or interchange forms
to extract a Pomeron term which is in reasonably
good agreement with the ISR results® for |#[<3
GeV? where the Pomeron dominates, see Figs.
13 and 16. The Pomeron forms we employ are
less satisfactory®® in comparison to the latest ISR
data with 3 < |¢|<10 GeV? but the general pattern
is clear. Any fixed-t value (greater than some
typical mass?) will be part of the fixed-angle re-
gime at low enough s and the cross section des-
cribed by do/dtdvalorinterchange At high enough s the
dual or interchange contribution will have fallen
away, exposing the roughly s-independent Pomeron
contribution. This process has taken place for
|t| <10 GeV?2 by ISR energies, Vs ~50 GeV.

A. Interchange theory

We will employ here the form of Eq. (28a) ig-
noring iterative Reggeization effects. Our aim here
is not an absolutely precise fit to the large-angle
region, but rather an attempt to use our relatively
good understanding of this region as a tool in ex-
tracting from the data with s <45 GeV? (the

Coconni data is not included) the true shape of the
Pomeron contribution. We find that the Pomeron
must have substantial structure such as that of
the form

P= isAet(a+bl.ns)

+Cs S
(s(pL =19.3 GeV/c)

)'(RJTt)Jl(Rﬁ_t)e"‘ s
(30)

The first term is, of course, the normal forward
peak with possible shrinkage allowed for (we re-
strict ourselves to £>0.1 GeV/c?). The second
term can be thought of as an edge effect as sug-
gested by Kane®? and provides, as it turns out,
the necessary structure, in the form of a sharp
break, in the forward direction around - ¢~1.2
GeV/c?. In addition, this second term does have
an important effect at high s values, out to —¢~8
and provides much of the extra contribution re-
quired in the ¢/s <0.2 range where Eq. (28a), alone,
predicts too small a cross section. The constant
C is real for a true edge effect. The second term
is required to vanish in the forward direction for
simplicity. An equally good description of the
data is possible in which this term is made pure
imaginary, corresponding to a secondary diffrac-
tive minima or multi-Pomeron effect in which case
the energy-dependent factor [s/s(p,=19.3 GeV/c)]
should be replaced by some power of Ins. The
resulting “Pomeron” then has a very sharp dip
such as that seen at ISR.

The best fit (28) to the data yields the values

A =(70.0 ub)'’2,

a=2.32, b=0.517,

C=-0.594 [ub/(GeV/c)]'/2s
p=-0.335, R=0.784, h=1.14,

(31)

where the parameters are given in GeV/c units.

The interchange contribution will include the
inevitable and very necessary mass corrections
of Eq. (12a) in a slightly more general form.
These corrections are present, of course, in any
nonasymptotic description of the form factors.
These not only render it finite at z =1 but they also
tend to increase the level of the effective trajec-
tory for the interchange contribution at small - ¢.
This latter trend is desirable as we know from
Sec. II. Assuming that the nucleon form factors
ultimately fall as dipoles, the interchange ampli-
tude will be written as®!

I=N(1- 2% +4m?/s)73(s +42%)78, (32)

which yields Eq. (13) in the asymptotic limit. The
total scattering amplitude is then P+1 The fit
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could be improved by slightly increasing the as-
sumed fall off of the form factors but this will not
be done here. The best values of the parameters
in I are all reasonable and turn out to be

m?=1,06, \2=0.784,
N=1.42x 107"[s(p,=19.3 GeV/c) P (ub)*’2.
(33)

The above amplitude is compared with the data
in Fig. 10. The x? of the fit was 646 for 395 data
points; nine parameters were adjusted.

A number of qualitative features of this descrip-
tion of pp elastic scattering are of particular in-
terest. One may isolate the contributions to the
amplitude of the three terms, for various values
of the energy. A physical picture immediately
emerges. For low values of laboratory momen-
tum, the interchange contribution / hides the
secondary “hump” structure of the Pomeron.
However, since [ falls rapidly with the energy,
the secondary maximum becomes increasingly
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FIG, 10, Comparison of the phenomenological cross
section for the interchange fit [Eqs. (30), (31), (32),
(33)] to the pp elastic scattering data,

exposed as p,,, increases. Indeed at ISR energies,
the interchange contribution is exceedingly small
for the moderate -t values (<6 GeV?) measured
so far. Thus the ISR data reflects only the forward
diffractive effects. It is interesting to note that
the extrapolation of our diffractive terms (with
parameters determined from the intermediate
energy data) to ISR energies is in good qualitative
agreement with the data. Thus the interchange
description of fixed-angle scattering has allowed
us to account reasonably successfully for the non-
Pomeron portion of the scattering amplitude mak-
ing even a moderate energy extraction of the purely
diffractive terms, including otherwise hidden
structure, possible.

Thus, in elastic pp scattering we may be seeing
relatively clearly the two most basic types of
interaction mechanisms likely to occur on the
parton, i.e., proton constituent, level. It has been
shown that the ISR Pomeron shape for [{[<3 GeV?
(which is much like that at lower energies accord-
ing to the above extraction) is well described in a
sophisticated version of the Chou-Yang model*?
which in its simplest form says

do
q GY(t) (34)

as a result of the contribution of diagrams such as
that of Fig. 11, i.e., vector-gluon exchange be-
tween the partons. [The more sophisticated ver-
sions of this model include s-channel iterative
effects which cause the Pomeron to have sub-
stantial structure and to be smaller at large !
relative to its ¢{=0 value than in the simpler model
of Eq. (34).] The large ¢ region is reasonably well
described by the other fundamental interaction,
parton interchange. This contribution as we have
seen, can also be important at small { and mod-
erate s for which it obscures the Pomeron struc-
ture. As s increases more and more of the first
contribution is uncovered.

B. Dual model

A glance at the pp elastic scattering data of Fig.
12 shows that there is a strongly energy-dependent

FIG. 11. Vector-gluon-exchange contribution to pro-
ton-proton elastic scattering,



1464 COON, GUNION, THANH VAN, AND BLANKENBECLER 18

102 ¢ T T T T T T T T T T T 3
[ 3 3
p-p Elastic ]
0! Data: Akerlof et al. 1
Allaby et al. 3
Ankenbrandt et al. ]
100 & =
0=50 Gevt 7
®=7.0 4
1o v=10.0 4
v =10.1 3
8=12.| ]
2 ®5 8:14.2 1
= 10 45143 3
3 +:16.9 E
L L ©:19.2 4
2 1073 - =193
E£ 3 x=20.12 3
tb,_g F =21.3 3
ol =21.4 1
10 3 =24.0 E
o E E
F 3
6 |
0" E 3
E 3
r b
,7 L —
U \KK&n\j g
C 21 ]
1078 Lo |
O 2 4 6 8 10 12 14 I6 18 20 22 24

-t (Gev?2)

FIG. 12. Comparison of theoretical curves with high~
energy pp elastic scattering data.

contribution associated with the positive curvature
“tails” in the In(do/dt) plots. This positive-curva-
ture contribution is smaller at higher energies
and at sufficiently high energy an energy-inde-
pendent diffraction minimum is revealed, Fig. 13,
at t=-1.3 GeV? followed by a maximum at ¢
=-2 GeV2. The energy-independent diffractive
component has negative curvature and its effects
are easily recognized at moderate energies. The
philosophy of the dual-model fit is to identify these
two contributions with normal Regge terms and the
Pomeron in accordance with the Harari-Freund
hypothesis.?* The only new feature is the range
of ¢ over which the Regge ideas are applied. The
dual-model fit of Ref. 6 works very well out to
=-24 GeV?2. Infact, one dual term provides a
very good description of the data in the region
—t>5 GeV?and s >18 GeVZ2. As has been noted
by Barger ef al.?® another Regge exchange con-
tribution is needed in the region s <18 GeV?2. This
is in accord with our a . extraction and is related
to our p,, >8.5 GeV/c cut in the data. The point
is that there is a lower-lying trajectory falling
off faster in — { than the trajectory of Fig. 4. This
trajectory has sufficient coupling strength to be
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FIG. 13. ppdata at ISR energy s = 2016 GeV2. The dual
contribution (solid line) passes just below the dip at

~ 1.3 GeV?%. Subtraction of the dual contribution from
the experimental data Eq. (4) yields the dashed “pure”
Pomeron curve.

important up to s =18 GeV?2. Dual-model fits to
the lower-energy range as well as the higher-en-
ergy range are fully in accord with this picture.
That is, good fits are obtained with a sum of two
dual terms, each involving different trajectories.
Since the Pomeron contribution to 90°-scattering
data is negligible we can use the 90°-data to
demonstrate how the second trajectory contributes
to the s <18 GeV? region. In Fig. 14 we show
curves for the one dual term (1) and two dual term
(2) contributions to pp 90°-data. Note that the slight
nonlinear behavior of the 90°-data is described
with precision. Of course, from the 90°-data alone
one could not infer the presence of two trajectories.
However, since the dual-model fit covers a vast
area of the s, { plane and there does appear to be
more than one trajectory contributing in pp elastic
scattering, linear fits to 90°-data may represent
an oversimplification of the underlying dynamics.
The parton-interchange model relates the near
linearity of the 90°-curve to the near dipole be-
havior of the proton form factor and does not pre-
dict that the 90°-curve should be perfectly linear.
When dual-model fits to the [t|>5 GeV? region
are extrapolated back into the region where the
Pomeron contribution is important, it is found
that the dual component accounts for nearly all
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FIG. 14. Comparison of experimental points with the-
oretical dual-model curves for 90° pp scattering.

of the cross section at the ¢t=—1.3 GeV? shoulder
as in Fig. 15. Thus, the Pomeron component is
seen to have a much sharper dip (dashed line in
Fig. 15) than is visible in the data itself. Amaz-
ingly, when the dual contribution is extrapolated
to ISR energies, it still appears to be contributing
at the {=-1.3 GeV? dip (Fig. 13) and determining
how much of the diffraction minimum is revealed.
In Fig. 16 we show curves for an extracted Pom-
eron contribution assuming that the Pomeron is
purely imaginary and using

(&) -(& G
dt Pomeron dt experimental dt, dual ’

Note that the dual contribution to pp scattering is
purely real. It is remarkable that the extracted
Pomeron contributions present the same qualitative
features at low energies as at ISR energies:

dip structure at t~-1, 3 GeV?,
same slope for large t: A=1, 9 GeV ~2.

In order to obtain a fit at all angles® we add an
eikonalized Chou-Yang®? Pomeron-exchange term

TYIY—[ITTII]I]I]T
opL=I9.2 GeV/c  Allaby et al.
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x pL=l9.3 GeV/c  Allaby et al.
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FIG. 15. Differential cross section for pp elastic scat-
tering at p; =19.2 GeV/c. The solid and dashed lines are
the dual and “pure” Pomeron contributions, respectively.

|
o 2

to our two dual terms. Details are given in Ref.
6. The comparison with experimental data at
moderate energies (12-24 GeV) is shown in Fig.
12. For ISR energies, especially for |t|>2 GeV?2,
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FIG. 16. Pomeron contributions at various energies
obtianed by subtracting the dual (normal Reggeon) con-
tribution. Note the dip structure around ¢ = 1.3 (GeV)?
and the same slope for |¢| >2GeV? at all energies. The
solid lines represent a falloff with a slope A=1.9
GeV-2,
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Chou-Yang Pomeron-exchange term gives a too
rapid fall off with ¢ and inclusion of diffractive
dissociation is necessary to describe the data.?®
In addition to the differential cross section the
dual model (with the zero-width resonances
smoothed out'®) together with the optical theorem
was used to fit the pp/pp total-cross-section dif-
ference®” and the ratio of real to imaginary part
for pp scattering amplitude. (See Figs. 17 and
18.) We observe that o(pp) — o(pp) is well de-
scribed for p,, >1.3 GeV/c and the ratio of the
real to imaginary part works well for p >4
GeV/c. The two trajectories of the dual ampli-
tudes were constrained to have the same ¢ which
was found to be ¢ =0.795. Their intercepts were
a,(0)=0.8 and a,(0) =0.37 and the coupling of «,
was found to be much greater than that of ;. One
might speculate that there is a connection between
these two Regge contributions and the ®9t quark
pairing or no pairing possibilities discussed in

o
T 1T
g
||

I
o
w
TT T T T T T 1T

T B B B

(Gevre)

pIub

FIG. 18. The solid curve is the predicted ratio of the
real to imaginary part of the forward pp amplitude. The
imaginary part is computed from the proton-proton total
cross section.

Sec. III. The coupling of the lower-lying effective
parton-model trajectory (with pairing) is ex-
pected (and is found) to be greater than the higher-
lying trajectory.

A different possibility was proposed in Ref. 6.
There the trajectory with the weakest coupling,
a,, was identified with a, and it was noted that
Serpuhkov measurements of 7*p and 7~ p total
cross sections give a, =0.7 which is higher than
the charge exchange value of a, =0.5 and near the
value of «,(0)=0.7. The second trajectory which
couples strongly was identified with the w and the
intercept o,(0)=0.37 is just the conventional value
of the w intercept. With this identification, uni-
versality of w and p couplings turns out to be ap-
proximately true in the range 5 GeV/c<p,, <25
GeV/c. For p,, =12 GeV/c and ¢=0, the ratio of
w to p contributions was found to be 10 as compared
with the expected theoretical value of 9 (Ref. 34).

Arik” has argued for a slightly different parame-
trization of a, and identified it with an exchange-
degenerate w, p, f, and A, trajectory. He takes
q=0.9 for a, so that the spectrum of leading meson
recurrences is more linear and very close to the
observed spectrum.

IV. CONCLUSIONS

In this paper we have attempted to make several
points ranging from the theoretical to the pheno-
menological. In this latter category, it has been
shown that attempts to extract effective trajec-
tories at large momentum transfer from the
presently available (finite-energy) data are model
dependent. This effect arises from the difference
between the two asymptotically equivalent Regge
forms for the energy dependence of the amplitude,
s“or (—#)* A model must be used to assign the
proper linear combination of these forms. How-
ever, it was shown that in the case of pp scattering
the theoretically preferable, s-channel exotic,
(ut) form (- u)** of the amplitude gave a more
energy-independent effective trajectory than the
naive (s¢) form. Thus the data itself can be used
to restrict the possible combinations if it is suf-
ficiently accurate and copious.

The trajectories that were found here for pp
and 7 ~p scattering were not linear. They were
much flatter at large momentum transfers than
the conventional ones. Whether these trajectories
ultimately approach negative constants (which must
be integers if dimensional counting is correct) or
fall slowly (such as in the logarithmic-trajectory
dual model) cannot be answered with certainty
at the present time. The 7~ p data seems to
strongly prefer the flat trajectories of the inter-
change model at large |t|. This reaction also has
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a trajectory shich is definitely higher than that
found in the pp case. This situation could only
occur if there is a cancellation of the leading tra-
jectory in the pp case such as is found to be theo-
retically necessary to enforce factorization and
the proper fixed-angle behavior.!® One should al-
ways keep in mind that the effective trajectories
are just that, and they are expected to vary with
energy due to the contributions from cuts, sub-
sidiary trajectories, etc. This may be especially
important at small {, whereas the large ! limits
should be quite independent of s.

Both the CIM and the LDM agree well in a global
sense with the pp data. However, the detailed
agreement of the dual model is clearly superior.
The effective Regge residue extracted from the
data clearly reflects this fact, since the dual-
model residue prediction is in better agreement
with the data than is the CIM. An additional fea-
ture of both model fits is that the structure of the
Pomeron which is required to fit the “shoulder”
in the vicinity of t~- 1.3 GeV? at intermediate
energies (s S 60 GeV?) is in remarkable agree-
ment with the structure observed at the CERN ISR
in pp elastic scattering.

The overall result of our study of the large [¢|
region for pp and 7 ~p scattering is that there is
strong phenomenological evidence that the forward

and backward coherent Regge regions smoothly
extrapolate to the same fixed-angle behavior in the
central region (6 ~90°). This extended duality is a
strong restriction on the theory and provides
rather unusual and unexpected connections between
Regge trajectories and residues.

We have also found in this work that there may
be a close relationship between the CIM and LDM
and that the latter theory goes over into the former
as certain coupling constants approach limiting
values. It is already well known that there is a
limit in which the LDM goes over into the ordinary
dual model with linear trajectories.

The simple behavior of the data at large mo-
mentum transfers, and the simple interpretation
given in theoretical terms by the CIM and the
LDM should provide an interesting area of study.
Clearly more data is required on more reactions
at more energies at all angles before the validity
of the theoretical ideas used here can be fully as-
sessed. However, the agreement already es-
tablished on a variety of reactions at energies
which range from p,,, ~5 GeV/c to the ISR is
impressive and encouraging.

ACKNOWLEDGMENT

This work was supported in part by the U. S.
Department of Energy.

13, F. Gunion, S. J. Brodsky, and R. Blankenbecler,
Phys. Lett, 39B, 649 (1972) and Phys. Rev. D 8, 287
(1973) give the elastic predictions and theory,

3. F. Gunion, S.J. Brodsky, and R. Blankenbecler,
Phys. Rev. D 6, 2652 (1972) gives the basic inclusive
results; Phys, Lett, 42B, 461 (1973) discusses the in-
clusion of bremsstrahlung and the application to pp—m
at high transverse momentum,

3D, sivers, S. J. Brodsky, and R. Blankenbecler, Phys,
Rep. 23C, 1 (1976).

4p. V. Landshoff and J. C. Polkinghorne, Phys. Rev.D
8, 927 (1973) and J. C. Polkinghorne, in Proceedings
of the Second International Conference on Elementary
Particles, Aix-en-Provence, 1973 [J, Phys. (Paris)
Suppl. 34, C 1-421 (1973)] have criticized and discus-
sed the theory of Refs. 1, 2.

M. Baker and D, D. Coon, Phys, Rev. D 13, 707 (1976)
and 2, 2349 (1970) give the dual model theory.

%D, D, Coon, D, Sukhatme, and J. Trin Thanh V4n,
Phys, Lett. B45, 287 (1973) gives pp elastic considera-
tions., See also D, D. Coon and J., Trén Thanh Vén, in
The Pomevron, proceedings of the VIII Rencontre de
Moriond, Méribel-1és-Allues, France, 1973, edited
by J. Trin Thanh Van (CNRS, Paris, 1973).

™. Arik, Phys. Rev.D 11, 602 (1975) gives additional
phenomenological dual-model results.

®M. Arik, Phys. Rev.D 9, 3467 (1974).

°R. Blankenbecler and S. J. Brodsky, Phys. Rev. D 10,
2973 (1974).

10R, Blankenbecler, S. J. Brodsky, J. F. Gunion, and
R. Savit, Phys. Rev.D 8, 4117 (1973); ibid. 10, 2153

(1974).

Ip, D, Coon and H. Suura, Phys. Rev, D 10, 348 (1974),

12See 1, Muzinich and P, Fishbane, BNL report, 1973
(unpublished) for possible complications, and
M. Schmidt, Phys. Rev.D 9, 408 (1974) for possible
solutions,

137This is what happened in the case of old-fashioned per-
turbation-theory wave functions,

143, Brodsky and G. Farrar, Phys, Rev. Lett. 31, 1153
(1973); Phys, Rev, D 11, 1309 (1975).

15p, Landshoff and J, Polkinghorne, Phys. Rev, D 10,
891 (1974).

16The effective power of 1/(s+m®)? is 12/(1 +m?/s)
which in the kinematic regime of s<60 GeV? varies
from2 10 to 12, as s increases, for reasonable values
of m*,

17A third (su) topology also appears in the naive three-
quark model of the proton. Compared to the ¢ and st
topology contributions, 1/«t?and 1/st?, which is clearly
suppressed in the {-channel Regge region s ~u > ¢,
Even at 90° it is suppressed by a factor of 4 in 7p scat-
tering. Only in the backward direction where it is
comparable to the ut topology need it be included. This
third topology which requires splitting apart the three
quarks of the proton is absent in models of the proton
with pn quark pairing.

18This cancellation is simply understood as a constraint
imposed by the fact that the parton-interchange ‘“Born
term” controls the {— — < behavior of trajectories, in
complete analogy with the situation in potential scat-
tering.



1468 COON, GUNION, THANH VAN, AND BLANKENBECLER 18

%See M, Arik and D, D. Coon, Phys. Lett, 48B, 141
(1974).

203, Kogut and L, Susskind, Phys. Rev.D 9, 697 (1974),

21The data are those of C. M, Ankenbrandt . et al., Phys.
Rev, 170, 1223 (1968); J. V, Allaby, Phys. Lett. 23,
389 (1966) 25B, 156 (1967); 27B, 49 (1968); 288, 67
(1968); 34B, 431 (1971); C. W. Akerlof et al., Phys.
Rev. 159, 1 1198 (1957); G. Cocconi et al., ibid. 138,
185 (1965) This last set of data with the highest s
values is entirely responsible for the s >45 GeV? ¢>15
GeV? region of the trajectory extraction. Its large
error bars have been ignored throughout the present
section. We use only data with p > 3,5 GeV/c in the
following analysis, The pp effecl:lve trajectory analy-
ses do not include the latest ISR data with a moderately
substantial ¢ range. The effect this data would have is
discussed in text.

“2The s dependence was estimated by the following pro-
cedure: The experimentally available s values at any
given t were ordered sequentially. The trajectory val-
ue appropriate to every neighboring pair was then com-
puted. The highest and lowest values were discarded
and the upper limit of the error bar computed as the
average of the next two highest values, with a similar
procedure for the lower limit,

33y, Barger, K. Geer, and F, Halzen, Nucl, Phys. B49,
302 (1972) do the s analysis over a more limited set
of data. A very thorough analysis of the complete
range of data is found in V., Barger, F. Halzen, and
R. Phillips, Nucl, Phys, B61, 522 (1974).

24The 7p data here are those of D. P. Owen et al., Phys,
Rev. 181, 1794 (1969); V. Chabaud et al., Phys. Lett.
38B, 441 (1972); Carnillon et al., Phys. Rev. Lett, 50,
403 (1973); R. Rubinstein et al., ibid, 30, 1010 (1973).
Insufficient 7*p data prevents a similar extraction in its
case,

%5An analysis of pion-nucleon charge exchange has also
been carried out by R. Pearson (private communica-
tion). The leading effective trajectory in this case
has the same general behavior as found above, See
also W, S. Brockett et al., Phys. Lett. 51B, 390 (1974);
and A. Donnachie and P, R. Thomas, Nuovo Cimento
194, 279 (1974).

%6In fact, the inclusive data at 90° requires the monopole
behavior to be valid for off-shell masses as high as 60
GeVZ, No indirect test of this sort exists for the pro-
ton wave function.

', De Kerrett et al., Phys, Lett, 62B, 363 (1976),

%8G, Barbiellini et al., Phys. Lett. 39B, 663 (1972);

A. Bohm et al., ibid, 49B, 491 (1974).

2%y, Sukhatme, Phys, Rev. Lett. 38, 124 (1977); and in
Leptons and Multileptons, proceedmgs XII Rencontre
de Moriond, edited by J. TraAn Thanh Van (Editions
Frontieres, Paris, 1977).

30G, Kane, Phys, Lett. 40B, 363 (1972).

31gee Ref. 1 for details.

32T, T, Chou and C. N. Yang, Phys, Rev, 178, 1591
(1968); H, Moreno and R. Suaya, ReportN_o. SLAC-
PUB-1161, Stanford Linear Accelerator Center (unpub-
lished); L, Durand, III and R. Lipes, Phys. Rev, Lett.
20, 637 (1968); S. C. Frautschiand B.Margolis, Nuovo
Clmento 56A, 1155 (1968); J. Finkelstein, ibid. 594,
92 (1969); A, Capella, J. Kaplan, A, Krzywicki, and
D. Schiff, ibid. 63A, 141 (1969), See also C, Hojvat
and J. Orear, Cornell Report No, CLNS-346 (unpub-
lished).

3P, G. O. Freund, Phys. Rev. Lett. 20, 235 (1968);

H. Harari, ibid. 20, 1395 (1968),

3see, for example, V. Barger and D. Cline, Phenome-
nological Theovies of High Enevrgy Scattering (Benja-
min, New York, 1969).



AKC Aj [C
B (o] B___ D
(a) (b)

FIG. 1, (a) Interchange topology—ut diagram, (b)
Interchange topology—st diagram,



102

% T - F 1 & I F & TJ
p-p Elastic 3
10! Data: Akerlof et al. __l
Allaby et al. 3
Ankenbrandt et al. 3
100 3
0=50 GeVk 3
@:= 7.0
10~ v =100 -
¥ 0. 3
8=12, 3
i ®5 a=14,2 B
o 10 A:14.3 3
- +:16.9 B
@ ©:19.2 ]
EE? 1073 *:193 -
— E - x=2012 E
3|5 F 0:21.3 ]
i e:2|.4 ]
1074 ©:24.0 3
10 ¢ E
1076 = E
o | -
10 E 19 E
C 21 ]
1078 Y I (NN NN N S SN S B N
0O 2 4 6 B8 10 12 14 16 18 20 22 24

-1 {Gev?)

FIG. 12. Comparison of theoretical curves with high-
energy pp elastic scattering data.



| I I I
P = 1074 GeV/ic
5=2016 Geve

10!
x Barbiellini et al.(1972)
109 » Rubbia et al. (1972)
— lo™!
o
3
~ o072
=]
E
bl 1073
10-4
1075
1076 i
| i |
0 [ 2 3 4
-t(Gev2)

FIG. 13. ppdata at ISR energy s= 2016 GeV’. The dual
contribution (solid line) passes just below the dip at
t =—1,3 GeV?, Subtraction of the dual contribution from
the experimental data Eq. (4) yields the dashed ‘“pure”
Pomeron curve.



“ v oW =82k
Fit: M=iP + VAT Jy(RyFD)EP " + (sesgy2[l1-22) + 3]

T T T T T I T T T T | [

Data: Akerlof et al.

|
9 Allaby et al.
Ankenbrandt et al.
109 0:50 Gevie
® = 6,07
8=8.|
10! v =10.0
v=|0.l
8z)2,
-2 a=14.2
& 10 azi43
3 A +=16.9
2 6 ©=19,2
\-'é 1073 +=193
= x=2|.12
b =213
o » 8 e-21.4
107 0:24.0
1075
106
-7
10 19
75— 2l
10-8 P TR

O 2 4 & 8 10 12 14 16 18 20 22 24
-1 (Gev?)

FIG, 10, Comparison of the phenomenological cross
section for the interchange fit [Eqs. (30), (31), (32),
(33)] to the pp elastic scattering data,



FIG, 11, Vector-gluon-exchange contribution to pro-
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FIG. 2. (a) ut and () st vector-gluon-exchange dia-
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FIG. 8. Plots of the ratio of experimental cross sec-
tion to theoretical cross section as a function of ¢ for (a)
Eq. (12a) () Eq. (13) (c) Eq. (12a), modified to have in-
creased (1 —2°) dependence, 1/(1 — 297,
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FIG. 9. (a) Effective trajectory for =°p elastic scat-
tering, extracted using Eq. (29). (b) Corresponding
residue function, As before error bars indicate s depen-
dence of extracted values: ¢ and I¢| in GeV?,



