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By use of the contraction mapping principle we show explicitly that the equations for the inverse scattering
problem [i.e., constructing the full amplitude, A(s, t), from just the s-wave amplitude Ao(s) given at all
real s] in nonrelativistic S-matrix theory have a locally unique solution when there are no pole terms and
no subtractions and when the relevant norms are sufficiently small. The corresponding mapping problem for
the relativistic, crossing-symmetric case is also formulated and the question of uniqueness is discussed.

In a previous paper' we discussed the inverse
scattering problem of determining the full scat-
tering amplitude A(s, t), given just the s-wave
projection A,(s). Since A, (s) is assumed to be
analytic in s, values of A, (s) for positive values
of s above threshold will in principle determine
A, (s) for all values of s. We are interested here
in establishing the existence of a unique determi-
nation of A(s, t) from Ao(s). In particular, we as-
sume that A(s, t) can be written as
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The discontinuity of A(s, t) with respect to t is

If we combine Eqs. (4) and (5) we obtain
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Elastic unitarity applied to Eq. (1) for 4 ( s «
yields the standard result
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where the nonrelativistic double-spectral function
p(s, t) vanishes below the curve

16s
s —4' (2)

We established an iterative scheme [cf. Eqs.
(27) and (12) of Ref. 1] to determine o(t) and p(s, t)
given the imaginary part of the s-wave amplitude
on the left-hand cut. We did not prove that this
iterative scheme converged, although we did show
that if there was a solution, then it must be unique.
We now formulate this as a mapping problem and
establish the existence of a locally unique solu-
tion via the contraction mapping principle. In
terms of the discontinuity of Ao(s) on the left-hand
cut -~( s~0, we define

g(t) =-Im[tA, (4 —t)], t) 4.
As shown in Ref. 1, the s-wave projection of Eq.
(1) yields
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where t,(s; t„t,) and K(s, t; t„t,) are given in Ref.
1 [Eqs. (13) and (14), respectively]. Equations (7)
and (8) together define a nonlinear mapping which
we denote by

p'= 6(p). (9)

In fact, the mapping of Eq. (9) is very similar
to that considered by Atkinson and Warnock' for a
relativistic crossing-symmetric problem with one
subtraction. We shall simply indicate the modifi-
cations necessary to allow their results to be ap-
plied to our problem. As in Ref. 2 we take p(s, t)
to belong to that Banach space of real functions
F(s, t) defined over su [4,~), to [4,~) for which
there exists the norm

g(t) =
II

dt'o(t')+ —
I

ds'

(4)
so that

dg(t) + )
1 ds'

dt m " s' —4+t
'dt' s', t'

4
s'- 4+ t.

I F( s» t,) —F(s» t, ) I ln's ln' t
sup

4 gg, g2, ti, t2(~ 1 2 + 1 2

s,s, t t, t,s

and for which

lim F(s, t) = 0 = lim F(s, t) .

(10)
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Here we have set s = min(s„s, ), t= min(t„ t,), and

the Hi5lder index p, is restricted to the range
0 & p & &. We take dg(t)/dt in Eq. (7) to belong to
the Banach space of real continuous functions f(t)
on [4,~) such that there exists the norm

II f II = sup it'"f(t)I, .
4~~ tC o

We now restrict p(s, t) by

~

a(t)
~

«o(tt)t-'",
%'here
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nom corresponds to that of Atkinson and %arnock. '
In light of the restrictions of Eqs. (13) and (14), we
need only show that

II p(s, t)II - &

and dg(t)/dt by

(13)

y = max(b, c}.

dt
(14

Equations (13) and (14) will, for example, be
satisfied for a superposition of Yukama potentials
provided the strength is sufficiently weak (i.e.,
bound states and resonances are certainly ruled
out). Such an amplitude can be kept as small as
we please. Our mapping problem of Eqs. (V)-(9)

Here Eq (») mea s that~i(t}~«iif~t~t '"f»»I
From Eqs. (10), (11), and (13) it follows that

[ p(s, t}[« b(st) " ln '(s) ln '(t) .
Since the integrals in Eq. (16) are not even prin-
cipal-value ones, it is a simple matter to bound
h(t) as
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Therefore, the arguments in Refs. 2 and 4 show
that the mapping of Eq. (9) is bounded and con-
tinuous and, in fact, a contraction mapping so that

lip,'(s, t) —p,'(s, t)ll -o (P)ilp, (s, t) —p, (s, t)il . (20)

For b and c sufficiently small [cf. Eqs. (13) and

(14)] we have a contraction mapping so that by the
Banach-Caeciapoli theorem' there exists a unique
fixed point p,(s, t) for the mapping of Eq. (9) such
that

pa= 6(po) ~ (21)

will be reproduced If we de. note by Xo(s) that s-

It is important to note that this fixed point is non-
zero since p, =-0 is not a solution to Eqs. (7) and

(8) when dg(t)/dt $0.
We have shown that ifA, (s) comes from a Man-

delstam amplitude A(s, t) of the form of Eq. (1),
then that Mandelstam amplitude is uniquely de-
termined by A,(s). However, we are not guaran-
teed that this pair o(t), p(s, t) will necessarily re-
produce Ao(s) everywhere, but only that dg(t)/dt
mill be correctly reproduced for t ~ 4, that is, that

—[(4 —s) lmA, (s)], -~&s «0

wave amplitude generated by o(t), p(s, t), then we

are certain only that

—„[(4—s) im Ao~(s) ]= —[(4 —s) 1m A(s) ],
-~&s«0 (22}

ImA(s) = ImAO~(s)+, -~ &s «0 (23)

where a is an arbitrary constant. This is consis-
tent with Eq. (4) which tells us that

ImAO~(s) ~ — dt'o(t') . (24)

Therefore, we cannot conclude that a=0 no matter
what me are milling to assume about the rate of
falloff of ImAO(s) unless it should happen that

(25)

which need not be the ease. This is not surprising
since me mould not expect an arbitrary s-wave
amplitude Ao(s) to ha, ve come from a Mandelstam
representation. Since for a Mandelstam amplitude
we expect
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A, (s) ~ Jt dt'c(t'),
S 4

(26)

then if A,(s) falls off too rapidly we cannot in gen-
eral have it reproduced by a Mandelstam ampli-
tude of the form of Eq. (1) [or in terms of the
language of potential scattering by a local potential

V(r), which is a superposition of Yukawa poten-
tials].

%e can now ask whether or not the relativistic
inverse-scattering problem has a unique solution
for the completely crossing-symmetric generaliza-
tion of Eq. (1),

n(. , ~,.)=( f ni g()(,
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w, , ' (t' —t)(s' —s) (t' —u)(s' —t) (t' —s)(s' —u)„'
where

p(s, t) = p(t, s)

and where p(s, t) must vanish on or below the curve

(27)

(28)

t= mm (29)

In this case elastic unitarity holds only in the region 4 & s & 16, so that unitarity for the s wave becomes

rmn, (n)=( } [n, ( )[*+-.'( n)
[( —n'( )], (30)

where q(s) is the inelasticity function and must equal unity for s ~ 16. Notice that since we are taking A, (s}
as gives, then we may consider q(s) as known. The standard mapping problem for a p(s, t} can now be
stated as

D,(s, t)= — ds'p(s', t), +, 4
—
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p(s, t) = p"(s, t)+ p"(t, s)+ v(s, t), (33)

where v(s, t) = v(t, s) is an arbitrary function satisfying Eqs. (10) and (11) and vanishing on and below the
curve

t —4t=16 (34)

We summarize the mapping of Eqs. (31)-(33)as

p'= 6(p; v). (35)

Atkinson and Wa, mock' have shown that Eq. (35) defines a contraction mapping provided P is small enough

where g is now defined as

@=max(b, c, Ilvll, lll —rt II). (36)

That is, there is a locally unique fixed point p(s, t) for any given v(s, t). Any one of these p(s, t) will cor
rectly reproduce ImA (s), the discontinuity of A, (s) on the right-hand cut. However, we do not know

which, if any, of these will also yield the correct value for ImAO (s), the discontinuity of Ao(s) on the left-
hand cut. For -~ &s ~ 0, this is given as

4 ~$ 2 (x) 4 g ] 1
ImAO~(s) =

4
dt' v(t')+ ds' dt' p(s', t'), +

s —4 w s —4 4 S -S t +S+S-4
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Whether or not any of the fixed points of Eq. (35) [i.e. , some choice or choices for v(s, t)) will satisfy the
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constraint of Eq. (3V) is an open and difficult question.
Even the answer to the uniqueness question for the simultaneous solution of Eqs. (35) and (3V) is not

immediate. Let us consider the case of no subtractions [i.e. , o(t) =—0] and assume that there were two
different functions p, (s, t} and p, (s, t} which would both reproduce a given s-wave amplitude A,(s}. If we
define

f(s, t) =- p, (s, t) —p, (s, t}= f(t, s),
then f(s, t) must simultaneously satisfy the conditions

dt'f(s, t')ln I+, —= 0, s~ 4J s —4

00 dl-4

d ' dt'f( ', t'), +, , s, d 'f( —*', ')t . —,-1)-=D, s-s.t'+ s —4 I, "+s' —s, ' s'

(38)

(39)

(40)

t Ry s=R, t=R+4 —s, (41)

where R is some large, finite quantity. If we then
replace the integral equations of Eqs. (39) and (40)
by a set of linear algebraic ones for the urRnown
coefficients ( P;&}, i,j = 4, . . . , n, we find that as n

increases [i.e. , a finer and finer grid covering the
triangle of Eq. (41)], the number of )n)icnowns soon
far exceeds the number of algebraic equations.

In fact, because of Eq. (29), the second integral
in Eq. (40) does not begin to contribute until s & 36.
Although it is fairly evident that either Eq. (39) or
Eq. (40) above has nontrivial solutions for f(s, t),
it may not be so apparent that together they can be
satisfied except when f(s, t) =-0.

However, we can make plausible the existence
of a nontrivial solution to Eqs. (39)-(40) as follows.
We begin by choosing f(s, t) =-0 except inside the
triangular region bounded by

Therefore, there exists a set of ( P,,}not all of
which are zero, which indicates a nonzero solu-
tion to Eqs. (39) and (40}. Of course, unitarity has
played no role in this argument so that we have not
established that Eqs. (35) and (31) necessarily can
have more than one solution in common.

In summary, then, we have shown that a Mandel-
stam amplitude of the form of Eq. (1) can be uni-
quely reconstructed from its s-wave projection,
provided certain smallness constraints on norms
are satisfied [cf., Eqs. (13}and (14)]. The corre-
sponding question for the relativistic case remains
open, having been reduced to a mapping problem
[Eqs. (31)-(33)]subject to a constraint [Eq. (37)].

The author wishes to thank Professor R. L.
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relativistic case which produces the mapping
problem subject to a constraint.
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