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We show that the Prasad-Sommerfield solution for the ’t Hooft monopole can be transformed to an exact
time-dependent solution (which is singular on the light cone) of the SU(2) Yang-Mills-Higgs system.

The purpose of this note is to describe a hitherto
undiscussed feature of the Prasad-Sommerfield!
solution for the equations of motion for the 't Hooft
monopole,? namely, a transformation of this solu-
tion to an exact time-dependent solution for the
SU(2) Yang-Mills-Higgs system, which is singular
on the light cone.

For convenience we use the notations and con-
ventions of Ref. 1. Specifically, the Lagrangian
under consideration is
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The equations of motion for the Lagrangian (1)
read
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where

V(9)==2u2(9° %) +3r(¢? $°)2. (6)

In order to solve the system (4), (5) we start by
making the ansatz

¢ =r"H(r, t)/(er), (M

AG=7"d(r, t)/(er), (8)
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where

7=y, (10)

The ansatz (7)-(9) goes beyond the ansatz of Ref.
1 insofar as we allow the functions H, J, and K
to be time dependent. Inserting (7)-(9) into (4),
(5) we get the following:

From Eq. (4),

72y~ B o) <2HE? + 5 (HO-CO%H), (1)
where

C=pe/Vx (12)
and

3
H,,=§ H(r, t), etc. (13)

For v=0 from Eq. (5),
2, ,, =2JK? . (14)
For v=1,2,3 from Eq. (5),
YUK, =K,y o) =K(K2 = 1) +K(H?=J?),  (15)
Yy tr=dy ¢ s (16)
Jy *K+2K,;+J =0, (17)

Since Prasad and Sommerfield look for static solu-
tions, in their paper (16) and (17) reduce to identi-
ties and thus do not appear.

Let us consider the subsystem (16), (17) first.
From Eq. (16),

J @, t)=7f(t)+g(r), (18)

where f and g are arbitrary functions of the re-
spective variables (sufficiently differentiable, of
course). Now since the boundary condition for J
is?

J (r, t) 5= const, (19)
we have

f)=0 (20)
and thus are left with

J(r, 1)=g(r) . (21)
Using (21), Eq. (17) reduces to

K,,*J =0, (22)
whence either

K,,=0 (23)
or

J =0, (24)

We choose (24) since we are interested in time-
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dependent solutions for K(7, t).

Following Ref. 1, we consider the limit A -0
(“vanishing potential”), C fixed so that altogether
we are left with a system of two nonlinear coupled
partial differential equations:

v23K, ,,—K, ;) =K(K?*-1) +KH?, (25)
v2H, ,, —H, ;) =2HK? . (26)

To obtain solutions for these equations we seek a
variable y =y(r, t) such that H and K depend on this
variable only and

VZ(K, rr—K) tt):yzK‘yyy) (27)
72(1{) rr_H; tt)zyzH’ vy (28)

since then (25) and (26) assume the form of the
(static) Prasad-Sommerfield equations with » - y.
Therefore a solution of (25), (26) is given by

K(r, t)=K(y)=(Cy)/sinh(Cy), (29)
H(r, t)=H(y)=(Cy)coth(Cy)-1. (30)

To find y we note that because of (27), (28) yisa
solution of

Yo x,=0, (31)
(X, + %19, 5,955, =¥, (32)
where x,=7+{ and x,=7 —t. The system (31), (32)

is solvable and the most general solution is

y(xl,x2)=a <i~§fl§1 +ITszsz> , (33)

where @ and B are arbitrary constants. In terms
of » and ¢, y is

y=y(r, )=2ar[(1+8t)* - 2|1 . (34)
If B=0 this reduces to
y=2a7r . (35)

If B#0, then since Eqs. (25), (26) are invariant
under time translations, we may substitute

t-t-1/8 (36)
thus getting from (34)
_2 ( _1_>
y(?’, t)_Bz tz_rz . (37)

The scale invariance of Egs. (25), (26) allows the
substitutions y -yy, where y is some constant.
Thus we have only two essentially different solu-
tions:

B =0, y=7; (38)
B0, y=r(r2-t2)"", (39)

When substituted back into (29), (30), Eq. (38) just
gives the (static) Prasad-Sommerfield solution
which is regular everywhere and yields finite energy.
Equation (39), on the other hand, gives a time-depen-
dentexact solution for the system (25), (26) but is no
longer regular. Inparticular, y exhibits a singularity
on the light cone, and sodoes H (K goes to zero ex-
ponentially at this point); furthermore, the fields
¢ and A exhibit additional singularities at » =0.
Owing to these singularities the total energy of the
system,

E=fd3xT°°, (40)

diverges.
This is easily checked from the explicit form of
TOO,
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=z u3(9° 0%) +3A (0% 9% (41)
or, in terms of H and K (remember J =0),
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and the explicit form of H and K.

Intuitively, the solution corresponds to a radially
symmetric object with infinite energy density at
7 =0 and on the surface »®=¢2 this surface moving
our as f? increases.

We conclude this note by two remarks.

(i) We stress that the transition from y =r to
y=r(r*=1t2%)"! works only in the limit of vanishing
potential, since otherwise » would appear explicit-
ly on the right-hand side of Eq. (26).

(ii) The solution given here cannot be used to
construct a pseudoparticle solution, because the
Higgs field cannot be identified as the fourth com-
ponent of the gauge field. In any case the four-
dimensional Euclidean action integral is divergent.
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