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Two-dimensional Ising field theory in a magnetic field: Breakup of the cut
in the two-point function
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%'e demonstrate that the cut which is present as the leading singularity in the two-point function of the
Ising field theory for T g T, and H = 0 breaks up into a sequence of poles for 0 4 O. Both the positions
and the residues of the low-lying poles are calculated,

I. INTRODUCTION

The two-point function of the two-dimensional
Ising field theory for T &T, when the external sym-
metxy-breaking fieldH=O has the striking proper-
ty that its singularity in momentum space which is
nearest the real axis is a square-root branch cut'
px oportional to

(1+-,'u')'~'(2/nP in[a/2+(I+-,'um)"'] —(2/n)2, (1.1)

instead of the usual one-particle Ornstein-Zernike
pole

(1.2)

which is the singularity closest to the real axis
for T &T,. In R px evious publication' we announced
the result that when an external symmetry-break-
ing (magnetic) field H is applied to this Ising field
theory the cut breaks up into a sequence of poles.
The purpose of this paper is to derive and discuss
that result in detail.

It has long been conjectured' that the cut of (1.1)
does break up into a sequence of poles when a
magnetic field is applied. More generally, one
may consider going from T&T„H=Oto T&T„
H=0 by following a pRth ln the H, T plane as lndl-
cated in Fig. 1. At the points a (T & T„H=0) and
e (T & T„H=0), the two-point function is com-
pletely known and its singularities in momentum
space are schematically shown in Figs. 2(a) and
2(e). In particular, at point a, because of the up-
down symmetry there are only odd-particle
thresholds at k=ai(2n-1). At point h, T&T„
H&0 the up-down symmetry is broken and even-
particle thresholds appear, Fig. 2(b). In addition
the location of the singularities will move by an
amount px'opol tloQRl to I . As one px'oceeds along
the path of Fig. 1, bound-state poles start to
emerge from the two-particle branch cuts so that
for a general H and T (point c) the singularities of

the two-point function are given by Fig. 2(c}. It
is R,n open question how many bound-state poles

exe Rxe Rt T Try ++0 Finally& Rs oQe move
to the point d many poles have emerged from the
two-particle cut [Fig. 2(d)] until they coalesce to
form the cut of Fig. 2(e). The principal result of
this paper is to show that in the scaling limit when
the scaled magnetic field A» 0 (see the Appendix
for the relation of the scaled magnetic field 0 to the
lattice parameters and the external magnetic field
H), the poles near the tip of the branch cut at +2f
are located at

~i(2+ a"'X,"'), (I.sa)

where X, are the positive solutions of

(1.2b}

and J„(s)is the Bessel function of order v. The
x'esldues of these poles are

The Gx'een 8 function ln the preseQce of an ex-
ternal symmetry-breaking field h is formally ex-
pressed in terms of the h=0 connected Green's
function as

C

FIG. l. A path in the (H, T) plane that goes from
TZTc, H=O (point a) to T~Tc, H=O (point ef. By the
Lee-Yang circle theorem the only singularities of the
correlation functions vrill occur at H = 0 for T & T~.
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3'
j. OO

c„= (dm&) (dn, )h„„(m„n,) .
0

(1.8b)

(a)

2i(I+ah )

&( j(I+ah )

(b)

Now if G2(0, r;h) is represented as a sum of poles
in momentum space we must have the coordinate-
space asymptotic expansion

Gc(0 r. k) v3/2r-ll 2e 2r g a (k)e-««~(h) (I 9)

However, in (1.8) h always appears as hr'l'.
Therefore the only way for (1.8) to be of the form
(1.9) is for

(c)

,

2j(2+h g, )j
LJ„.

and

«, (k) =kh/'x, (1.10a)

i(2+h k))
i l 2'

a, (h) =ka, . (1.10b)

(d) (e)

FIG. 2. The singularities in the complex k plane of the

connected two-point function for the five points of Fig. 1.
Only the upper half plane is shown because the singular-
ities are symmetric about the real axis. In (a), (b), (d),
and (e), the position of the lowest pole and lowest br anch

cut is indicated.

where G;(O, r;k) =G, (0, r;k) G, (0, ~;h) (see the
Appendix). When r is large we may use the results
of the two preceding papers" to demonstrate for T
& T, the intimate connection between the string struc-
ture of then-point functions and the destruction of the
cut in the 2-point function. Without loss of generali-
ty we may take the point r to be on the y axis.
Then, calling m,. the vertical coordinate and n,. the
horizontal coordinate of r„wehave from paper II
that if 0&m, &r,

m, =m, /r =O(1)

Thus the functional dependence of x, (h) and a, (h)
on k as given by (1.3) and (1.4) follows from the
string property on the n-point functions alone.

The result (1.9), while only an approximation,
is already sufficient to demonstrate that the mag-
netization M(k) is not analytic at h = 0 even though
M(h) is infinitely differentiable' at h =0. To see
this we note that BM(h)/sh = X(k) may be expressed
as the value of G;(k;h) at k=0. However, the fac-
tor k'l' in (1.10a) guarantees that X(e" ~h ~) cannot
equal y(e "~h ~). Therefore we conclude that M(k)
has a discontinuity across the negative h axis and
hence that hystersis in the sense of analytic con-
tinuation of M(h) through h = 0 does not exist for
the two-dimensional Ising field theory. This lack
of analyticity has been previously discussed in the
context of the cluster or droplet models of conden-
sation by Langer' and Fisher. '

Of course we must actually demonstrate that
(1.8) does indeed have the form (1.9). To do this
we need the explicit formulas for the functions h„.

and

n, =n, /r"'=O(1),
then

(1.8)

II. AN EXPRESSION FOR c„
From the explicit expression (II3.5), we have

for n =0
-2 -2r mf nf

G„+~(0,r, r». . . , r„g-r e h„+2 r r k, =-.'(2~) ' dx dx (x +x )'e '" '*' ' (2.1)

Inserting this into (1.5) we see that each integral
over r, gives a factor of r' ' and hence, for r» 1,

Therefore,

c,=h, =i/87/. (2.2)

G'(0, r k) r'e '" g -—(r"-'k)"c„,
n=0

where

(1.8a) Moreover, when n ~ 1 and

0&m, &m «'''m„&m„„=1, (2.3)
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(~ q ) (2q)-z(n+x)2 (n x& d» . . .dn+2 f& f 1
leg) X1 X2+ l

n 1 ( 2
+n+1+ +n+2

l+1 l+2

n-1 2 1
(x,„.,+x,)

n+l+2 Xn+l+1+ ~~ l +2n+2 +2n+1+

n
1x exp --, ~, (x,'+x,„...')

~l

xi+1 xznlos+-»2n-I+z) (2.4)

where

7
g

m l 1 m
g

(2.s)

To obtain c„wefirst integrate A„„over-~&ng & ~ to obtain

dry, .dr&„a„.,(m„n,) =-,'(2w) '""2'""
OQ 1

X dX1 ' ' 'dX2(n~1)
X1 —X2+ tC

6l

( 1
~
(»„„+x„„)

l+1 l+2+ 1 )
n-1 1 1

(x,„„+x,}
1 Xn+g+2 -Xn+ g+1+ l& l X2n+2 -X2n+1+ sf

n+1
1

~i (x i +»2n-r. s }
l-"1

+l +l+1 +2n-g+3++2n-g+2
g~l

(2.'I)

%e now may carry out n of the xg integrations by use of the & functions. .To do this, define the variables

1 2(n+1} 2 +2 +1 n+1 +n+2 &

which incorporates the 6-function constraint, and

2g, —,+,„„,, E 1, . . . , +1.

(2.8a)

x, =sg+se

X2(n~l)~1 l Zl

[dx,] = 2dw [dz, ]

and, hence,

(2.io)



dn, dn„f„„(m„n,)=(2v) '""' g
oo f6r)

1
I ~ I

n ~ I
1 ~

2
I

2
dpi'''dg„ 1 gl —g2+26

n-1 1 2 n+1

z~z„~~exp —Q T) (z( +w )
grpl JEr42+SEr

(2.ii)

The w integral is trivially evaluated using, 2.6), and hence

OO 1 2

dna d+n ~n+2 (~ i ~ + i) & Q zl zn+lzlzn+1
Zl —Z2+ 'EC

(2.12)

We now must carry out the integrations over all n of the m, satisfying 0&m, &1. The form {2.4) is valid

only in the region (2.S); however, the other n! —1 regions are equal by symmetry. The symmetry factor
cancels the n! in (1.8) and hence we find for n~ 1

1&-(n+3/ 2)
C = 2'tl

n

'r
d~ 1 d~n+1

OO n+I 1 2

dr, '''dv„.,& Qr, —1)*,*„.,
~l 82+1r-1

fi(. . „)'(-2" )
(2.is)

Then, using the integral representation

n+1
y ]V'r, —1 i=-
) 2m

n+1

dpexp ip 1 —gr,
I r=l

(2.14)

00 n+1 n+1 1 " n+1

dT "dT 5 ~T -1 exp —Y Tz' = dpe LL1 n+1 r r 2~ gg@ 2~gp
r "-1 r=1

~In+1
where in»r=l the term E =j is omitted. Therefore

p(-, ') ll'(, '-,') ', (2.16)

1 (ny3/ 2)—C„=27
f6r)

OO 1 2

dgl dgn+l~l~n+1
Z 1 —22+ 'E&

n-1
1 2 n+1 n+1rr. . .„-z-(-") rr("-")'

r+1 r+2 r r=1

(2.i6}

Now the sum in (2.15) is continuous when z, = ~, but term by term there are poles. However, since in

(2.16) z, appears as (z, -z, +i@) ', we may write in (2.15)

z, ' —z, '=(z, +z, +is)(z, -z, -iz). (2.17)

Then in ail terms in the sum over j in (2.16) with jo 1, all singularities in the z, integration lie in the lower
half plane, and since there is no factor of e '1, the contour may be closed in the upper half plane to give
zero. Thus only the term with j= 1 survives in (2.16) and we obtain.

ni - ~
OO 1c { 1)n'v-&n+3/z& dz '''dz 8 8n+1 1 n+1 ~ 8 +l.E

f611 1 2

n-1 1 2 n+1 1 1e' TT1
zr 1 zr+2+scr LL ~l+~r+z6 gl —gr+$6

(2.16)

From this we may evaluate c„for arbitrary n by elementary means. For example, if n =1
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oo 1-5/ aC~= -Mq dz~dzez gz2
zx -z2+s~ (zx+z, +

1 -. 2
1 ~

(z, - z2+i~)
(2.19)

The z2 integral may be evaluated by closing in the lower half plane at z2= -z, -ic to find

c,=-isa ' ' dz . e '~ =-8~ ' '
~

z)+ z(

To proceed, in general, we let

zf-z, gf, ~ —2, n. ny8+12

(2.20)

(2.21)

1 I1)n -(n+2/2) pffn
(g}

dz, (z, +i&) 2""e 22

tel 1
y2 yn+)yn+) (1 ie)2—$2+ f

n1 1 2 fr+1 1 ~\[

x TTPL y„2—y„2+ie) LL (I+y)+ ie}(l —y, + i&)
(2.22)

We now define an operator

1 1 1
K(x, y) = -)/ '

(I+»+it)(I -»+i') (x y+i-e}2 (» -y ie)2
~

and hence obtain the desired expression for n ~ 1

1 q 5/—C

(2.23}

where K '(y„y„„)is the )2 —1 iteration of the operator K.

(2.24)

III ~ SUMMATION OF THE SERIES

We now make use of (2.24) in the series (1.8) to formally obtain

Gc(0 r". h) r-ne-n, „-2/nhr2/2 dZ e-n, dy dy
1 1.Bm' 1 2 n+2(1 y +ie)2

(z, +ie)2 hr'/'K(y„y„„)(1+y„„+it)(l—y„„+ie)
(3.1)

To proceed further we need the eigenvalues and eigenfunctions of the operator K(x, y). Accordingly, we
define the eigenfunction f,(x) by

dy K(x, y)f, (y) = )).2f)(x) (3.2a)

and the adjoint eigenfunction f'(x) by

J dx f;(x)K(x, y) = X,f)(y) .
a 00

Using the explicit form of K (2.23) we find

f;(x) = (I+»+i.&)(1 »+ie) f(x) . -
In terms of f,(x) and ))., we may formally write the resolvent operator as

1 1
(z+ie)2 rh'/'K(x, y) Z (z+ie) rh n/ )).,

222 2 ~
= ~~ ——

~ 2 2 f)(x)f)(y»
r

where we have the normalization condition

(3.2b)

(3.3)

(3.4)
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1= dx f1(x)f,(x) =
w CO

dx(1+x+ it){1-x+ie) f', (x) . (3.5)

Note that, because ff(x, y) is an unbounded operator our operations at this stage are purely formal and ques-
tions of convergence will be discussed later .Using (3.4) we then may write

G', ( 0, r; k)-r 'e '" —- 'v ' '-
00 1dze &g

(z, +i&)' —kr'~'li,

fl(y, )x dy„, ' '. „dy„„y„„f,(y„„)(1 —$2+i~/ o0
(3.6)

We must now expljcif'ly solve the integral equation (3.2a) whicll usillg (2.23}, is explicitly wl'1'ttell as

The left-hand side of this equation is a convolution.
Therefore, we introduce the Fourier transform ]=(-.'X)-"'[k --.'li(1+ is) ],

dy, +,f(y) = X(1+x+i&)(1-x+ie) f(x) .1 1

, x y+ie)' (x-y-le'
the equation let

(3.7)

(3.13)

h(1)=(2e)'e'f dee"*f(e)
a 00

and, using the fact that if Rek& 0,

dxe
(

. )+( . ), —-2vk,

while if Rek&0,

(3.8)

(3.9a)

where the cube root is defined to be real and posi-
tive for X real and positive and by analytic contin-
uation elsewhere. Then, writing

k(k) = N(X)k($), (3.14)

we have

(3.9b)

82
ee)«e) =1(1+(e~, e(e),

and for Rek & 0

(3.10a)

1
dxe

(
. )2+( . )2

=27fk
e

we find the second-order equation for Rek& 0

h) =0. (3.15)

This is Airy's equation.
To determine which solution to (3.15) we need

first consider X real and positive. Then for the
normalization integrals to exist we need

k(k)-0 as k-~.
2-11e(e)= 1 (( e , a(e) .ek' (3.10b)

The solution which satisfies this boundary condi-
tion is" (for ( & 0)

To complete the definition of k(k) and to deter-
mine X we need boundary conditions 1'or (3.10).
First of ail, we see that in (3.7), if we send x- -x
and y -y, f(x) and f( x) satisfy the s-ame equa-
tion. Therefore, the symmetric and the antisym-
metric parts of f separately satisfy (3.7). How-

ever, in the integral over y„„in (3.6), only the
antisymmetric eigenfunctions give a nonzero con-
tribution. Therefore we may restrict our atten-
tion to antisymmetric eigenfunctions satisfying

k(() = '(t'&3)'"&, ,(-'(&)"'}. (3.17)

(3.18)

When /&0, the solution (3.17) may be written as"

k(h) = -'(-h)"'[~„,(-'(-$)"'}
+d„,(~s(-()" }]. (3.19)

Therefore X, are determined from the equation

Now from the quantization condition (3.12) we need

(k —(-'~}"'}= o

k(-k) = -k(k) . (3.11) z„,(-.'x, )+ z„,(-,'~, ) = o.

Moreover, in order for the second derivative to
exist at k = 0, k(k) must be continuous and differ-
entiable at k= 0. Therefore, from (3.11) the quan-
tization condition for X is

It is most important to realize that (3.20) has
two sets of solutions. First, there are an infinite
number of solutions which are real and positive.
Indeed, when I is large"

k(0) = 0. (3.12) X, - 3v(I —«) . (3.21)

Because of (3.11), it suffices to consider the dif-
ferential equation (3.10a) derived for Rek& 0 con-
sidered as an equation valid for all A. To solve

However, if we analytically continue X and use

(3.22)
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we see that, if X, is real and positive and satisfies
(3.20), then

also is a set of eigenvalues„provided the boundary
condition at (k ~- ~ is analytically continued simul-
taneously with X. This continuation, may be made
without upsetting either the normalization integrals

or the integrals over the eigenfunctions in (3.6), and
indeed mustbe done because in the integration over
S„the phase of (g, + fe)' goes from real and positive to
e"'. With this continuation of boundary conditions,
the eigenfunctions for X', on the continued con, tours
are the same as the eigenfunctions for A. , on, the
original contours. Therefore we may write (3.6)
as

oo )2„Il . . . , ~ 1 1

)22 ' - ' ' F' (* ~ i2)* 2 "'1 (* + '2)' ~ 22"'2 )
f((y,)

2 il + f ~)2 y}2+ly))21f2(y})+1) (3.23)

where we now may restrict our attention to the

eigenfunctions with X, real and positive satisfying
(3.16).

We next need to evaluate the y, and y„„integrals
in (3.23). First we have, using (3.8),

dg')))f) g = 2F dkA) k
~ OD m oo

(3.25)

Now we use the differential equation (3.10b) with
k & 0 t,o write

(2v)' ' dkh (k)ke "
w CO

(3.24)
0

=-(w/2)' ')(, dke '~ 1+, h, (k), (3.26)

where the prime indicates differentiation with re-
spect to k.

Second we have

Then we may integrate by parts to transfer s'/sk'
to e ' using the boundary condition (3.16) and

(3.12) to obtain the desired result

f,(y)
(1 —y+ 1&) f dy ' . ,=-( /2)"'x, h,'(0).

(1 —y+ i&)' (3.27)

Therefo~e, (3.23) becomes

220

(3.28)

It remains to use the normalization condition
(3.5) to evaluate h'(0). From (3.5) we first obtain

$2
1= dk h((-k) 1+, ih, (k)

gk2) 1

8
222, (2)=l (1+ '2, 2, (2}

with the boundary condition (3.16). Then

(3.30b)

= -4X, ' dk'kh k,
Q

~blare, to obtain the last line, both (3.10) and

(3.11) were used. To evaluate this integral
consider for the moment h, and fg„which for
k &0 satisfy

(3.29)
and thus

-4 dkkh~ k Pg

92
222, (2)=1,(1+ '2 ~, 2,(2)

ak
(3.30a)

We now let X,- X,. Then, since
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d
h2 —A, , —h, —h2 h. (4) dh h~(4) —hg(4) dh

h. (0)
k=o

and since

= N(h. ,)N(h, ), h, (&) h—,(&) —h, {&)—h, (&)

(3.33)

= -3 h. ($) h, (5) - h (()„h.(h)
~o

Then expanding

h, =h, (~)+(~, ~,) h, (()
1

(3.36a)

—h(~) = -3—h(f)
dk k 0 dX k-0

we have

h, (g}=„h,(g)+ (~, h.,),h, (t), (3.38b)
dX2 d X1 dX1

we find

2 2

h, (~)—„h(~) —h, (~)—„h(t') = -8h, h

Therefore, using (3.34) and the boundary condition (3.12), we obtain

1= -N'{z,)-,'x, [h,(0)]' = -,'x, [h (o)]'.

This may now be substituted in (3.28) to find

1

(z, +iz)' —hr"'X, (z, +ih)'+ br'"h,

(3.3V)

(3.38)

(3.39)

%e may now return to the questions of convergence which we postponed earlier. First of all, because of
the behavior of X, for large l given by (3.21), the terms with+X, and —X, must be grouped as in (3.39) to ob-
tain a convergent expression. Moreover, by construction, when h -0

G,'(0, r;h) —r 'e '"—. (3.40)

However, when h-0 the z, integral diverges. Therefore in our formal manipulations we have lost a con-
stant term (independent of h) which must be determined by the requirement (3.40).

The integrand in the z, integral is antisymmetric in g, . Therefore only the contribution comes from the

poles at

z, +ih = sr'~'(hX, )'~'.

Thus the integral is carried out and we find

3 +
~ - 2 1

(z, + iE)' —hr" 'h. , (z, + iE)'+ hr' "x,
~

~ ~

~
&

"h l hhrh
/2 P -e (hhg P ~h—-2

l

(3.41)

As h-0, we use (3.21) to find

-1/2v a/2 W -r f Ml )

l

-1/2. ~/2 ~ -r f3rkl »/3 1 -3/2 -t2/3
2 7T Pl7 dl e ——7 ate

0 0

/2I ~3/ 2 d) e r (3r kl )2 /3

0

Let (3.45)

to find

(3.44) Therefore we must subtract r 'e '"/8v from the
formal expression (3.39) to obtain the correct
answer which satisfies (3.40). This just cancels
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the first term of (3.39) and we obtain the final re
suit

Z(H)=Q e zz (A4)

~ex+ ~. ~ x "1/2 -2r& -1j 2) -rh2~ &)tf2 ~ 3

where Xg satisfies (3 ~ 20). Comparing this with the
definition z, (h) and a, (h) in (1.9), we find the re-
sults (1.3) and (1.4).

is the pax'tition function at finite H. This expres-
sion fox' the correlation function may be expanded
in a power series in 0 as

(o„o„„)„—X'(H) = g , (PH—)"

n~o
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APPENDIX

We here derive (1.5) from a lattice theory and

express k in terms of lattice parameters. The in-
teraction energy of the two-dimensional Ising mod-
el in the presence of an external magnetic field is

where K(H) is the magnetization at finite H.
Qn the lattice we have the representation"

(A6)

is the spontaneous magnetization.
We take the continuum limit by defining

m = Iim M[z, (1 z, ')]-'" ~z, z, + z, + z,

n = lim N[z, (1 —z,') J
' ~ '

~ z,z, + z, + z, —1 I,
&= Ilm t)H%[z, z, (1 z,')(1 z, ')]'" ~z,z, +z, +z,

(A8b)

(oooo~a

where F„„is a function of the 2(n —1) variables
M, N and M&, N&, and

%= [1 —(sinh2PE, sinh2PE, ) ']'~' (A

~0 El poJPjk+1 Ez p ik i~&k' (A2)

(oooo»)z= g H 2 oooozpr exp I
—iI~o —PH Q &pa Igk)

The corx'elation functions at finite magnetic field
ax'e, by definition,

G(0, r;h) = lim3R '(&x„&r„„)„,
with

z, = tanhPE,

and the limit is

z,z2+ z~+ z2 —1 0,

(A10)

(A11)

(A12)
(A3) with ~, &, and & fixed. In this limit, (A4) reduces

to (1.5).
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