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A multiperipheral model is used to calculate the full spin dependence of the photon-p-Pomeron Regge
vertex function. Inclusion of both natural-parity (to) and unnatural-parity (vr) intermediate states at the top of
the ladder leads to a pattern of approximate helicity conservation. The model also predicts an anomalous

refractive term. The predictions of the model for the differential cross section are too small when compared
to experiment, however. Photoproduction of te, f, and Q are briefly considered as well.

I. INTRODUCTION

It is universally agreed that diffractive process-
es play a central role in high-energy scattering in-
cluding photon-induced processes; the experimen-
tal evidence is overwhelming. In spite of this
there does not yet exist a realistic, quantitative
theory of diffraction scattering.

In this paper we use the multiperipheral model to
make calculations of some photon-meson- Pomeron
couplings. Our approach is motivated by and is a
logical continuation of the now classic work of
Herman and Drell' who used the multiperipheral
model in a qualitative way to predict and describe
diffractive photoproduction of vector mesons. '

The first part of this work is devoted to a quan-
titative study of the model of Berman and Drell for
yN p'N. We make a full calculation of the spin
structure of the photon and vector-meson lines in
order to compare the model to the vector-meson
density-matrix elements now measured in polar-
ized photoproduction. We find, remarkably, that
when both m and co intermediate states are included
the model tends'toward approximate helicity con-
servation for yN- p'N as observed in experiments.
This comes about through an approximate cancel.-
lation of tt and &o (opposite parity) contributions to
the helicity-nonconserving amplitudes.

The overall amplitude, however, is too small by
about an order of magnitude. This is a common
failure of the multiperipheral model when it'is re-
stricted to pion exchanges along the sides of the
t-channel ladder. It occurs also, for example, in
mN or mm scattering. ' We believe that the inclusion
of higher-lying Regge trajectory exchanges may
correct the normalization discrepancy without los-
ing the tendency towards helicity conservation hand

the other key results which we find. Calculations
of the nucleon-nucleon-Pomeron vertex have been
carried out by Wingate' using the model developed

here. He found, using only pion exchange, good
agreement with experiment for both the spin de-
pendence and the overall magnitude. We do not un-
derstand at this time why pion exchange works well
for the baryon case but not the meson case.

The model used in our work is also related to
that used by Kane and Pumplin4' in their study of
the large-impact-parameter contributions to dif-
fraction scattering. Although these authors dealt
only with hadronic projectiles and did not explicit-
ly discuss photoproduction, their findings and ours
are for the most part in general agreement. One
area of partial disagreement is the issue of s-
channel helicity conservation. The pattern we find
in p photoproduction and Wingate' finds in mN end
NN scattering of a cancellation between the contri-
butions to helicity flip amplitudes coming from
natural- and unnatural-parity intermediate states
is not brought out by the authors of Ref. 4(a). They
point out only that specific individual intermediate
state contributions do not separately conserve s-
channel helicity, a result we find as well.

Care must be taken, however, to distinguish the
class of diagonal and diagonal-like processes re-
ported here and in Ref. 4 for which the phases of
coupling constants are tightly constrained and the
class of off-diagonal processes such as mN A,N
which were the main i.nterest in the work of Kane
and Pumplin. The relative phases of the couplings
for this latter class are poorly constrained and
largely unknown. Hence, approximate helicity con-
servation, for these processes, while possible, is
not compelling.

In addition to approximate helicity conservation
in yK p'N we find that the model automatically in-
corporates in a natural way the Soding-Pumplin-
Bauer mechanism'-' which yields the skewing of
the p' mass distribution observed in experiment.
Our model also predicts an anomalous "refractive"
(e.g., real) part of the diffractive amplitude whose
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existence was first pointed out by Bauer. ' These
topics have bee@ discussed also by Spital and
Yennie, ' and Yennie' from a different but physical-
ly equiva, lent point of view. The anomalous real
parts associated with diffractive production of un-

stable particles are an important feature of the
Pomeranchuk contribution. We also discussyN-
orN in the same spirit as the photoproduction of p'.
The prediction for the overall size of the cross
section again turns out low when only pion exchange
is included.

Another part of this work is devoted to a study of
the photoproduction of more massive mesons. For
the most part we concern ourselves with the over-
all size of the differential cross section, particu-
larly at t=0. One could, of course, work out the
full spin structure as we have done for the p' and

We take up in turn yN -QN and yN - |)I¹For the
latter we employ D, F, D* and F* intermediate
mesons, charmed states which are predicted by
the SU(4) model of hadrons. " The results differ
from experimental results in the same way as our
other calculations. That is, the prediction for the
absolute normalization is low. However, if one
considers only residue ratios the results are more
successful.

H. BASIC EQUATIONS

We begin by setting down the basic multiperiph-
eral equations and philosophy which we use
throughout this paper. Figure 1 shows the multj. —

peripheral "Pomeron" which describes the dif-
fractive process a+ c-a'+ c. In its original
form'"" it was hoped that the multiperipheral lad-
der would be dominated by the exchange (sides of
the ladder) of the lightest mass particles consis-
tent with the quantum number constraints imposed

by the external particles; normally the exchanged
particles could be pions. As a result of extensive
studies of the multiperipheral model it has become
clear' that the exchange of more massive particles
(p, ur, etc. ), indeed entire Regge families, must
also be included. The reason for this is the fact
that these more massive mesons, while generating
t-channel singularities more distant than those
generated by the pion, have Regge t;rajectory in-
tercepts a(0) = —,

' which lie above the pion intercept,
a, (0) = 0.

Neverthele. ss, in the bulk of this paper we will
restrict our discussion to the case of un-Regge-
ized pion exchange along the sides of the multi-
peripheral ladder. This is interesting because:
(i) Pion exchange while not dominant is nonethe-
less an important component in the small t region;
(ii) we are really only using pion exchange for the
topmost sides of the ladder in Fig. 1 since we are
only calculating the Pomeron residue functions and
not the trajectory function itself; and (iii) the heli-
city structure and other features which we find are
physically interesting in their own right and need
not be obscured by details which are special to
Regge exchanges.

The rungs of the multiperipheral ladder in Fig.
1 are low-mass meson states (sometimes referred
to as clusters). We will make the common approx-
imation that the rungs may be taken to. be a stable
hadron or a low-mass resonance. The fact that
the rungs of the ladder are dominated by low-mass
systems is now well established by experiment.
Indeed, the study of the multiparticle final states
which dominate the cross section at high energies
has confirmed the basic validity of the multiper-
ipheral approach and has begun to determine the
basic input parameters. "

Let us first consider the case where the exter-
nal particles a.re chosen according to a = a' = pion
and c= nucleon. Choosing the sides of the ladder
to be pions we may pick R = p(770) [R = e(700),
f(1200), g(1680), . .. are also possible but give nu-

merically smaller answers]. In this form the
model is nothing more than an integral equation for
(off shell) &N scattering as illustrated in Fig. 2..

As is well known' the solution of this integral
equation gives a mN total cross section which falls

FIG. 1. Schematic representation of the multiperiph-
eral Pomeron. The rungs of the ladder are various me-
son states, R. Pions (or the lightest possible particles)
form the sides of the ladder.

FIG. 2. Integral equation xN elastic scattering, some-
times referred to as the multiperipheral bootstrap.
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with energy. In other words, the Pomeron inter-
cept when self-consistently determined as in Fig.
2 lies below 1.

%e, however, may regard Fig. 2 in a different
sense. It may be interpreted as a relation between
on-mass-shell mN scattering and an integral over
off-mass-shell mN scattering folded with the (p-
dominated) I&- mm amplitude. We will insert a
phenomenological model for the off-mass-shell wN,

amplitude which has a physically correct Pomeron
trajectory, a(0) = 1. The output on-mass-shell
amplitude will enjoy the same co&'rect energy de-
pendence with a coefficient, the pion-pion-Pomer-
on (mmP} residue function, which is the .object of
interest. Of course we will only generate a finite
fraction of this residue function since, as de-
scribed above, we are restricting the uppermost
(only) sides of the ladder to be pions. Before pre-
senting numerical results for the special case of
mX scattering we need to establish some notation.

For the general case a+ c -a'+ e we choose mo-
menta and invariant variables as shown in Fig. 3.
Namely,

2 2
kj, kl =p, l

2 2

= fYl 2

FIG. 3. Kinematics of the loop integral for the process
a+a a'+c.

p+ jp
1 x W'p

p

'

)
~ (2 2g)

The variable x is the fraction of the large plus mo-
mentum which flows through the lines q, and q, .
It is useful to scale the two-dimensional trans-
verse momenta according to

s = (k, +p, )' = (k, +p, )' =—W',

t=( k, -,k)'=(
q,
- q)'=(p, -p, )',

s'= (q. +p1}'=(q.+p.}'.

(2.la)

(2.1b)

(2.1c)

(2.2a)

%e are interested in the leading behavior in the
limit s-, t fixed. It is convenient to express
all vectors in terms of their "plus, transverse,
and minus" components" in the overall center-of-
mass system,

p= -'(I -x)'I'&

q= -q/(I —x)'~'.

Note at high energies

f Qr
(I-~) '

S =XS,
2xl

q, =xp, —, , —~p+q),(1 —g)

(2.3a)

(2.2b)

(2.4)

(2.6)

(2.6a,}

~2 le l
1,= (W, +-',&, (2.2b)

and

xl' ~ 2
q, =xp, , — —(p-q) .

(1 —x)
(2.6b}

2 1 r
m1 +

P1 W 12 (2.2c) It is interesting to note that at f = 0, (2.6a) and

(2.6b) tell us that

2 j 2ma +46
P2 gr 'y 2 (2.2d)

~r 1g fr Qr
(2.2f)

p
q, = xW, Q ——,', ' ' —

( } ~l, (2.2e}

q2 —q1 = &(&r - &1 ) r' 0
~

(2.7)

even as s when p, 2'- p, ,'40. Thus, processes
involving large mass changes at the external lines
cannot have both the internal pions simultaneously
near the mass shell.

In terms of these variables the loop integration
in Fig. 3 takes the form

1

f) '[ d d2 df28arRfr'rR rÃ$TR( & Iql & qr )
2 (2w)' )' (l'- p, '} (q

' —m ')(q ' —m ') . (2.6)
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be represented as the product of form factors

4(q ', q.')=&.(q,
' )&.. (q '), (2.15)

whose form we discuss below. Once we have cal-
culated A, .», ,» from Eq. (2.9) we can reconstruct
the full amplitude from

e-Ore(t) + 1 )
M,,„,,„(,f) A,,„,,„(,f) . I . (216)

FIG. 4. The absorptive part of the graph in Fig. 3. The
vertical line indicates the unitarity cut.

where M denotes the invariant amplitude. (We
temporarily assume that a, i', and B are spin-
less. ) Rather than carry out the four-dimensional
integral in Eq. (2.8), it is easier to take the s-
channel discontinuity of Eq. (2.8) and reduce it to a
three-dimensional integration relating absoptive
parts. After carrying this out Eq. (2.8) simplifies
to (Fig. 4)

1 1
A,,», ,»(s, t) = —

( ), ~

dh

2
gar~asr g

2 2A,», ,»(xs, t;q, , q,
(q,'- m, ')(q, ' —m, ') '

a(t) = 1+ (0.3 GeV ')t,

s, =1 GeV',

and P and 5 are taken from experiment

(2.11)

P = s,(r„~(sN) = 64.3,
y =4.7 (geV

(2.12)

(2.13)

(2.9)

and in Eqs. (2.2)-(2.6) we set I'= ps'. Equation
(2.9) is identical to an equation derived by different
techniques some time ago by Bertocchi, Fubini,
and Tonin. "

As a phenomenological model for off-shell mN

scattering we choose

A,», ,»(s', t;q, ', q2') = P~"(s'Is()) ''P(q, ',. q2'),

(2.10)

where o'. (t) is the Pomeron trajectory

Substituting Eq. (2.10) into Eq. (2.9) one sees im-
mediately

( g
A. .. (s, f)= I

—
I pe"y...(f),&So j (2.17)

where the reduced residue function y...(t) is given
by the integral

1

( ) (
~

d& d2 +sgRSa'gs(z)
2 I, (2v)'& q

(q,'- m, ')(q,'- m, ')

1 1

g2, —nl~ q2 —m +tC2 2 2

= p, , -i&5(q, ' —m, ') . (2.19)
(q,'- m, '

The 5-function term contributes a complex part
to y, and hence the overall amplitude, Eq. (2.16),
picks up an energy-independent phase in addition
to the usual signature phase. For the case of dif-
f raction scattering at t = 0 where the amplitude is
normally pure imaginary (diffractive) the 6-func-
tion term in Eq. (2.19) contributes a real (refrac-
tive) part to the amplitude. It is easy to establish
the conditions under which y becomes complex.
From Eq. (2.6b), q,

' = m., corresponds to

"&.(q ')F, (q '). (2.18)

Another feature of general interest is the phase
of the scattering amplitude. For the elastic scat-
tering of stable particles the phase is given entire-
ly by the Hegge signature factor as written in Eq.
(2.16). The reduced residue functions, Eq. (2.18),
are real for t & 0.

When dealing with unstable particles, however,
the residue functions are not always real; this
follows directly from Eq. (2.18). If during the in-
tegration over x and q one should cross the pole at
q,

' = m, '(or q,
' = m, ') the proper prescription is

Note that p is the product at f = 0 of the»&I' and
NNP residue functions,

2
p

2 ~ 2 + p q
2

~ (2.20)

p = y„(o)y„„(o). (2.14)

All of the off-mass-shell dependence in Eq. (2.10)
is contained in the factor Q which we assume can

We may regard Eq. (2.20) as a relation among the
masses. As a function of g and q the left-hand side
is maximized at x, =1-p„/g, and the right-hand
side is minimized at p=q. Hence the criterion for
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a complex residue function is

(2.21)pg+ pg+5Z~ ~

This relation is simply the condition which states
that the decay p, , -R+m, can physically occur,
i.e., p, , is unstable. [Note that the signature factor
prescription given in Eq. (2.16) for constructing the
full amplitude from the absorptive part remains

valid even when the absorptive part itself becomes
com plex. ]

Let us now return to the mN scattering example, .

Fig. 2, and for simplicity specialize to t=0. The
product of the two coupling constants which appea, r
in Eq. (2.18) needs only to be replaced by pm@' ver-
tices (see Appendix A) and the p propagator.
Namely,

(k, —q, )"(k, —q, )"
Pl p

(2.22)

here we use k, =k, and q, =q, . The overall factor of [2] in Eq. (2.22) is a Clebsch-Gordon coefficient com-
'ing from the ping vertices. Thus we have for the mmP reduced residue function,

(2.23)

It is now necessary to specify the form factor
&,(q'). If we simply set E, = 1 the transverse-mo-
mentum integration is divergent. Since the basic
spirit of the multiperipheral model is a, restriction
to the region of low momentum transfers along the

sides of the ladder we must choose I', accordingly.
The elementary divergence (which gets worse for
the cases involving higher spin which we discuss
below) is a signal that all results will be somewhat
sensitive to the choice and scale of cutoff.

0.7

Q.5

0.4

0.5

0.2

Q. .l

0
0 I.O 2.0 5.0

A (GeV/c )

4.0 5.0

FIG. 5. Dependence of.the reduced residue function, Eq. (2.23), on the cutoff mass A~ in the off-shell form factor for
various choices of this form factor.
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We have investigated two choices
(i) square cutoffs

F,(q') = e(~'- iq'- m, 'i) (2.24)

kept only first-order terms in the scattering angle

and
(ii) inverse-power cutoffs

F.«')=('+ lq'-~. 'I«') '&=1»" (2 25)

where A' sets the scale of the form factor. More
complicated choices, e.g. , exponential, Durr-Pil-
kuhn, "etc. , could be made but have no special
merit, at least in our case.

In Fig. 5 we illustrate the sensitivity of the quan-
"tity y„(0), Eq. (2.23), to the cutoff parameter A'

for the above cutoff choices. Results were obtained

by numerical integration on the computer. Note
that if the simple multiperipheral model of Fig. 2

were exact, the result would be y„(f)= 1 for all t.
It is clear that unless A' is chosen ridiculously
large y„(0) is about an order of magnitude too
small. The methods and approximations of Ref. 4a
indicate a deficiency of approximately a factor of
1/30 for this process. For definiteness we will
work with a dipole form factor and A'= 1.0 GeV' in
our subsequent work. Doubling the value of A'

would roughly double the results.

III. p PHOTOPRODUCTION
I

In this section we apply the multiperipheral mod-

el, as developed in the previous section, to make
detailed calculations for photoproduction of p
mesons. Extensive experimental data for the re-
action exists. " In particular we will calculate the
t dependence and the helicity dependence of the

ypP residue functions as well as discuss the mech-
anism which causes the mass skewing in p photo-
production. These calculations extend the pioneer-
ing work of Berman and Drell' who abstracted from
the multiperipheral model the key prediction that
vector mesons should be produced diff ractively but
otherwise used it only for order-of-magnitude cal-

culationss.

In order to calculate helicity amplitudes we need
explicit helicity wave functions for the incoming y
and the final p'. Using the (V', V", V~, V ) notation
of Eq. (2.2) and the same choice of coordinate sys-
tem we have

lsl ls 1 1 &

Eo ~
= -Eo ~

=E2,
7

lyl ls 1 3 i

The normalization is specified by

(3.3)

(3.4)

In addition, helicity matrix elements are defined
as in Ref. 16. For our case of pure natural-parity
exchange one has

Re(p~») = Re[2 (F,*—E,*)E,]/D,

p, , = Re[F~F,]/D,

Im (p,', ) = Re[2 (A,*+A,*)A,]/D,

and

Zm(p,', ) =-',[)a,['- )X, )']/D,

where

(3.5a)

(3.5b)

(3.5c)

(3.6a.)

(3.6b)

The quantities (3.5a)-(3.5c) can be measured
with unpolarized photon beams. The quantities
(3.6a) and (3.6b) require plane-polarized photons.

A. w contribution

We begin with the case considered by Herman
and Drell, R= to(783), Fig. 6(a). The your and ps&a

which is proper in the W-~, fixed-g limit in which
we work. Since our calculations have nothing to do
with the nucleon vertex it is not necessary to spec-
ify nucleon spinors or nucleon helicity indicies.
In effect the nucleons may be treated as spinless.

We denote the corresponding helicity amplitudes
E„+(s,f) by

v t-q(x„=+1)=+ — —,1,+ i, — ), (3.1)
~ m.+

+y I +
7T ~7r

e(x,=+1)=+,1, +i,1 v

2
(3.2a)

e(~ 0) 1 ~ v' f
0 -(t/4+m, ')~~

m ' 2 '' g )'
P

(3.2b)

Note that in writing Eqs. (3.1) and (3.2) we have

(a) (b)

FIG. 6. The two graphs for p photoproduction which
we consider in this paper.
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x E,(q, ')E, (q2') 5 (x —1)6 (q,
' —I,')

6(x —1)6(q,2)
2m p

(3.8)

Substituting helicity wave functions, Eqs. (3.1) and
(3.2), into Eq. (3.7) we obtain the expressions for
M,„„(A:„X„=1), X, =+ 1, 0 which are recorded in
appendix B. Substituting these in turn into Eq.
(2.18) and performing a, triple numerical integra-
tion we find the reduced residue functions yf" i(t).
The results for a dipole form factor, cutoff A'=1.0
(GeV/c)2, are shown in Figs. 7(a)-7(c). Using
these one can construct the full amplitudes from
Eqs. (2.16) and (2.17).

It is interesting to compare with the estimate of
Berman and Drell. They worked only at t = 0 which
means only M,~(1, 1) is nonzero. They assumed
the integration in Eq. (2.18) was dominated by the
region q, '=m, ' and x= 1; effectively,

where the last step is obtained by using Eq. (2.7)
and neglecting the pion mass squared. Hence their
approximations lead to

y" (0) =
4e 16m

" (3 8)

This is also shown in Fig. 7(a).

B. Pion contribution

A second and important contribution to p photo-
production'is the choice R = m, Fig. 6(b). This
was not calculated by Bermap and Drell in their
original work. It turns out to be much more com-
plicated than the e intermediate state but much
richer in its physical content. Numerically it is
about the same size.

To calculate the t contribution to the ypP coupling
we make the replacement in Eq. (2.18),

g„~... -M, (Z„g) =[2]eg„,e(k„g)"(2q, —k, )„&(k„X,)"(2q, —k, )„, (3.10)

where the overall factor of [2] counts both R = v' intermediate states. If we make the replacement &(k„A„)
-k~ in Eq. (3.10) the result is nonzero except at the mass-shell point q, '= p2. Similarly, the p meson fac-
tor is not gauge invariant. This is a problem which frequently occurs when one-pion-exchange approxi-
mations are made in photoproduction. We cure it in a standard way, as follows:

Replace the photon coupling in Eq. (3.10) by

2 2

~'(k„~„)(2q, -k, ).-~"(k„~„) (2q, -k, ), — (3.11)
1

where V is some four vector. The right-hand side of (3.11) is gauge invariant for any choice of V. In our
work the choice V =p, is particularly attractive for two reasons. First we note that the factor of Q, ~ V in
the donominator introduces a spurious singularity into the amplitude at the point ky V:0. The choice V =p,
has the virtue that k, p, -s/2 in the limit of interest. Hence the spurious singularity is at a point far from
the region in which we are applying the model and should not be serious. Second we note the additional
term on the right-hand side of Eq. (3.11) is negligible compared to the first for A.„=+1. It only contributes
to the helicity state X„=0 (which is not present for real photons but possible for virtual photons).

We make a similar change in the p coup. ing except we choose V=p, . Thus the final, gauge-invariant
form we use in place of Eq. (3.10) is

f

2

M„.„(A.„A.„)=[2]eg,e~(k„X„) (2q, - k, ), — ' ' -'" a"(k„X,) (2q2 —k, )„— (3.12)

Evaluating Eq. (3.12) for explicit helicity states
gives the expressions recorded in Appendix B. We
then use Eq. (2.18) to calculate the pion contribu-
tion to the ypP residue functions.

When carrying out the integrations we encounter
the phenomenon discussed in Sec. II. Namely, be-
cause the decay p-&r is allowed physically, the
pole at q, '=m, ' occurs in the integration region,

and the ypP residue function picks up an imaginary
part. (Equivalently, the yN- pN amplitude picks
up a real part which does not vanish as s-~.)

This was first pointed out by Bauer' who used a
different formalism but an equivalent physical ap-
proach. Note that this anomalous behavior does
not occur for the ~ intermediate state since p- war

is a closed channel.
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7T 6

{b) (c)

FIG. 8. Various contributions to two-pion photopro-
duction. Particle lines marked with a double bar are on
shell. The contribution from (a), the anamalous or re-
fractive term, is automatically included in our calcu-
lation of Fig. 6 Q). The contribution (b) is the no-scat-.
tering term and combines naturally with the result from
(a). The contribution (c) is the so-called proper p-photo-
production amplitude. In our model this consists of Fig.
6(a) and the 'parts of Fig. 6(b) in which the p is connected
by at least one off-shell pion.

This same anomalous term is intimately related
to another well-known phenomenon of p photopro-
duction, the mass skewing of the p resonance peak.
The 5-function term associated with the propagator
q,'- m, ' corresponds physically to the exchanged
pion propagating on shell. The situation is illus-
trated in Fig. 8(a) where the double bars denote on-
shell particles. We have also indicated the final
decay of the p meson. The upper-right vertex in
Fig. 8(a) where the two pions combine to form a p
which subsequently decays back into two pions is
merely a representation of w- w final-state scat-
tering. We recognize one term which is not yet
included, the no scattering case, Fig. 8(b).

The contributions from Fig. 8(a) and 8(b)
combine to a simple result. Namely, let M~(l„ f, )
be the invariant amplitude (we suppress all but the
pion momenta) for Fig. 8(b) and M, ' the piece
which is a p wave in the two pions. The contribu-
tion M, (l„f,) from Fig. 8(a) is, of course, pure
p wave. Combining, we have

m 2-m '~

Equation (3.13) was first obtained by Pumplin' who
argued from the physical point of view that the or-
iginal Soding skewing mechanism, which corres-
ponds to using M~' without modification, plus the
direct graph Fig. 8(c), was deficient in that it did
not carry the phase of r-m elastic scattering as
required by unitarity and moreover, involved some
double counting. It is pleasing to see that the mul-
tiperipheral approach we are using leads in a nat-
ural and automatic way to the same conclusions.
For the details of fitting the Soding-Pumplin-Bauer
model to actual data 4e refer the reader to Refs.
8 and 16.

We finally remark that the so-called "proper"
or "direct" amplitude, usually represented as in
Fig. 8(c), is to be identified as the sum of all con-
tributions to yN- p'N except those where the p line
is connected to the nucleons via two Og-the-mass-
shel/ pions. This is also the philosophy of Bauer. '
Note, therefore, that contributions from our cal-
culation of Fig. 6(b) where the p' is coupled via one
(or two) off-shelf pions are to be identified as part
of the "proper" amplitude. Actually in practice
this latter term should probably be split off and
treated separately since it can be rapidly varying
as a function of m„. We have calculated it only at
the point m„= m .

Figures V(a)-7(c) show the contribution of the
pion intermediate state to the various reduced
residues, including the "anomalous" imaginary
part corresponding to the physical m-w state. Also
shown is the sum of the e and pion intermediate-
state contributions.

To illustrate further the special features which
are associated with the open channel kinematics
p - sm we show in Figs. V(a)-7(c) the residue func-
tions (labeled w*) calculated for the diagram in
Fig. 6(b) where the mass of the pseudoscalar par-
ticle in the top rung is increased to m„. The ex-
changed lines remain pions with no mass change
and the couplings are unchanged from the physical
pion calculation.

C. Combined results and discussion

In this part we consider in detail the results
from the previous subsections and make compari-
sons to experimental data. First consider the dif-
ferential cross section.

At g = 0 the combined result of the m and ur inter-
medi. ate-state contributions for the s-~ asymptot-
ic cross section for yN p'N with the coupling con-
stants of Appendix 8 is

= M~'e" cos5, (3.13)
= O. V7 pb/(GeV/c)'

~oper
(3.14a)

where 5 is the p-wave &-r scattering phase shift.
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= (79 a4) p,b/(GeV/c)' .d(r&

dt/ ~„., (3.15)

The experimental cross section decreases slightly
with energy because of contributions from non-
leading trajectories, but any reasonable extrapol-
ation to high energies would give a proper forward
cross section for the Pomeron contributions alone
of (75+ 5) pb/(GeV/c)'. Thus we see that our mo-
del calculation for this piece of the amplitude is
small by an order of magnitude.

The problem with the proper cross section is the
same one we encountered in the model calculation
we made in Sec. II for mN- wN scattering. There
we found that the model, with reasonable choices
for the form factors, gave results for dv/dt which
were small compared to experiment by a factor
-100 (dipole form factor), -].0(monopole form fac-
tor). (Recall do/dt is proportional to the square
of the quantity plotted in Fig. 5.)

In the original Berman-Drell calculation this
shortfall of the. model was not a problem since they
worked exclusively with ratios. In effect their ca1.—

culation corresponds to taking the ratio of our re-
sults in this section for yN- p'N (&o only) to our
results in Sec. II for wN-&N. This ratio com-
pares favorably with the corresponding experi-
mental ratio.

One can ask at this point about the mechanisms
which could bring the magnitude of the amplitude
to the observed value. Among other mechanisms
one could either (a) choose the cutoff mass in the
form factors much larger than A' = 1 (GeV/c)' or
(b) include other intermediate sta.tes on the top
rung of the exchanged ladder (ana, logs to &o and a)
as well as along the sides of the ladder (analogs of
the &). Method (a) would scale up all the real res-
idues in Fig. 7. The anomalous imaginary parts
of the residue functions would also scale up but at
a somewhat slower rate since it is only F,(q, ')
which enters [E,(q, '=m, ') = 1]. Similarly, method
(b) would increase the real parts of the residue
functions and again have a smaller effect on the
imaginary parts since p -2r is the only decay
channel physically open to the p, and hence only

= 2.5 pb/(GeV/c)'
coherent bing.

(0.60 & m„& 0.88 GeV). (3.14b)

As explained above, the "proper" cross section is
calculated from Rey' and y" whereas the coherent
"background" cross section [Fig. 8(a) and 8(b)] is
calculated from Imy'. These values are to be
compared to the experimental value at 9.3 GeV/c
(Phenomenological Soding method of Ref. 16 ad-
justed to the value I', = 130 MeV used in this pap-
er),

26 I
/

& ( I
I I

22—

20—
'c l8—

(b)

l4—
0
o l2
II

IO—

b

0
I.O 2.0

GeV/c
2

3.0 4.0

FIG. 9. The contribution of higher-mass intermediate
vector states (analogous to the co) in p photoproduction.
Curve (a) shows the output when the scale mass in the
coupling is proportional to the intermediate state mass.
Curve (b) shows the output for a constant scale mass.

the subset consisting of subsititutions on the gy
line alone will make further contributions to the
anomalous piece.

Trial calculations indicate that if we increase the
form-factor cutoff A [method (a)] the ypI' residue
functions y, (t) all scale up at about the same rate.
Using dipole form factors it would take, however,
a value of A' in excess of 5 (GeV/c)' to generate
the full experimental cross section in this manner
(cf. Fig. 5). Such a high value for A' seems un-
likely.

Since other intermediate states are certainly
possible one expects some relief at least from
method (b). We approach this questi. on by imag-
ining a spectrum of higher mass vector states in
place of the ~ in Fig. 6(a). As Appendix B shows,
these states, like the +, have a w-p vertex which
requires a scale factor with the dimensions of in-
verse mass. The contributions of the intermediate
states depend on how we treat this scale mass m, .
The most reasonable option, it seems to us, would
be to take m, = p, ~, the mass of the vector inter-
mediate state, while at the same time taking the
overall dimensionless coupling constant to be the
same order of magnitude as g„„. The curve (a) in
Fig. 9 shows that in this scheme do/dt drops very
rapidly with increasing p,„. If on the other hand we
take a constant scale factor m, = m„ instead and
keep the dimensionless coupling the same as g„„
we get the curve (b) shown in Fig. 9. In this latter
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scheme da/dt does not drop as rapidly with p.„;
nevertheless it still seems improbable that there
are enough natural-parity intermediate states to
build up the factor of 10 required to explain the ex-
perimental amplitude.

Similarly, consider heavier pseudoscalar inter-
mediate states in place of the w (top rung only) in
Fig. 6(b). We refer to these as w*. Here the coup-
ling constants are naturally dimensionless so the
question of scale factor does not arise; we keep the
couplings fixed. As Fig. 7(a) shows, for the case
m, + = m„ the contribution at t = 0 of such a state is
only about half of the w contribution itself. INote
that w* states do not contribute any anomalous (im-
aginary) part to y since the decay p-ww~ is ener-
getically forbidden. ] Higher values of m, * would
give still smaller contributions. Again it seems
unlikely that a sufficient spectrum of unnatural-
parity states exists to build up the required factor
of 10 in the amplitude.

Finally consider the exchange (sides of the lad-
der) of heavier mass pseudoscalar states As .the
calculation of K exchange in Sec. IV shows, these
contributions are similarly small. It is our belief,
therefore, that the missing contributions to the
amplitude come largely from replacing the pions
by other meson (Regge) exchanges (p, &u, etc. ) on
the sides of the ladder. For an analysis of the ex-
perimental evidence from multiparticle production
which indicates directly that other exchanges in ad=
dition to pion exchange are required, see Ref. 13.

As remarked above, the model predictions for
the yN -p'N and mN- wN amplitudes are equally
low in comparison to experiment when just pion
exchanges are included on the sides of the diagram
in Fig. 4. We find roughly the same situation in
Sec. IV for or photoproduction. One can conjecture
that this is not an accident but rather has some
deeper significance. This would imply that the
our model could be trusted for amplitude ratios.

If one adopts this point of view, consistency with
the above opinion that the missing contributions to
the amplitude come from Regge exchanges in place
of pion exchanges in Fig. 4 implies that there is an
approximate equality in the ratio of pion and indiv-
idual Reggeon couplings to yor and mp. Namely,

(3.16a)

where the subscript n, denotes a Reggeon coup-
ling. '" Similarly, our picture that s-channel heli-
eity conservation comes about from eancellations
between natural-parity (represented by v) and un-
natural-parity (represented by w) intermediate
states is equivalent to the statement

tions such as (3.16a) and (3.16b) are at all credi.-
ble. Recalling the many approximate patterns
which have been observed among Regge couplings
(exchange degeneracy, f coupled Pomeron, etc.),
one cannot help but speculate that further rela-
tions, such as the above, remain to be discovered.
Presumably the ultimate dynamical basis for such
relations resides in the fact that the w, p, &o,f, etc. ,
are all built from a common quark-anti-quark pair. .

(We have no idea how to formulate an actual proof. )
The second of the relations given above, Eq. (3.16
b), seems particularly attractive if one accepts
the conventional wisdom that the Reggeized multi-
peripheral model is a good first approximation to
multiparticle production at high energy and the px-
perimenta/ fact of s-channel helicity conservation
for diagonal and diagonal-like diffractive process-
es. Namely, as observed here and in Ref. 4(a),
individual intermediate-state contributions do not
conserve s-channel helicity, hence some kind of
cancellation must in fact be the case. The picture
that cancel&ation in helieity-flip amplitudes comes
about trajectory by trajectory as stated by Eq.
(3.16b) seems more natural than the only alterna-
tive which would have the sum of all natural-pa, rity
contributions to a given helieity-flip amplitude for-
tuitously cancel against the sum of all unnatural-
parity contributions. Again, however, we can offer
no actual proof Bt this time.

Next let us consider the model predictions for
the density matrices. The existing experimental
results (Ref. 16) for the p photoproduction density
matrices include (unavoidably) both the "proper"
and "coherent background" contributions. One
must calculate the corresponding theoretical com-
bination.

Let E(s, f) be the proper amplitude and zR(s, f) be
the anomalous contribution calculated above at
m„=m~. 'The. qunatities y& and Re@& determine F;
Imy', determines A. The discussion presented a-
bove showed that the full Feynman amplitude for
yN &&X is

M(s, t,m„, 8„y,) =g 6' (s, f, m„)M'(8„y, )

ei6 / e66
= F "" +Z

~I"pm'
+ "( I'pm, .

(3.17)

where M" (8„$,) is the invariant matrix element
describing the decay p-w'(l, )+w (l, ), X is the heli-
city ot the p, and 8„$, specify the direction of w'

in the p rest frame. (For convenience we suppress
the helicity label for the incoming photon. )

The full differential cross section is accordingly
(3.16b)

The question becomes, therefore, whether rela-
dm'd'cr=g P" ' "(dP, ~M" ~') (3.18)
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where Q, is the two-body phase space for p decay.
Note

-m r.e"sing = 2 2m„-m, +im, I'~
(3.20)

d, ~" '=2mp~p. (3.19)

We use Breit-Wigner forms for the phase shifts;
namely,

m '-m'
e"cos5 = m„' —m, '+im, l",

with a constant width, 1",=130 MeV.

(3.21)
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FIGr. 10. Density-matrix elements as defined by Eqs. (3.5) and (3.6) in the text. The curves marked or (n) are the pre-
dictions if only the or (n) intermediate state is included —see Fig. 6. The curves marked or+7( are the predictions for
the coherent sum. Note the cancellations between terms coming from 7( and or intermediate states. The experimental
data are from Ref. 16.
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%hen one squares the amplitude P to calculate
the cross section and the density-matrix elements,
one encounters sin'5, cos'5, and sin5 cos5 terms.
The results reported in Ref. 16 correspond to the
mass rarige 0.60-m. ,„-0.88 GeV. For this range

J=— dm ' =0 61,cos $

p iSp

K=- d
2sin5 cos5 =0 06m«&I' mP P

(3.23)

(3.24)

dm«' = 0.71,
sin'Q

pmp
(3.22)

Thus the experiment density-matrix elements
should be compared to simple generalizations of
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FIG. 11. Density-matrix elements as in Fig. 10 except that a heavy-mass unnatural-parity x* contribution has been
included. The theoretical predictions are those of the model after the ~ and m* amplitudes have been multiplied by 1O

and the x amplitudes by 1 for the reasons discussed in the text.
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Eqs. (3.5)-(3.6),

(IF, I'I + IB, I'J+ 2 Re(E,*B,)If')
Q(F, l'I+ tIt, t'J+2 Re(E,*a,)If)
i~1

and similarly for the other elements.
The model predictions are shown in Fig. 10 along

with the 9.3 GeV/c data from Ref. 16. The striking
feature is the substantial cancellations between the
natural-parity (a&) and unnatural-parity (n) contri-
butions in the denisty-matrix elements which cor-
respond to X,4 X„.

Since the proper amplitude generated by our mo-
del is roughly an order of magnitude smaller than
the experimentally observed proper amplitude it is
difficult to draw meaningful conclusions from Fig.
10. (The coherent background is about the correct
size, however. ) As mentioned earlier it is quite
possible that when additional contributions to the
proper amplitude are found the anomalous parts
will not be changed much from the values shown in

Fig. V. To illustrate the effect on the density-ma-
trix elements we have recalculated them after mul-
tiplying the reduced residue functions y& and y&' in
Figs. 7(a)-7(c) by 10 and the pion contributions,
Rey

&
and Imp& by unity. The results are shown in

Fig. 11. Again one sees a strong pattern of cancel-
lation between natural-parity and unnatural-parity
contributions in helicity-nonconserving terms.
(This feature is also observed in Ref. 4 for the nu-

cleon-nucleon-Pomeron vertex. } One notes that
the elements involving zero helicity have the wrong
sign compared to experiment. This could easily be
changed by a slight variation in the enhancement
factors for natural- and unnatural-parity inter-
mediate states. However, our purpose here is
only to emphasize the smallness of these elements.
We believe this cancellation is general property
and offers an explanation of the approximate heli-
city conservation observed in Pomeron dominated
two-body processes.

This pattern is, of course, already evident in
Figs. 7(b) and 7(c). Note that the w* and ur helicity
flip contributions have everywhere the opposite
signs. It is interesting to note, however, that for

~
f

~

s 0.5 GeV' this is not the case for the w and v
contributions. This situation ig another conse-
quence of the open-channel kinematics of p- mm.

For
~

f
~

6 0.5 GeV', the dominate contribution to
Re@, , comes from integration regions in which the
propagator q,

' —m, ' takes on positive (timelike)
values. For larger f, negative (spacelike) values
dominate. Note that ~t

~

=0.5 GeV' is also the point
at which Imy', , cease to grow. When the top rung
is &* in place of &, q, —m, is always
negative.

I
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FIG. 12. The only low-mass intermediate-state con-
tribution to co photoproduction.

IV. u PHOTOPRODUCTION

Figure 12 shows the diagram which is analogous
to the v intermediate state in p' photoproduction.
It has an isospin weight of three compared to the
corresponding amplitude for p' photoproduction.
Otherwise the calculation is precisely that of p'
photoproduction with a change of coupling constant.
Namely,

(4 1)

(b)

FIG. 13. Some higher-mass contributions to co photo-
production.

Taking the yN „-p'N ampli. udes from Fig. 7 we find
at f = 0 and v cross section by this channel, do/dt
=0.28 pb/(GeV/c)', compared to the high-energy
experimental value" of -12 pb/(GeV/c)', typical
disagreement for the model.

The intermediate state analogous to the ~ in p'
photoproduction would be an isospin-l, G-parity-
even, pseudoscalar meson. A low-lying state with
these quantum numbers does not exist, hence the
density-matrix elements of e photoproduction by
the above channels will be those corresponding to
the co intermediate state in Fig. 10. Presumably
higher-mass contributions would redress the bal-
ance and reestablish approximate helicity conser-
vation.

We can also test the effect of higher-mass inter-
mediate states as well as states on the sides of the
ladder in this process. Figure 13(a) and 13(b) show
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two more contributions to v photoproduction, an-
alogous to Fig. 6(b) and 6(a), respectively. Using
SU(S) values for g„»» (see Appendix A) we find, for
example, that if we take the cutoff parameter as
1 GeV' in a dipole form factor, do/dt (yNF»)
=0.001 p,b/(GeV/c)'. The sharp dropoff with mass-
es of intermediate particles is typical. Computa-
tion of pN ~wN gives a similar, very small result.
A more proper calculation would treat the sides of
the ladder as Hegge exchanges. Those with inter-
cepts greater than zero are undoubtedly the im-
portant ones.

D(F)

D(F}

D(F)

y
o"{v')

D{F) O(F)

(a)

K K

(b) (c)

FIG. 14. Contributions to $ photoproduction.

V. P AND f PHOTOPRODUCTION

The case of P photoproduction may present an
especially interesting test because the reaction is
thought to proceed purely by Pomeron exchange;
Fig. 14 shows three contributions to p photopro-
duction which are sizable.

We study only the size of the forward cross sec-
tion here, and give the value of this quantity cor-
responding to the three graphs separately, rather
than the coherent sum. We use values of the coup-
ling constants given in Appendix A. Corresponding
to graph (a) we find dg/dt = 2 x10 'pb/(GeV/c)' (a,

low value which results from the very small Q - vp
branching ratio); to graph (b) do/dt = 0.03 p, b'/(GeV/
c)'; and to graph (c) do/dt = 4 &10 'pb/(GeV/c)' (in
this case the low value is associated with the large
Z* mass). The major contribution thus comes
from Fig. 14(b); it is the typical value of -100
small compared to the experimental value for P
photoproduction" of do/dt= 2 y,b/(GeV/c)'.

Figure 15 shows a similar set of graphs for the
photoproduction of the ( meson. Because of the
large D, D*, E, and I'* ma. sses, both the contri-
butions from Figs 15(a) and (c) are strongly sup-
pressed. Using a form factor cutoff A'=1 (GeV/
c')' as in all our previous work, do/dt for Figs.

(b) (c)

FIG. 15. Contributions to g photoproduction.

15(a) and 15(c) are each =10 ' pb/(GeV/c)'. One
might argue that for such states we should use a
larger cutoff value. However, increasing this val-
ue to A'=4 (GeV/c')'increases the cross section
only by a factor of -6 ~10'", entirely inadequate.
Figure 15(b) is not dynamics, lly suppressed as
strongly and is dominant. However, the small

2m branching ratio has its effect, so that the
contribution of Fig. 15(b) is do'/dt =2. ?5&10 '

p, b/
(GeV)'. One can comps. re this to the experimental
value" of 50&10 '

p.b/(GeV)', again the model re-
sult is a factor of =200 small.

VI. SUMMARY AND CONCLUSIONS

We have shown that a simple multiperipheral
model of diffractive p photoproduction with pion ex-
change contains many of the features observed ex-
perimentally: approximate heli:city conservation,
skewing of the p-meson mass distribution (Soding-
Pumplin-Bauer mechansim)5 ' and an anomalous
real part of the yN- pN diffractive amplitude
(Bauer effect). ' However, as in-the original work
of Drell and Berman' the absolute normalization
of the amplitude is low compared to experiment by
a factor W-10. If one wants to retain the concept
of multiperipheralism at all, the missing contri-
butions presumably must come from multiperi-
pheral-type diagrams where the exchanged pions
are supplemented by th@ exchange of Regge trajec-
tories corresponding to the vector and tensor
mesons.

Generalization of the model to v, P, and g photo-
production show a, similar shortfall of the theoret-
ical predictions compared to experiment. Further
calculations using the complete set of possible
Regge exchanges in addition to the pion exchanges
considered in this work would be very interesting.
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APPENDIX A

a
l~ " =10.2

4n 4nn) 4m
(Al)

where we have used f,'/4 v2. 56 from e'e —p' data
and g„, '/4v = 0.029 from the partial width for the
de'cay ~7T

Recently the yartial width for p" m +y has been
measured" by means of the Primakoff effect. The
results of this experiment give g~„'/4v = 0.0013

In this Appendix we compile for convenience va-
rious coupling coristants used in this work. A larg-
er review is provided by Ref. 18. In some cases
the couplings are directly measured (in magnitude),
while in others they must be deduced from other
data and theoretical input. Those couplings which
can be obtained from decay widths are given in
Table I without comment. We discuss the others
below. In each case the choice of momentum is
that indicated in Fig. 16.

The coupling g„„can be obtained from the mea-
sured value for g,„by a, simple vector-dominance
argument"

FIG. 16. Momentum and particle labelings for the cal-
culation of coupling constants.

which, when combined with vector dominance and
the value f„'/4v =18.4 from e e'- |d, implies

/f a a
'/4v

i4me 4m
(A2)

A'"
I =13.3.

4v 2 4vai (4m~& 4ir &
(As)

This is about a factor of three smaller than the
above estimate, (Al). It is not possible to say at
this time whether this indicates a substantialbreak-
down of vector dominance or anexperimentalprob-
leIQ

The w' lifetime provides a useful consistency
check. If vector dominance is assumed, "

TABLE I. Definition of the vertices and numerical values for the couplings used in this
work.

p0

Coupling

Sp~dp(p)(k&-k )" 120

r, „(MeV)
2

Ea bc

4z

2.56

X0 ~„, ,~~(p)p% &(k2)k, ' 0.87 + 0.05 2 9 x10

p0, +
gpsy

m '~ »'"@)p""(2)k2' 0.35 + 0.10 x10

p0, %

x0 v e k II d~(k )k~g~~(k )pvy6 f f 2
p

e „&e&(p)p%&(k2)k»

g~~~e „(p)(k) —k2)"

~@p~ e„~ &~t'(p)p%&(k2)k&~
m@

„(p)(k,—k2) u

(7.9 + 0.4) x10-6

EQ. (A1)
Eq. (A2)
Eq. (A3)

1.9 + 0.1

0.7 + O.l

+10 '

3 0 x]0 5

10.2
3.3

13.3

1.5

0.08

Not used in calculations. Instead, the vector-dominance value 4.0 x10 is adopted. See
text for discussion.

Used in calculations.
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2
gPl' t]]1 23 6

4m
(A4)

However, his analysis needs modification if the
p(1250) resonance suggested in Ref. 22 is con-
firmed.

As a working value we adopt in this paper the
value of g„~ given by Eq. (Al) and listed in Table
I. Moreover, we adopt the phase implied by vec-
tor-meson-dominance, namely, g~~„„is posi-
tive. This assures that the amplitude for yp p'p
has a Positive imaginary part at high energies and
t =0.

Another group of coupling constants involves
kaons as intermediate states. From SU(3) sym-
metry, we have

Another estimate has been given by Renard"
from a fit to data for the process e'e -~'+m'. He
obtains

,2A'rr» &2zoz*o
I

&«( =4 Ox 10 ',
4 4~ ]

&or»z 1 g 222

4w 2 4g (AV)

The experiment 1 value of gyEOEko' is roughly 21

the SU(3) value given above; the former is the val-
ue used in the text.

We also require the couplings of the g/J' particle
to the charmed mesons. SU{4) symmetry gives

1(g»~ = g~»
I
=-]~"' 1=1.28,4]]' 4w l 2&4m' )

ge()E22E
(

+((112)2D
( )

8 (2
( S 1

2 ( 2)

2&4v i

(A8)

(A8)

APPENDIX 8

Here I', D are the 0 and F*,D* are the 1 charmed
mesons defined in Ref. 10.

1g2)rz 1 g(2«
~ 0 84

4~ 4 4v i

&Mr2~ 1
~

&Mp

4v 4 & 4v ) (A8)

Denote by M, „„(]).„](~)the numerator factors for
p photoproduction with an &u(V83) as the top rung
of the multiperipheral ladder. Direct evaluation
of Eq. (3.7) gives

M (1 1)= 2'«g2«{-a +—'(a —a )q*(-zt)'(" ——'(a +a )zt+ —'a,t+—'a (z[(q*)'~(q')']+ —'z't)), (al)

M,„„(1,0) = "", .""( v'at+ —,'a, (q"W-z+ —'v' tz)(m '+t-)

+ 2a,v'-t
~ m, '—+- ~z — —(q")'- {q")2+q"{-zt)'(' ——,'a,2(- t (m, '+t)

t m 2
——,'a, (q*v(z+ —,'zv'- t) mp'+ — z - " —(q")' —(q")'+q'(-zt)'~'

e

(a2)

M,„„(-1, 1)= « ';" (-—,'(a, —a,)q"(-zt)'(' +-,'(a, pa, )zt -ka4t -za, ([(q")' {q")']z+-,'z'tj),

where z =1-x and from Eq. (3.12) are

4a, =2m '(m, '-t)- (m„'-q, ')(m, '+m„'-q, '),
(a4)

4a, = 2(m, '+ m„' q,'),
4a, = —2(m„' —q, '),
4a4 ——4m

4a, = —2(m, ' t) .

(as)

(ae)

(»)
(ae)

The numerator factors for p photoproduction with
a pion as the top rung of the ladder as calculated

and

Me,'„(1,1)=[2]e(;...I2[(e*)'e(e")']*+2e'j, (212)

M2«'(0, 1) = -[2]eg«,
x (m,2(2z (1 —2x)[q" +—,' (-tz) '~ ']],

(a10)

«e

Mee(-1, 1)=[2]eg,I-2e (2*)' —(2")' — j .
(a11)
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