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The dynamics of the nonlinear massless scalar field described by O = 4r0? is numerically studied in the
Schwarzschild geometry. It is found that such a scalar field is entirely radiated away during the gravitational
collapse of a scalar charged star. Sawyer has argued that a quantum fluctuation can give rise to a quasistatic
component of the scalar field which will trap subsequent scalar radiation and grow to a singular field. A
phenomenological model used to study this situation leads to no such singular growth. All results, in fact,
suggest that the dynamics of weak nonlinear fields in a black-hole background is qualitatively similar to that

of linear fields.

I. INTRODUCTION

Linear fields (solutions of linear field equations)
treated as first-order perturbations on a Schwarz-
child background have been extensively studied
and much is now known about the dynamics of such
fields; in particular, it is known that during gra-
vitational collapse such fields do not develop sin-
gularities at the event horizon » =2M. (We use
here units in which ¢=G =1.) Nonlinear field equa-
tions such as O¢ =42%3, which in the Schwarzs-
child background becomes
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describing a massless self-coupled scalar field
may, however, describe fields having qualitatively
different behavior from those described by linear
equations., We use Eq. (1) here to study this pos-
sibility, especially the possibility of the evolution
of singularities.

Recently, Sawyer® has used Eq. (1) as a model
in considering the relevance of nonlinear couplings
between fields in the Schwarzschild geometry, and
we rely extensively here on his analysis. He has
found that there is a static spherically symmetric
solution to Eq. (1) which near the event horizon
behaves as

®, = (32\M )Y/ 2(y — 2M )1/ 24 less singular terms.

(2)

Sawyer has described the interesting consequen-
ces if such a singularity should develop. These
have led him to raise the following questions
which we attempt to answer here:

(i) Will gravitational collapse of a scalar charged
star lead to the evolution of a scalar field, de-
scribed by Eq. (1), which becomes singular at the
event horizon?

(ii) Sawyer argues that ¢, of Eq. (2) contributes
to a potential barrier for radiation outgoing from
the event horizon. Can a quantum fluctuation of
&, singular near the event horizon, act as a trap
for outgoing radiation so that subsequent radia-
tion leads, because of the nonlinearity, to the
development of the singular solution of Eq. (2)?

II. EVOLUTION DURING COLLAPSE
A. *‘Classical” collapse

To answer the first question we numerically
study a spherically symmetric scalar field evolving
according to Eq. (1) for ¥(r,¢)=rd(r,1):

v - 2M
-9, t,t+w.r*.r* T

(2My +4xry?), (3)
where 7, is the tortoise coordinate defined by 7« .
=7+2M In(»/2M - 1) = 4M. In choosing the initial
values of the field from which to start the evolu-
tion, we satisfy two conditions. First, outside

the star we choose ¢ to be a static solution to Eq.
(3) so that & , ;=% , =0 on an initial ¢=¢, = constant
hypersurface. This guarantees thatbyour choice of
initialfield values we do not somehow imply the pre-
vious existence of a configuration which is not physi-
cally meaningful. The second conditionto be satis-
fied is that the fieldbe well behaved on the stellar sur-
face. For our purposes, it is not necessary to
specify the details of the collapse; it is sufficient
here to require that 8% /87 be finite for all 7 on

the stellar surface where 7 is the time as measured
by an observer comoving with the stellar surface.
This condition is satisfied by choosing & such that?

®=a+bexp((r, -t)/4M)] (4)

on the null ray which asymptotically is arbitrarily
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close to the stellar surface (see Fig. 1). The con-
stants a and b are determined by demanding that
® and ¢ , be everywhere continuous.

The result of the numerical computation (see
Fig. 2) is that for late times in the region ¢> 7,

Yo, 1)~ f(r)/t,

where f(r) <7 is the static solution of the linear
(A=0) problem which is well behaved at v = 2M.
[This is to be compared with the result from the
linear problem® y —f(r)/t2.] Since all 74 lie within
this region for late enough times, we conclude that,
like the linear field, the nonlinearly self-coupled
massless scalar field is entirely vadiated away
during stellar collapse; no singularity develops.

B. Collapse with outgoing radiation

In the above calculation we have not included any
effects that may be produced by the Hawking radia-
tion that should be present. Because of the non-
linear nature of the problem, the following question
arises: Can the field which is present due to the
collapsing scalar charged star trap, through the
nonlinear self-coupling, the outgoing radiation
arising from the Hawking process to build a sin-
gular field? We now attempt to answer this ques-
tion by using a classical model of Hawking radia-
tion in the hope that it will embody the essence
of the physical problem.

We model the Hawking radiation by replacing
the previously chosen surface field values with
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FIG. 1. The collapse problem pictured in 7,,¢ co-
ordinates. The ingoing null ray is chosen to intersect the
t=t,=constant hypersurface at »,=0 (»=4M). On this
null ray & ~a+ b expl(r, - t)/4M)].
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FIG. 2. Results of the collapse calculation of ¢ in the
region t>>»_ at various values of 7,. The static ex-
ternal field is chosen here such that at 7 «=0, &
=(16MAY2) "t gt ¢= ¢,

& =a+bsinfc(t -7,)] (5)

along the ingoing null ray approximating the world
line of the stellar surface. Here a and b are again
determined from the continuity of & and ¢ ,. We
choose the parameter ¢ to be of the order of M"!
and the initial external field values to be such
that the continuity conditions give a value of b to
be of the order M~!. These choices reflect the
appearance of Hawking radiation® to a distant ob-
server as determined by the linear (A =0) theory:
Hawking radiation is outgoing radiation having a
blackbody frequency spectrum peaked around
w~M! and having an amplitude of the order of
M,

Numerically evolving the field as before, we
find that the effective potential barrier located
near 7 =3M reflects some of the radiation which
is being fed into the region of interest by Eq. (5).
This reflected radiation then freely propagates
without distortion into the developing black hole
without accumulating anywhere and thereby without
growing to a singular field (see Fig. 3). By chang-
ing the value of ¢ in Eq. (5), we find that there is
a change in the proportion of the radiation that is
reflected, but there are no qualitative differences
in the results.

III. QUANTUM SEEDING

Consider a component of the field &4 as a small
fluctuation about the static solution of Eq. (2). To
first order in these small fluctuations, Eq. (1)
gives us
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where 7, £, 6, and ¢ are the usual Schwarzschild
coordinates.

Sawyer argues that nonlinear couplings between
fields should serve to prevent the buildup of a
singular field where a singularity is predicted by
“classical” field equations which do not include
these couplings. The self-coupling (the A&3 term)
in Eq. (1) does not, by itself, limit field strengths.
To prevent such singularities, couplings of the &
field to other fields must be invoked. In Eq. (6)
above, the Heaviside step function H(r, — 7,x) is
used to model phenomenologically the effect of
these couplings of the & field to other fields,
couplings which presumably serve to limit the
strength of the & field for 7, <7y x.

It is inconvenient to use Eq. (6) as it stands due
to the presence of &, which must be determined
numerically from the static version of Eq. (1).
Instead we approach the second question posed at
the end of Sec. I by numerically evolving the radia-
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FIG. 3. Results of the collapse-with-outgoing-radiation
calculation. Here the frequency is chosen as c=(8M) 1.
Plotted is the locus of positive peaks of ¢, as determined
along ¢+ v, = constant characteristics, as a function of
t=7,. Large positive values of {- r, correspond to the
region of the event horizon.
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tion-like field ¢4 according to
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(We consider only the spherically symmetric 1=0
case.) The effect of V{})(r) in Eq. (6) is to trap
and reflect outgoing radiation; the simplified ef-
fective potential V. (») in Eq. (7) differs signif-
icantly from V{)(r) for large positive r, but should
embody the essence of the physical problem.,

As in the case considered above in Sec. IIB, we
choose initial field values &g =1 — cos|(r, —¢)/8M]
on the ingoing null ray and &4 =0 outside of the null
ray on a ¢ =1, = constant hypersurface. The result
of the numerical computation is that g is every-
wheve sinusoidal with no singular evolution at
late times. Figure 4 shows a plot of the locus of
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FIG. 4. Results of the linearized “quantum seeding”
problem described by Eq. (7). This plot is the locus of
positive peaks of ¢, as determined along ¢+ 7, =constant
characteristics, as a function of ¢-7,. The frequency
of the radiation on the ingoing null ray is (8M) ! and
the value of 7,, in Eq. (7) is chosen to be —100M.
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positive peaks of ¥4, as specified along a curve
where ¢ +7, = constant, as a function of ¢ - 7,. This
figure shows that ¥4 not only does not grow to a
singularity, it does not even become large enough
to violate the conditions of validity of the lineariza-
tion procedure which led to Eq. (6).

In order to gain some insight into this, we have
studied analytically the very similar problem in
which V{}(r) in Eq. (6) is replaced by the square
potential barrier defined by

0, 7,<7ox
Voox)= < @%, 74>7x butr(r,)<3M (8)
0, r(ry)=23M.

The evolution problem now is just the familar bar-
rier penetration problem of elementary quantum
mechanics with different boundary conditions. I
one considers the Fourier transform of §g defined
by

o
¢’Q=f flr, wetdo, ©)
one can show that, for physically meaningful
boundary data, the poles of f(7, w) all lie in the
upper half of the complex w plane. The consequence
of this is that §g can be expressed as a sum of
terms each of which dies off exponentially in time

plus, if one chooses the boundary values properly,
terms which are pure sinusoids.

IV. CONCLUSIONS

The study described above, of the evolution of a
nonlinear field in a black-hole background, cannot
be considered complete. Three shortcomings es-
pecially should be noted: (i) Hawking radiation is
a quantum phenomenon and a classical analysis
may not be adequate to answer the physical ques-
tions; (ii) the phenomenological model used in Sec.
III for quantum seeding might not be, even qual-
itatively, correct; and (iii) only one particular
nonlinear field theory [that of Eq. (1)] has been
considered. The results, however, do seem to
suggest that singularities of nonlinear fields do
not develop at the event horizon, and that nonlinear
fields which are initially weak evolve in a manner
very similar to that of linear fields.
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2This particular scenario is the one which Sawyer be-
lieves to be the most likely to lead to the evolution of a
singular field. He shows that if near the event horizon

®(r,t)= b(t)(r-2M) /24 less singular terms,
and if there exists an energy dissipation mechanism

which is proportional to (9%/91)%, then for late times
b(t)— £ 42 1/% as t—e, Thus, for an arbitrarily

small initial value of b, & may grown to a value char-
acteristic of the static solution ®.(7) of Eq. (2).

3For a more detailed account, see R. H. Price, Phys.
Rev. DE, 2419 (1972).

4The “temperature” of a mass-M black hole is T ~#/kM,
which implies that the frequency spectrum of the radi-
ation be peaked around w~ M 1; and in order for the
energy flux of the scalar field #(V®)? to be consistent
with 074 the amplitude of the radiation must be of the
order of M 1,
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FIG. 1. The collapse problem pictured in »,,t co-
ordinates. The ingoing null ray is chosen to intersect the
t=t,= constant hypersurface at »,=0 (»=4M). On this
null ray & ~a+ b expl(r, - 1)/4M)].
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FIG. 2. Results of the collapse calculation of ¥ in the
region ¢>> », at various values of »,. The static ex-
ternal field is chosen here such that at 7,.=0, ¢
=(16MAY2)™ gt 4= ¢,
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FIG. 3. Results of the collapse-with-outgoing-radiation
calculation. Here the frequency is chosen as c¢= (8M) 1.
Plotted is the locus of positive peaks of ¢, as determined
along ¢+ »,= constant characteristics, as a function of
t=7,. Large positive values of {- v, correspond to the

region of the event horizon.
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FIG. 4. Results of the linearized “quantum seeding”
problem described by Eq. (7). This plot is the locus of
positive peaks of ¢, as determined along {+ 7, = constant
characteristics, as a function of t-7,. The frequency
of the radiation on the ingoing null ray is (8M) ! and
the value of 7,, in Eq. (7) is chosen to be -100M.



