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Confinement of spin-1/2 quarks by an infrared-singular effective gluon propagator is shown to work in

three space dimensions. The exact infrared behavior of the quark propagator is isolated. In the infrared limit

the propagator vanishes as the pole moves to infinite energy. The same singular interaction is used as the
kernel of the Bethe-Salpeter equation for bound states. The divergence from the kernel exactly cancels the
zeros of the propagator to produce an infrared-finite bound-state equation, The cancellation occurs only when

the kernel has the form of a generalized instantaneous Coulomb interaction. The existence of confined
solutions is demonstrated.

I. INTRODUCTION

The ultimate success of the quark model of
hadrons depends upon a convincing explanation
of the failure to observe free quarks easily. At
present the theoretically favored solution to this
problem is the statement that quarks are perman-
ently confined. Models in which quark confinement
is an essential ingredient have been successful. in
explaining static properties of hadrons. ' However,
the connection between the confinement mech-
anisms and fundamental quark interactions has not
yet been established in these models.

The analysis of two-dimensional field theories
has led several authors' to express the belief that
quarks are confined as a result of the zero-mo-
mentum, or infrared, limit of a theory in which
quarks interact with a massless multiplet of vec-
tor mesons in a non-Abelian, color BU(3), gauge
theory. Small momentum translates to large dis-
tance in configuration space. The idea is that the
quark-vector-meson (= gluon) interaction be-
comes very large, even infinite, at zero momen-
tum or large distance. The complete separation
of a quark-antiquark pair requires infinite energy.
Support for this idea comes from the growth of
the effective coupling constant in a gauge theory
as the momentum is decreased from infinity. '
The success of "infrared slavery"' as a confine-
ment mechanism depends upon an affirmative
answer to two questions: Do gauge theories de-
velop the appropriate infrared behavior'P Calcu-
lations in low-order perturbation theory have pro-
duced only infrared-finite amplitudes. 4 However,
perturbation theory is not a reliable guide to the
behavior of the full theory. ' The second question
is: Can infrared singularities produce confine-
ment in theories with three space dimensions T

Confinement has been observed only in theories
with one space dimension. ' This latter question
is addressed in this payer.

Working in close analogy with two-dimensional
field theories which display confinement, we
postulate the existence of an effective gluon prop-
agator function D(k') which is infrared singular. '
Our quarks have spin &, spin is an essential in-
gredient, The interaction we use is a function of
three-momentum only and has the spin structure
of the fourth component of a four-vector. It is a
generalized, instantaneous, Coulomb interaction.
We present a detailed analysis demonstrating that
this interaction is the only one in a large class
which exhibits quark confinement. The effective
interaction is used both in the Dyson equation for
the quark propagator and as the kernel of the
Bethe-Salpeter equation for bound states. This
dual use of the infrared-singular interaction is
justified either as a weak-coupling approximation
or by identification of D(k ) as an effective quark-
quark interaction. The Dyson equation for the
quark propagator is solved exactly in the infrared
limit. The "exact" quark propagator vanishes in
the infrared limit as the quark pole shifts to in-
finite energy. The quark propagator is used in a
bound-state Bethe-Salpeter equation whose kernel
is the singular function D(k'). There is a miracu-
lous cancellation between the vanishing propaga-
tors and the diverging kernel. The result is a
set of bound-state equations which are finite in
the infrared limit. Finally, we demonstrate the
existence of confined solutions. Our conclusion
is that infrared confinement can work under spe-
cial conditions.

In the absence of a fundamental theory we have
no Ward identities to constrain our postulated in-
teraction. In a more fundamental approach these
%ard identities are part of a test of consistency
of infrared singularities and the structure of a
gauge theory. ' We are interested here in the ques-
tion of how an infrared singularity produces quark
confinement. Although we appeal to gauge theo-
ries to justify our model, we neglect all internal-
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symmetry considerations. In addition, since our
gluon propagator represents an effective interac-
tion, we sidestep problems associated with a field
theory based on singular pxopagators. '

In Sec. II we treat the Dyson equation for the
quark propagator. Heuristic arguments are of-
fered to make our choice of intexaction plausible.
The discussion is sufficiently general to include
the effects of infrared-finite corrections. The
infrared behavior of the quark propagator is
isolated exactly, and integral equations are de-
veloped for the finite functions that occur in the
propagator.

Section III is concerned with the Bethe-Salpeter
equation for bound states. Care is taken to justify
use of the same interaction here as was used in
the propagator equation. A convenient spin de-
composition of the 4 x 4 Bethe-Salpeter wave func-
tion permits explicit demonstration of the cancel-
lation process which leads to a set of eight, in-
frared-finite, three-dimensional integral equa-
tions. The discussion in this section and in Sec.
II does not require an explicit functional form for
the interaction.

In Sec. IV we discuss solutions to the bound-
state equations. A definite choice is made for
the function D(k'). Nonrelativistic reduction of
the integral equations leads to a Schrodinger
equation which manifestly has confined solutions.
A variational method is used to estimate energies
in the fully relativistic problem.

Appendix A contains a vex y important result.
We show that only the interaction we use leads to
an infrared-finite bound-state equation. Other in-
teractions are explored, and all lead to the con-
dition that the Bethe-Salpeter wave functions van-
ish in the infrared limit. Appendix B is concerned
with the infrared behavior of higher-order cor-
rections to the Bethe-Salpeter kernel. Appendix
C examines in detail one of the approximations
made in solving the bound-state equations.

II. QUARK PROPAGATOR

The quark propagator function Sz(p) satisfies
the following Dyson equation:

Sz '(p) = y ~ p(1+ a) —m(1+ b)

x d'k D p-k2)y ~k yo

+ D,(p, k)I'Sr(k)1" ] . (1}

The infrared singularity is contained in the func-
tion D((p —k)'), a function of three-momentum
only. This singularity is assumed to be controlled
by a cutoff parameter similar to a photon mass in

@ED. In the limit this parameter vanishes, D(G)- ~ sufficiently rapidly to make integrals diverge
at small momentum. The precise functional form
of D((p -k}') need not be specified until we look
fox actual bound-state solutions. Nonsingular
terms in (1) are represented by D,{p,k). The
spin structure of this regular interaction is left
arbitrary. The constants a and b are for renor-
maliz ation.

The infrared-singular interaction in (1) has both
a noncovariant spin structure and a noncovariant
momentum dependence. It is a generalized, in-
stantaneous, Coulomb interaction. Our use of
this interaction must be justified. A pragmatic
reason is that it is the only interaction which
leads to an infrared-finite Bethe-Salpeter equa-

.tion. This point is explored in great detail in Ap-
pendix A where we show that if we change either
the y, spin structure or if we make D(tt2) a co-
variant function, the methodology of this paper
breaks down. The choice in (1) is the only one
which allows complete isolation of the infrared
behavior of S~(p) and which produces a Bethe-
Salpeter equation with mesonlike bound states.

A heuristic justification of (1) appeals to an
unspecified gauge theory which is supposed to
underly our phenomenological model. We make
the analogy with two-dimensional field theories'
in which a noncovariant choice of gauge makes
the solution possible. In such a gauge the effec-
tive interaction has a noncovariant form. P re-
sumably a covariant gauge could be used to obtain
the same results but would entail consideration of
a very complicated set of interactions. The vec-
tor nature of our interaction means that if it con-
fines quark-antiquark pairs to make mesons, it
will not bind two quarks.

The Dyson equation (1) has an unfamiliar form.
Conventionally, the Dyson equation for a fermion
propagator depends on the exact fermion-fermion-
meson vertex function. ' Since the function D,(P, k)
is unspecified, Eq. {1)can be made consistent
with the usual form. %e assume that the infrared
singularity originates in the effective gluon prop-
agator. Vertex functions a,re infrared finite in
our theory. The consistency of this approach is
checked in Appendix B where we calculate a ver-
tex function. The nature and meaning of D((p —k)')
will be made more precise in the next section
when we argue that it also represents the infrared-
singular part of the Bethe-Salpetex kernel.

The first step in solving (1) is to write

S (p)=W, (p)y, p, W(p)y p-~a(p}.

Separate nonlinear integral equations for A„A,
and B are projected out of (1):
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A 'u '-'A a2 — 'B"
i 2

A(P) = a(P)+(, (f 2k D((p —k)')

i 2

B(P}=&(P}+ ., ~'&D((p -k}')
A 2f, 2 As~2 2B2 ~

2)i )

(3a)

(31)

(3c)

The functions (2,(P), a(P), b(P) contain the sub-
traction constants and the infrared-finite inte-
grals involving D,(P, 12). To solve (3), we make
the ansatz that A,(p) is a constant and A(p) and

B(P) are functions of three-momentum only. With
this assumption the k, integration (with m -m —ie)
yields

A, = (2,(P), (4a)

D((p - k)2)(p k/P'}A(k}
(A'n2+ m'B')'~ 2

D(( p —k)')B(k)B(p)= h(P)+f (f ~
(A2f 2+ ~2B2)1g2 (4c)

XfA
(A p'+m B )2'~ 2'2

l(.fB
(A'p'+ m2B2)'~2 '

A(p) and B(p) are finite functions:

A(p)= p() l+ffd PP(p —kl

A(k) p k
(A2fi2+ m2B2)1( 2 p2

B(p) = b(P)+f (f 2fdD( p -k)

(6a)

(6b)

(7a)

(7b)

Solution of (6) is a straightforward problem in
algebra.

where f=g'/[2(2)i}'A2]. The infrared divergence
is controlled by a single subtraction

d3kD p-k 2 E k

=LE(p)+ JA%D(p-ic)E(ic). (1)

The constant X= JdpkD(f22) is infrared divergent.
The new kernel 8(p —k) =D((p - k)2) —X52(p - k) ts
infrared finite. Using this subtraction procedure,
rve find

I

where 72)(p)2=A(p) P'+ m28(p)2. Since A and B
have the same functional dependence on the diver-
gent constant X, all dependence on A, cancels out
of (7) to leave a pair of infrared-finite equations
for Sand B:

&(p) (p)+ff=d'»(p 2)-
2() k P2

B(p) = &(P)+f (f 2kD(p-k)
2'(%)

' (eb)

The final step is to examine the functions (2,(P),
a(P), and b(P) in order to check on the consistency
of our ansatz of constant Ap and no po dependence
in A(P) and B(P). Given the solution (8), we see
that Sz(P) 0 as the infrared cutoff is removed and

Hence, the integral in (1) containing the
function D,(P, k) will vanish unless the k2 contour
encircles a pole of Sz(k). In that case the integral
becomes

,d, fd p[) m p*,(p, pll
Ik l~~0

I'(-y kA(e)+ mB(u)) I"
A2R(k)

A reasonable assumption is that

D,(p, k) = lim D,(P, k)
Iko I ~ ~

(10)

either vanishes or is independent of po. The func-
tions (2(P) and b(P) are in turn independent of P, .
The absence of a term proportional to y, in (10)
implies that (2,(P) and A,(P) are constants.

The exact nonlinear, coupled integral equations
satisfied by the infrared-finite functions A(p) and
B(p) are

A(p) = I+ a+f (f 'k A(k)
2v (k)

p kx D(p —k) p'

)tr(y pl'y ' kI')
pp

A=A 1+—

J3=B 1+—

(8a}

(8b)

B(p}= 1+b+f (f 2k B(k)
2()(k)

x D( p —k)+ D,( p, k)tr 4, . (11b)
(I'I')t

L



18 QUARK CON FINEMENT BY INFRARED SING U LARITIES 1309

Equations (8) and (11) with w= (A'p'+ m'8')'I'
constitute a complete solution of the infrared be-
havior of the quark propagator function. From (8)
and the definition of SI '(p) in (2) we see that the
quark propagator vanishes in the limit where in-
frared cutoff goes to zero. This result is a con-
sequence of the fact that the quark energy be-
comes infinite in this limit and the quark pole
moves to infinity. There are no free quarks in
the infrared limit.

The next step is to use the exact quark propaga-

tor in the Bethe-Salpeter equation for quark-anti-
quark bound states. The infrared limit is to be
taken after contour integrals in the k, plane have
been evaluated. Only in this way is it possible to
obtain sensible results with a quark propagator
that vanishes.

III. BETHE-SALPETER EQUATION FOR BOUND STATES

The Bethe-Salpeter equation for quark-antiquark
bound states is

i())=s t) ~ E) r, J d'k[D((p — i)')y, i(k)y, +D(),k)I,
'

i(i) ')]
(S () —E). (12)

The wave function (()(p) is a 4 x 4 matrix in spinor
space. The energy of a bound state is 2E. The
infrared singularity is contained in D((p —k) ),
the same function that appeared in the Dyson
equation for the quark propagator. Nonsingular
terms are represented by the unspecified kernel
D,(P, k).

Equation (12} requires some discussion. It is
not obvious that the same function controls the in-
frared behavior of both the quark propagator and
the bound-state problem. If D(k') represents the
infrared-singular portion of a single-vector-gluon
propagator, then Eq. (12) implies that single-
gluon exchange dominates the Bethe-Salpeter ker-
nel, and Eq. (1) implies that the single-gluon term
dominates the quark self-energy. This viewpoint
is consistent in a weak-coupling theory if the
higher-order corrections are no more singular
than the one-gluon term. In Appendix B we cal-
culate a vertex correction and show that it is in-
frared finite. We also show that the crossed-gluon
correction to the Bethe-Salpeter kernel is no more
singular than the single-gluon term. The diver-
gences from gluon lines cancel against zeros from
quark propagators (properly encircled by contour
integrations) to produce these results. Under the
assumption that these low-order results hold up
to all values, we conclude that (1}and (12) are
consistent.

There is an additional complication if the under-
lying field theory is non-Abelian. Trilinear and
quadrilinear gluon couplings produce higher-order
corrections which appear to be more singular than
the single-gluon term. However, the momentum
dependence of these couplings suppresses their
infrared behavior. (Trilinear couplings vanish
when two of the gluons have the same momentum. )
If these corrections are not suppressed by a choice
of a noncovariant gauge, we assume that their ef-
fects are incorporated into the effective gluon
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FIG. 1. (a) The diagrams contributing to the Bethe-
Salpeter kernel. (b) The diagrams contributing to the
quark self-energy. There is a one-to-one correspond-
ence between the two sets. Solid lines are quarks and
dotted lines are gluons.

propagator and its pointlike coupling to quarks.
If vertex corrections are ignored, D((k')) can

be regarded as the effective quark-antiquark in-
teraction, and the restriction to weak coupling
can be dropped. In the absence of vertex correc-
tions, the exact Bethe-Salpeter equation is a sum
of two-particle-irreducible diagrams [Fig. 1(a)]."
Each diagram has the same order infrared singu-
larity. There is a one-to-one correspondence be-
tween terms in this expansion of the Bethe-Sal-
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peter kernel [Fig. 1(a)] and terms in the quark
self-energy [Fig. 1(b)]. D((p —k)') represents the
sum of all such diagrams. The nonsingular func-
tions D,(p, k) and D.(p, fI) correct for the fact that
there are many more diagrams, order by order
in the coupling constant, in the Bethe-Salpeter
kernel than in the quark self-energy.

The singular kernel in (12) is independent of k, .
The integral equation can then be converted into
an equation for the amplitude

p(5[=f pp.p(p. , p).

The logic that was used to reduce D,(P, k) to
D((p, k) in (10}applies here to reduce D,(p, k) to
D,(p, k}, where lim~ „D2(p,k)=D,(p, k). The p,
integration in (13) leads to evaluation of D,(p, k}
with Po equal to the infinite quark energy. Using
the "exact" solution for S~(p), we find that the in-
gral equation for P(p} is

[(«+&f)'-E']0(p)=, (I((+&f) «(1; DW. 4W. y,«'- &(p) Dy, di'. A(n)
2&

r I

p l(p( f».pp. p.--=p.
( f» pp }l(p.[. (14)

where A(p)= -Ay p+mB. The constant A, has
been absorbed into the definition of E. The infra, -
red nature of (14) is determined by the divergent
constant X and the divergence of the integral

QV = — D A V 'p —mABpR g7+ X —wEApg

(16e)
QU= = D[(A~P'U -A~pU 'p

K

d3AD p —k 2
Q k =X/+ DQ. —im AB(F x p)}(«(+Xf)

i«(EAG-xp], (16f)
AgRln D(p, k) is lIlf1'RI'ed flIll'te. Tile depelldellce
on D,(P, k) has been suppressed in (14). We will
add it back in at the end.

A finite integral equation for P(p) emerges from
(14) if the terms of order X and X' cancel. De-
monstration of this cancellation is a lengthy alge-
braic exercise. However, since this step is
crucial for the success of our approach, we give
some of the details. Let Q(p) be written in the
form

pp= =, JD[( '(T'p+A pp'p

—imAB(U x p)}(«(+Xf}

-«E(ApS —mBG)], (16g)

«(E(iA-(U x p) —mBF)], (16h)

AG= —, D[(6«(' -A'pp ' 6 —mABp 8)(«(+ &f)
$0

1 S+ 7+ (V+ u) ~ o

Q —B+(F—6) 'o

Q+R+ (F+ 6) ' o

S T+ (V u) -~o-
where o is the vector of Pauli spin matrices and

S(p), T(p), V(p), .. . are scalar and vector func-
tions of p. Equation (14) is equivalent to the fol-
lowing eight coupled integral equations.

where Q= («(+ gfp E The ill tegl. Rls 'ill (16) Rl'8

over three-momentum k. The quantities «((p),
A(p), and B(p) are all functions of external mo-
mentum p. Since fDQ=X(t(+ fDQ, both sides of
(16) have terms of order X' and X.

The quadratically divergent terms cancel if the
Bethe-Salpeter amplitudes satisfy a set of con-
straint equations,

QS== D P2A29 —mBAG'p ~~+ A.f —ggEA F ' y

(16a}
AT=0, (16b)

A,8= — —p ~ QmB

—(Fxp)
nsB

AV= — —pR,PlB

D Qm u+X +svEIBR —g7EAV'p,

QR = = D m B R —nsBAV'p so+if +VE&@BE

The requirement that terms linear in X cancel
produces a set of integral equations for the re-
maining independent amplitudes:

(16a)
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Xf -„A)
E B - EVE ~

G)0+
'N m B
m'B' - - A'(P) pF ~ p+, f D F+

(18b)

etc. The terms of order X' in (16) are unaffected
by this change. The constraints (17) are un-
changed. Equation (18a) is modified by

DQ — DQ+ D Q,

and for (18b) we have

DR - DR+ D2R'

Dpx kx F

E A'pF ~ p f - pG ~ pA'
G=

mB
F E + — D G —

(p),

+ AB=, f D( — ).

(19a.)

(19b)

+ —A Dp —kR (20a)

m'B'
81 K mB

The final step is to examine the infrared-finite
terms in (16). Here is where the real surprise
occurs. From (16c) and (16d) we have

B' —E'IQ = ff DQ+ — fDR

and

D R — D R — D,V'.

The complete program goes through in the pres-
ence of D, (fs, k). The final, finite Bethe-Salpeter
equations are modified by an additional finite inter-
action which could be used to control the large-
momentum short-distance behavior. However,
D,(fs, k) does not affect the fact of confinement.
Parity and charge-conjugation invariance guaran-
tees that the Q, R equations do not mix with the
F, G equations even with D,(fs, k) present.

Equations (18) and (19) represent the culmina-
tion of this work. If they have finite bound-state
solutions, we will have demonstrated a relation-
ship between quark confinement and infrared
singularities.

+ f DQ. (20b)

Although (20) appears to be very different from
(18), it is, in fact, just a rearrangement of the
same set of integral equations. The same sur-
prise occurs for the XG terms in (16g) and (16h).

Cancellation of divergent terms of each order in
X makes the eight equations in (16) equivalent to 24
equations for the eight Bethe-Salpeter amplitudes.
(Actually there are 16 amplitudes and 48 equations
if the vector nature of the amplitudes is taken into
account. ) The system appears to be overdeter-
mined. However, for a y, -y, interaction, all
equations are satisfied if the amplitudes satisfy
(17), (18), and (19). At this point we have no
fundamental understanding as to why the equations
work out so beautifully.

Still remaining is the question of the effect of the
infrared-finite kernel D,(p, k}. Define an ampli-
tude P' by

y (t)'y =ryr. (21}

The matrices r describe the spin structure of the
D, interaction. The amplitude P has a represen-
tation similar to (15). Equation (16) is then modi-
fied by

DS - (DS+ P'), fDVD(DV D,V ), -+

IV. BOUND-STATE SOLUTIONS

D(k )= ',"'",'„,
(k'+ u')" ' (22)

where IL(,
'- 0 produces the infrared li.mit. The

quark mass dependence in the numerator is for

In the preceding two sections we have shown
how an infrared-singular interaction produces
an infrared-finite equation for quark-antiquark
bound states. To complete the program, we need
to show that (18) and (19) have bound-state solu-
tions. The ideal program would have the follow-
ing steps: (i) Assume a specific but general form
for the infrared-singular function D(k ). (ii} Solve
(9) for A(p) and B(P) (iii) Use th.e solutions in
(18) and (19) and solve for the bound-state spec-
trum. (iv) Test various possibilities for the in-
frared-finite interactions D,(p, k) and D,(p, k).
(v) Compare with the experimental meson spec-
trum to fix the parameters of the model. This
ideal program is beyond the scope of the present
paper. We demonstrate the existence of confined
solutions first by looking at the nonrelativistic
limits of (18) and (19) and second by a variational
calculation with the full equations. We ignore ef-
fects of possible infrared-finite corrections. The
explicit form we choose for D(k'} is
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dimensional consistency. The divergent constant
X is

d'kD k2

Adding and subtracting these equations l.eads to
2 2

+ (Q+R) = (2n+ c)(Q+R) — (Q -R)

(26a)
2v I (2)I (n 2) 2)
2)l 3 F( )

(23) p' p'
+ (Q-R)=-(n2+~)(Q-R)+ (Q+R)2m 2m

+ &+ 8+ DQ,

m+ 8= m+e — Q+ DR.
(26)

and n must lie in the range ~ -n& & in order that
X- ~ as p. -p, yet the divergence can be controlled
by a single subtraction. The Fourier representa-
tion of the finite kernel D(p-k)=D((p-k)')
—X5(p —k) ls

D ~)
&"' (n -2)1'(-' —n)DR=2 23 ()
x elk't'(~)22 3(2n2)3 1d'r

(2w)'

This form for D(f2) is obtained by first calculating
the Fourier transform of (22) and then letting
p8 P

The amplitudes Q and R describe the quark-
antiqua, rk pair in a singlet-spin configuration. "
Solutions to (18) are states with parity P = (-1)~"
and charge-conjugation parity C = (-1)~. Examples
of such states are the m, g, and 9 mesons. The
F and 0 amplitudes describe the triplet configura-
tion. " Parity invariance separates the triplet
states with J=L from those states with J =L+ 1.
The uncoupled triplet states with J =L state with
8 =1 and have P=(-1) "and C=(-1)~". The A,
meson is an example of such a state. Examples
of coupled triplet states with 8=1,+I, P=(-1)~,
and C=(-1) are the t, p, 2(), (t), f, A2, g.

The representation (24) for D(p —k) should be
used in (9) to solve for A(p) and B(p) with (2(p)
and b(P) constant. An exact solution is difficult.
However, we note that the variation in these func-
tions, as ~p ~

ranges from 0 to ~, is of order f,
the effective coupling constant. In the weak-cou-
pling limit the functions are nearly constant. We
choose them to be constants and absorb them into
the bare quark mass m and the coupling constant
f, through a rescaling of all momenta. In Appendix
C we explore more carefully the validity of this
approximation. For the rest of this section we use
%=a= j..

The nonrelativistic limits of (18) and (19) are
obtained by multiplying through by nr a,nd setting
E = m+ e and 2() = (p2+ 2n2)'~'= I+p2/2m. For (18)
we have

+ffD(() —2). (26b)

The m-™limit of (26b) requires Q=R. Equation
(26a) becomes

—2„,&'Q(r)+ yr '" 'Q(r) = ~Q(r), (28)

fv'~' (n ——,')I(-', —n) (,)„,
22-3/2 I (n)

When n&2, there are confined solutions to (28).
The linear potential favored by phenomenologists"
is obtained when n= 2.

The reduction of (19) proceeds along similar
lines and the resulting equations are identical to
(28) with Q replaced by G= F. In the nonrelativis-
tic limit all spin states have the same energy
spectrum. Relativistic corrections to (28) are
readily calculated and produce spin-dependent in-
teractions.

An exact treatment of (18) or (19) begins with a
partial-wave decomposition to produce a set of
coupled one-dimensional integral equations. Equa-
tion (19) produces a pair of coupled equations for
the J=L triplet states and four coupled integral
equations for the J= L + 1 states. These equations
do not lend themselves to solution by straightfor-
ward numerical techniques. The subtracted ker-
nel D(p —k) is very difficult to handle numerically.
We use a variational method for estimating bound-
state energies. For example, we set R=IBR'/ge,
Q =Q' and write (18) in the form

H, and H, are symmetric integral operators:

H, = f dskD p —k

"m2+ jH2=f d kDp —k

„„()(2)=&Q(3)+fJD(3-&)()(k).

In configuration space with D(k) given by (24),
Eq. (27) becomes a Schrodinger differential equa-
tion for Q(r),
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The invariant inner praduct is"

(Q R't+Q tR')d'k=const. (30)

10-

8

Iof

Bound-state energies are estimated with the trial
wave functions of definite angular momentum

Q Z(p) (p2+ ~Q)/+7 /2 7 m( P)

R~(p}=A.Qq(p}.
(31)

0-
The parameters q and X are varied to minimize
the expectation value of the energy calculated with
the inner product (30}. Results for the bound-
state energies in units of the quark mass are
shown in Fig. 2. No attempt is made to fit the
spectrum of low-lying states.

Results for variational calculations of the triplet-
state energies appear in Figs. 3 and 4. Trial wave
functions for the uncoupled triplet states are

P
0 (pm+ m2)q+Z/2 ZZm 1

2.2 2.4 2.6 2.8 3 5 7 9

ENERGY Fp Gp

FIG. 3. The energy spectrum vs angular momentum
J for the uncoupled triplet amplitudes F 0 Gp The
dots are for n =1.75 and the crosses are for n =2.00.
The left figure shows results for f =0.01 (n =1.75)
and f =0.007 (n =2.00). The right figure shows the
effect of increasing tne couplings by a factor of 10.
Energy is in units of the quark mass. There are no
J =0 states in this case.

Fo= X —Go,
W

(32) four amplitudes and four equations. The curves in
Fig. 4 are produced with trial wave functions of
the form

where Y~~ is a vector spherical harmonic. "
Since p

' Y«(A)=0, it is straightforward to
write (19) in the form of (29}with new operators
Hy and H, . The expectation value of E is calcu-
lated with the inner product"

ggd'k —(Ft ~ G+ F ~ G~}= const.'mB ' (33)

Again E is minimized as a function of X and q.
The variational calculation for the coupled trip-

let amplitudes is more complicated since there are

m z/2 P, z+i
F~(p) - f~ = ~ 2 2~, (~~i) /2 ~~~,m(Qy),

gg (P+m p

G, (p) =g, F,(p),
(34)

with f, =1 and f, g„g,q as variational param-
eters. Many pages of algebra are necessary to
rearrange (19), minimize the expectation value
of the energy, and calculate the variational inte-

10-
f IOf

10-
f 10f

8-

8 6-

6-

4 2-
~ K

2-

0-
I

2.2 2.4 2.6 2.8 3

ENERGY Q-R

FIG. 2. The energy spectrum vs angular momentum
J for the singlet states, Q-R amplitudes. The dots
are for n =1.75 and the crosses are for n =2.00. The
left figure shows results for f =0.01 (n =1.75) and

f =0.007 (n =2.00). The right figure shows the effect
of increasing the couplings by a factor of 10. Energy
is in units of the quark mass.

I I I ~ t I ~ ~ a

2.2 2.4 2.6 2.8 3 5 7 9

ENERGY F~ G+

FIG. 4. The energy spectrum vs angular momentum
J for the coupled tripletamplitudes F~-G, . The dots
are for n =1.75 and the crosses are for n =2.00. The
left figure shows results for f =0.01 (n =1.75) and

f =0.007 (n =2.00). The right figure shows the effect
of increasing the couplings by a factor of 10. Energy is
in units of the quark mass. The -J =0 solution is not a
smooth extrapolation of higher- J states, since the equ-
ations partially decouple for J=0.
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grais.
In every case our estimates of the bound-state

energy agree with what would be expected from
arguments based on the Schrodinger equation (28).
Energies lie above the quark "threshold" at 2m.
As the coupling constant f is decreased, the
ground-state energy decreases and the problem
becomes nonrelativistic. As the degree of the
infrared singularity, the parameter n in (22) is
increased, the bound-state energies increase.
For fixed n and coupling f, a comparison of the
singlet-triplet energies shows that singlet and
uncoupled triplet states are nearly degenerate in
energy for a given angular momentum J. The en-
ergy of the coupled triplet states, except for J=O,
is less than that of the singlet states in qualita-
tive agreeement with the experimental fact that
the e is more massive than the v meson but the f
and & are less massive than the B meson.

V. DISCUSSION AND CONCLUSIONS

We have developed a "theory" which relates the
infrared behavior of the quark interaction to the
effective potential which confines quarks inside
mesons. There are no free quarks, yet there is
a well-defined equation for bound states. The
question of whether infrared slavery can work in
a space with three space dimensions has an affirm-
ative answer. We find that any infrared-singular
interaction generates a quark propagator whose
pole is at infinite energy in the infrared limit.
However, both the vector nature of our interec-
tion and its noncovariant dependence on momen-
tum transfer are essential for the complete sep-
aration of infrared divergences in the Dyson equa-
tion and for the delicate cancellations which pro-
duce a finite Bethe-Salpeter equation. The can-
cellations depend on the fact that contour inte-
grations in the k, plane give zero unless they en-
circle a quark pole. Why is the Coulomb-type,
instantaneous, interaction singled out? All we
offer is the explicit calculation in Appendix A.

The important, and very difficult, question to be
answered now is whether an infrared singularity
of the type assumed here is produced by a realistic
fundamental theory of quarks and gluons.

Quark confinement, as developed in this work,
appears to be a dynamical effect. In lattice gauge
theories, "confinement is a direct consequence of
local gauge invariance. Our discussion of the
problem has ignored the effects of. internal sym-
metry. Explanation of the absence of bound states
with color, when SU(3) of color is the gauge group,
requires analysis of symmetry effects. Extension
of our model to describe baryons also requires an
understanding of symmetry effects. The baryon

problem is very difficult not only because of the
horrors of the three-body problem but also be-
cause the existence of three-quark, but not two-
quark, bound states implies an important role
for three-body forces. The fact that it is possible
to construct a successful infra, red model of quark
confinement for mesons suggests that the baryon
problem is worth pursuing.

APPENDIX A: ALTERNATIVE INTERACTIONS

A=A — Xfgg A
(A'p'+ Bm')'~' '

fqaB.
(A'p'+ m'B')'~' '

The constants g„and g~ are defined by

(A2a)

(A2b)

Fy kr=q„y k, I'F= q~ .
For the z, -Z, interaction used in this paper we
have g~=-g„=1.In Table I we present g„,g

TABLE I. Values of g~ and g~ for various F where
I'y pl =qgy p, FI"= g~.

Z

Vp

+0

Y075

Opp

1
—1
-2
—1

2

1
0

1
1
4
1
4
1

12

The quark interaction used in this paper is a
function of three-momentum transfer. The spin
structure is that of the fourth component of a
four-vector. In this appendix we discuss alternate
forms of the infrared-singular inter3ction and
show that our choice is unique in that it permits
exact isolation of the infrared behavior of the
quark propagator and it leads to an infrared-
finite Bethe-Salpeter equation.

Possible modifications of the interaction are
to change its spin structure and/or to make it a,

covariant function of four-momentum transfer.
Consider first changes in the spin structure and
the effect of these changes on the quark propa-
gator.

S~ '(p) = y ~ p(1+ a) —m(1+ b)

z 2

x d kD((p —k)2)I'S (k)I'. (Al)

Again S~ '(p) is given by (2). As in Sec. II, the
k, contour integration yields equations similar to
(3). The infrared behavior is controlled by a, single
subtraction to ultimately yield a set of equations
corresponding to (6):
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for several different spin structures.
According to (A2)

TABLE II. Values of g; where i refers to the set of
amplitudes Q; = S, T, U, . ~, I'Q~ I' = q; P;.

g~A
(q, +q„)-q„B/B)' (As)

The nature of the solutions to (A2) depends on
whether or not q„+q~=0. If g„+q~=0, as it does
for a y, -y, interaction, the solution is given in
Sec. II by (8). When q„+qs 22 0, exact solutions to
(A2) are complicated algebraically. However, we
a.re interested in the X- ~ limit; there are two
possible solutions in this limit:

1
Y5

Yp

YJI

Yp 75

Yp Ys

O~p

S T

1 1 1 1 1
1 -1 1 -1 1
1 1 1 1 —1
4 —2 0 2 -4
1 -1 1 -1 -1
4 2 0 -2 —4

12 0 0 4 12

G

1 1
-1 1 -1
-1 -1 -1

2 0 -2
1 -1 1

-2 0 2
0 0 4

B,=R —+B 0(—
)~ , (A4a)

A, = ~ A+0 (A4b)

or

8 = B+0 (A5a}

A, = -q„+A+0Xf — 1
jg A

p
(A5b)

A=A+
AEP 2 + mEBE

Xf r[sB
A P'+ m'B' '

(A6a}

(A6b)

where g„and g~ are given in Table I. In this case
f=g 2/(2v)' and p' is a, four-momentum squared.
If [7]2 = -[7„=1, the solution of (A6) is

B=AB/A gf =(AEpE+ mEBE}2~

A= —1+i, —1
(A7)

The solution in (A4) has the interpretation of the
quark mass becoming infinite in the infrared limit.
This is the solution we use in the Bethe-Salpeter
equation.

If the interaction D((p —k) ) is an infrared-singu-
lar function of four-momentum transfer, the in-
frared behavior of the Dyson equation can be
isolated only after a rotation of the k, contour
to a Euclidean four-space. The validity of the
contour rotation is difficult to verify. However,
having done it, we proceed as before. The equa, -
tions equivalent to (6) and (A2} are

The quark mass is imaginary in the infrared limit
unless the coupling g' is negative or g~(0. The
validity of the contour rotation is questionable if
the quark mass is imaginary.

Comparing (A4), (A6), and (A7) with (8), we see
that except for an iy, noncovariant interaction,
none of the other interactions match our choice of
y, in terms of elegance and simplicity of solutions
to the Dyson equation.

Next we compare Bethe-Salpeter equations for
the various alternative interactions. When the
kernel is a function of three-momentum transfer,
an integration over the fourth momentum compo-
nent produces a generalized version of (14).

ZT=0,
(A10a)

(A10b)

SQ7= f D A'pp ~ V'+ mAB pR'+EApQ'

0(p)=„.B 2
JA'RD((p —2)')

2

&& (~(P)r.4'(It)r. —A(p) d '(I )A(p)

+ &P (p)4'(k)r. -rP'(k)A(p)]},

(AQ)

where A(p) = -r ~ pA(p)+ mB(p), gg(p}E= A(p)'p'
+m'B(p)', and p'=ryr. If /has the representa-
tion (15) and the spin structures of Table I are
considered, we find S'=g~S, T'= g~ T,
V'= q~V, . . . . The set of g's is given in Table II.
Equation (A9) is equivalent to eight coupled equa, —

tions for the amplitudes S, T, . . . ,

ICS fJD()'A S +2EAp F'-~ 2'mA'BG' ~ p),

When q„+g~ 40, there are two possible solutions.
The one corresponding to infinite quark mass is

tnl=f jD[P'A'O' A'pp 0'+ EA(G'xp)], '

m
(A8a)

A= 8 A.
~A+ ~B

(A8b) EQ=f jD(- 0' — EBB' —EAp ~ V'), (A(00)
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lCP=f f(([ -'(i' A'p-F p —''A(((U x'p)

EA-S p -EmBG], (»0g)

Q=O, U= F=O.

The difference between (All) and (17) is due to
the different values of the g parameters for y,
and fy, in Table II. Given (All), we find that the
terms in (A10) linear in X require that all ampli-
tudes vanish. There is no consistent set of in-
frared-finite Bethe-Salpeter equations for an zy,
interaction.

For the other five interactions in 'Table I, the
solution to the Dyson equation is given by (A4)
(8- ~, A finite, s( mB--~). The quadratic con-
straint equations in this case are

IHQp8- T-V-u=O
lQ

Q g tR

I g~ I

'
I r]~ I

(A12)

F 0 OG'

I g~ I
'

I g~ I

where q~ comes from Table I and the other q's
are in Table II. %hen I"=1 or I'=0~, there are
no nonzero solutions to (A12). For &=y„,y,y„
y„y„onlythe Q amplitude can be nonzero. A
short calculation of the order-A, constraints shows
that Q must also vanish. The conclusion is that
only the y, spin structure produces a nontrivial
set of equations in the infrared limit.

If the kernel is a function of four-momentum
transfer, the Bethe-Saipeter equation (after con-
tour rotation) is

f (r,( ('.+&)-)' ii+ ( '('((, ()A.' [(p,—iE)'+ p+ m']

h, ( p, fE) r ~ p+-m']-
[(p,+iE)'+p'+ m'] (A13)

KG= f D[ ur'G-'+A'pG' ~ p —mpS' —EmBF'

-iEA(U' x p)], (A10h)

where K= su(zv' E')-. The infrared limit of (A10)
is obtained by using (8) for y, and iy, and (A4) for
the others to calculate the infrared limit of A(p)
and 8(p).

If the Bethe-Salpeter kernel has an zy, spin
structure, the requirement that the X' divergence
cancel on the two sides of (A10) leads to a set of
constraint equations

A8= — —p' 0 T=O Q= — —pRmB ' ' mB

= 0, X$+ Dtt) 02, A14

where 0, and 0, are combinations of y matrices.
Although the order-X terms can cancel, there is a
X'i' term on the left of (A14) but not on the right.
The wave function 4 must vanish in the infrared
limit.

If the appropriate solution to the Dyson equation
is given by (AB), then the infra, red limit of (A13) is
obtained by letting m = mB/A -~. The leading
equation produces the constraint

P = ———I"gI' =—I' t(I' .f
A' m' q

If I'= 1, this equation is automati. cally satisfied.
If I' is anything else, there are only a few ampli-
tudes which satisfy (A15). However, the next-
order constraint equation (order X'i2) is

A—h" (p+ EN+ 4'(p —E)).mB
(AI6)

This equation has no solutions unless the momen-
tum dependence of AlmB is in a way which con-
tradicts the equations satisfied by A and B. More-
over, it is necessary to cancel terms of order X

and X'~' in order to produce a finite equation. The
conclusion is that there is no covariant interaction
which generates an infrared-finite Bethe-Salpeter
equation.

In this appendix we have shown that, given our
methodology, the only interaction which produces
an infrared-finite Bethe-Salpeter equation is the
one actually used in this paper.

APPENDIX 8 HIGHERARDER CORRECTIONS

In Sec. III it was argued that D{(p —k)') is the
infrared-singular interaction both in the Dyson
equation for the quark propagator and in the Bethe-
Salpeter equation for bound states. Part of the
justification relied on the fact that, for our choice
of an interaction, vertex corrections are infrared
finite and higher-order corrections to the Bethe-
Salpeter kernel are no more singular than the
lowest-order terms.

The one-gluon modification of the quark-gluon
vertex in Fig. 5(a) is calculated from

where m=mB/A The functions A and 8 are given
by (A7) or (AS) in the infrared limit. If (A7) is
appropriate, m is independent of the infrared cut-
off. When (A13) is multiplied through by A', we
have an equation of the form

A' 4Xf . 4hf )'i'
~ +2+2z, —j.

W 'N
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I'(p, p')= — . Jt
d'ky, S (p —k)y, s (p'-u)yg(k'),

where c is a constant. For the quark propagator we use (2) with A, = l. The ko integration has con-
tributions from the two quark poles

(Bl)

F p p.) d,~D(~,) [y Ou A-y ~ (p-k)+m&]y, [y,(p,'-p, +u)-A y ~ (p'-k)+ma']
2&[(po —po+ gg) —w ]

b,(e, -t, +w ) '&F '(i--R)+ ~J&, kw'-&7 (i'-R')+~&'11
[(p, —p,'+ w')'- u']2u '

where se'= A'(p —k)'+ m'8', m"=A "{p'—k)'
+m'8", and A=A(p —k), A'=A(p'-k), etc. In
the infrared limit, A(q) and B(q) are given by (5).
The integrand in (82}vanishes as X ', X- ~.
Hence, I'= 0 unless this zero is compensated by a
divergence at k'= 0 from the integral over D(k').
In the infrared limit we find

I'(P,P'}= ——
2
—'—.~(p)+&(p'}

(p. -p.') ~(p}yp(p')

(82)

with ~(p}=y,u(p) -A(p)y ~ p+mB{p) [E.ach of the
two terms inside the curly brackets in (82}is con-
stant as X- ~, but the constants cancel out to leave
terms of order X '.] Note only is 1 (p,p') finite in
the infrared limit, but it does not enhance the in-
frared behavior at p= p' when inserted in another
diagram.

A second class of vertex corrections are typi-
fied by Fig. 5(b). The amplitude for this vertex
part is determined by the integral

~'(P,e')= —2„f d &~ &(»'~ .&(,(i R.) )-'
xD((p' —k)')E(p y, p' y) .

(84)

'The ko contour integral cancels out the X ' be-
havior of the propagator. I"{p,p') is proportional
to

r'-~D((p'-p)'} [F(0,p'-p)+&{(p -p'), o)].
(85)

II
I

A
s

III
/I

E-p E-p4q-4 E-k

FIG. 5. (a) One-gluon vertex correction which is
infrared finite. (b) A vertex correction introduced by
trilinear gluon couplings. (c) First-order correction
to the one-gluon Bethe-Salpeter kernel. In the infrared
limit this amplitude is no more singular than the one-
gluon term.

The combination XD{(p—p') ) is very singular.
However, the function E(p, p') is introduced into
(84} to describe the three-gluon vertex. The be-
havior of this function is unspecified in our model.
In gauge theories the three-gluon vertex vanishes
when all gluons are purely timelike or when two
of the gluons have the same momentum. The func-
tion E(p,p') will suppress the (84) contributions
and could even render it nonsingular. The other
possibility is that, since (84) is generated by pure
gluon interactions, it is already contained in the
effective propagator D(k'). In that case, Fig. 5{b)
does not represent a permissible vertex correc-
tion.

Next we compare the infrared behavior of the
crossed-gluon Bethe-Salpeter kernel [Fig. 5(c)]
with the single-gluon kernel. Equation (12) is to
be compared with
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dpo dqo d'q d'kD p —q ' D -k ')

x S„(P+Z) y, S (q+ Z) y,y(k, B)y, S,(a+ P —q B)y, S,(p

A complete calculation of the infrared behavior of
(B5) is complicated but possible. A qualitative
argument produces the same result. Each prop-
agator in (B6) vanishes like X ' in the infrared
limit. The p, and q„integrations both enclose
quark poles and reduce the net effect of the four
propagators to order X '. Each singular kernel
contributes a factor of X to make the overall inte-
gral infrared finite. The crossed-gluon kernel is
no more singular than the single-gluon terms.
The divergence of (86) is the same order as pro-
duced by single-gluon exchange in (12). It is
straightforwaxd to generalize the result to ampli-
tudes with any number of gluon exchanges.

APPENDIX C SOLUTION TO THE DYSON EQUATIONS

In the discussion of solutions to the bound-state
equations we made the approximation A =B= j..
Here we study more carefully the problem of solv-
ing (9) for the functions A(p) and B(p). First (9)
is written in the form

A(p) = 1+f d'kD(p —k)

(Cl)

B(p) = 1+f d'kD(p —k)
I"(0)

(C2)
[u2+ ni2r (I }2]~~2 '

where I'(k)=B(k)/A(k). The constant terms in
(C 1) and (C2) have been adjusted so that A(~) = B(~)
= 1. Since the integrals depend only on the r"tio I"(k),
a convenient ansatz fora solution is that I ( k ) = F(~)
=1. In other words, A(k) and B(k)are not sepa-
rately constant, but their ratio is constant. Correc-
tions to this guess are determined by an iteration
pl'ocedure.

If I'(k) = 1 and D(k'} is given by (22), the integrals
in (Cl) and (C2) produce hypergeometric functions

A„(p)= 1 —fn(n)3nE(n+ 1,n —1,—,'; -p'/m'), (C3)

B„(p)= 1 —fn(n)E(n, n —1, -', ; -p'/m'), (C4)

2vf
Asi.(» = Bsi 2(P) =I-(„p./„,2).g. ~ (C5)

Since A„(p)and B„(p)approach A=B=1 monotoni-
cally from below as p increases, a measure of the
extent to which (C3) and (C4) disagree with our
starting ansatz is given by

fn (8){-',8 —1) (C61 —fn(n) —,
' n

Thus, for weak coupling and/or n= ~, A„(p)and

B„(p)as given in (C3) and (C4) are good approxi-
mate solutions to (Cl) and (C2). Moreover, (C6)
provides a measure of what is meant by small
coupling. Small coupling means the denominator
in {C6) is approximately unity or

fn{n)-,'n «1.
For n= , this —means 2vf «1, and for n = 2 it means
4'«1. As n--,', the coupling constant goes to
zero.

It is possible to calculate analytically a correc-
tion to (C3) and (C4) with the assumption that I'(k)
=1+eh(k), where e «1 and h(k) has a form that
leads to tractable integrals. The requirement
that I (0) and I"(0) = dI'/dk'I ~2, match for the in-
put and output function fixes & and parameters in
h(I). The result is that

I
I'(~) —I

I
is decreased

over what it is when calculated from (C3) and (C4).
In eff ct, iteration of the solution improves agree-
ment with the ansatz.

The conclusion of this appendix is that for
small couplings and n not too much larger than

&, the approximation made in the bound-state
equations is a good approximation.

n(n) = 2(n --,')V~vl'(-', -n)I'(n -1),
and I'(n) is a gamma function. The hypergeometric
function F(a, 5, c; —.z2} ha. s the properties that E(0)
= 1, lim, „„E(-z')-0. When n = 2, we have an ex-
act solution,
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