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%e show that the Prasad-Sommerfield solution for the 't Hooft monopole can be transformed to an exact
time-dependent solution (vrhich is singular on the light cone) of the SU(2) Yang-Mills-Higgs system.

The purpose of this note is to describe a hitherto
undiscussed feature of the Prasad-Sommerfield'
solution for the equations of motion for the 't Hooft
monopole, ' namely, a transformation of this solu-
tion to an exact time-dependent solution for the
SU(2) Yang-Mills-Higgs system, which is singular
on the light cone.

For convenience we use the notations and con-
ventions of Ref. 1. Specifically, the Lagrangian
under consideration is

I FPvcFn liiya }la + & +a(~a ~a )
I ~(ya ~a)2

r '(ff, „H„-,) = 2ffff' +—, (H' C'r'e),
6'

C = ge/WX

8
H, , =—ff(r, t}, etc.

For v=0 from Eq. (5),

r J, „„=RZK

For v=1, 2, 3 from Eq. (5),

r'(Z, „,-Z„,) =If(IP-1)+K(e'-Z'),
«) t.=J t ~

J K+2K J =0.

(14)

(15)

(16)

(17)

The equations of motion for the Lagrangian (1)
read

~ Pyva ~abc FPvb~c + gbclIub ~g
P 'V

Since Prasad and Sommerfield look for static solu-
tions, in their paper (16) and (17) reduce to identi-
ties and thus do not appear.

Let us consider the subsystem (16), (17) first.
From Eq. (16),

(ia)

where f and g are arbitrary functions of the re-
spective variables (sufficiently differentiable, of
course). Now since the boundary condition for 4
ls

g(r, f), „= const,

In order to solve the system (4}, (5}we start by
making the ansatz

P' =r"'P(r, f )/(er),
A.;=r'Z(r, f)/(er),

~; = ..., r,. [I -Z(r, t)]/(er),

(7)

(6)

(9)

and thus are left with

J(r, i) =g(r) .
Using (21), Eq. (17) reduces to

K, t 4=0,
whence either

(21)

The ansatz (7)-(9) goes beyond the ansatz of Ref.
1 insofar as we allow the functions H, 4, and K
to be time dependent. Inserting (7)-(9) into (4),
(5) we get the following:
From Eq. (4),

(24)

~e choose (24) since we are interested in time-
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dependent solutions for K(r, t).
Following Ref. I, we consider the limit X-0

("vanishing potential" ), C fixed so that altogether
we are left with a system of two nonlinear coupled
partial diff erential equations:

r (K, „„-K,„)=K(K —1}+KH',

r '(H, „,—H, «) = 2HK' .
(25)

(26)

(K& rr Ki tt) = y Ki yy &

+ (H&rr Hatt) y Hiyyi

(27)

(28)

since then (25) and (26) assume the form of the
(static) Prasad-Sommerfield equations with r y. -
Therefore a solution of (25), (26) is given by

K(r, f ) =K(y) = (Cy)/sinh(Cy),

H(r, t) = H(y) = (Cy) coth(Cy) —1 .

(29)

(3o)

To obtain solutions for these equations we seek a
variable y =y(r, t) such that H and K depend on this
variable only and

P =0, y=r;

P g0, y =r(r' —t'} '.
(38)

(39)

When substituted back into (29), (30), Eq. (38) just
gives the (static) Prasad-Sommerfield solution
which is regular everywhere and yields finite energy.
Equation (39}, on the other hand, gives a time-depen-
dent exact solution for the system (25), (26) but is no
longer regular. In particular, y exhibits a singularity
on the light cone, and so does H (K goes to zero ex-
ponentially at this point}; furthermore, the fields
P and X exhibit additional singularities at r =0.
Owing to these singula, rities the total energy of the
system,

E = d'xT", (40)

diverges.
This is easily checked from the explicit form of

TOO

T00 I gi j a P ija + 1 PO i a P Oi o + I IIOa IIoa + I ~ i a II i a
4 2 2 2

To find y we note that because of (27}, (28) y is a
solution of or, in terms of H and K (remember J=0),

(41)

y , =0, (31)

(32)

where x, =r+t and x, =r —t The s. ystem (31), (32)
is solvable and the most general solution is

(33)

1 ~2H2
+ + ——H2-8 r

g2r2 2 ~ e2r2 4 g4r4 (42)

where a and P are arbitrary constants. In terms
ofrandt, yis

y =y(r, t) = 2ar [(I + Pt) —P r'j (34)

if P=0 this reduces to

y =2&r . (35)

If ps 0, then since Eqs. (25), (26) are invariant
under time translations, we may substitute

f-I -1/P
thus getting from (34}

(36)

(37)

The scale invariance of Eqs. (25), (26) allows the
substitutions y-yy, where y is some constant.
Thus we have only two essentially different solu-
tions:

and the explicit form of H and K.
Intuitively, the solution corresponds to a radially

symmetric object with infinite energy density at
r =0 and on the surface r =t' this surface moving
our as t ' increases.

We conclude this note by two remarks.
(i) We stress that the transition from y rto=

y =r(r' —I') ' works only in the limit of vanishing
potential, since otherwise r would appear explicit-
ly on the right-hand side of Eq. (26).

(ii} The solution given here cannot be used to
construct a pseudoparticle solution, because the
Higgs field cannot be identified as the fourth com-
ponent of the gauge field. In any case the four-
dimensional Euclidean action integral is divergent.
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