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We demonstrate that the cut which is present as the leading singularity in the two-point function of the
Ising field theory for T < T, and H = O breaks up into a sequence of poles for H # 0. Both the positions

and the residues of the low-lying poles are calculated.

1. INTRODUCTION

The two-point function of the two-dimensional
Ising field theory for 7 <T, when the external sym-
metry-breaking field H=0 has the striking proper-
ty that its singularity in momentum space which is
nearest the real axis is a square-root branch cut!
proportional to

(1+36H)Y22/k) In[R/2+(1 +5RY 2] = 2/k)2, (1.1)

instead of the usual one-particle Ornstein-Zernike
pole

A

m . (1.2)

which? is the singularity closest to the real axis
for T>T_. In a previous publication® we announced
the result that when an external symmetry-break-
ing (magnetic) field H is applied to this Ising field
theory the cut breaks up into a sequence of poles.
The purpose of this paper is to derive and discuss
that result in detail.

It has long been conjectured® that the cut of (1.1)
does break up into a sequence of poles when a
magnetic field is applied. More generally, one
may consider going from T>T_,, H=0to T<T,

H =0 by following a path in the H, T plane as indi-
cated in Fig. 1. At the points a (T>T,, H=0) and
e (I<T, H=0), the two-point function is com-
pletely known* and its singularities in momentum
space are schematically shown in Figs. 2(a) and
2(e). In particular, at point @, because of the up-
down symmetry there are only odd-particle
thresholds at k=+i(2n - 1). Atpointbd, T>T,,
H>0 the up-down symmetry is broken and even-
particle thresholds appear, Fig. 2(b). In addition
the location of the singularities will move by an
amount proportional to H2. As one proceeds along
the path of Fig. 1, bound-state poles start to
emerge from the two-particle branch cuts so that
for a general H and T (point ¢) the singularities of

18

the two-point function are given by Fig. 2(c). It

is an open question how many bound-state poles
there are at T=7_,, H>0. Finally, as one moves
to the point d many poles have emerged from the
two-particle cut [Fig. 2(d)] until they coalesce to
form the cut of Fig. 2(e). The principal result of
this paper is to show that in the scaling limit when
the scaled magnetic field 2> 0 (see the Appendix
for the relation of the scaled magnetic field  to the
lattice parameters and the external magnetic field
H), the poles near the tip of the branch cut at +2;
are located at

+1(2+h?/ 3 23), (1.32)
where )\, are the positive solutions of

Jys(GN) +d.,,5(G0,) =0 (1.3b)

and J,(z) is the Bessel function of order v. The
residues of these poles are

3T, (1.4)

The Green’s function in the presence of an ex-
ternal symmetry-breaking field % is formally ex-
pressed in terms of the =0 connected Green’s
function as

G300, F30)= 3 1 [ dF, - dF, 65,0, F, T+ ),
n=0 "

(1.5)

d b
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T

FIG. 1. A path in the (H,T) plane that goes from
T2T, H=0 (point a) to T<T,, H=0" (point e). By the
Lee-Yang circle theorem the only singularities of the
correlation functions will occur at H=0 for T<T,.
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FIG. 2. The singularities in the complex & plane of the
connected two-point function for the five points of Fig. 1.
Only the upper half plane is shown because the singular-
ities are symmetric about the real axis. In (a), (b), (d),
and (e), the position of the lowest pole and lowest branch
cut is indicated.

where G5(0,T;2)=G,(0,T;h) = G,(0, ©; k) (see the
Appendix). When T is large we may use the results
of the two preceding papers® ® to demonstrate for T
<T,theintimate connectionbetween the string struc-
ture of then-point functions and the destruction of the
cut inthe 2-point function. Without loss of generali-
ty we may take the point T to be on the y axis.
Then, calling m, the vertical coordinate and »; the
horizontal coordinate of Fu we have from paper II
that if 0<m <7,

17‘=m‘/1’=0(1)
and (1.6)
ny=n,/r*’?=0(1),

then

m n
c * T T )~ 42,727 i i
sz(O;r)rl!“"rn) e hynz ( r 7.1/2)

(1.7)

Inserting this into (1.5) we see that each integral
over T, gives a factor of #*/2 and hence, for »>1,

- b 1
GS(0,T;h)~ 7 2" — (¥ 2n)"c
’ b ; n! n?

(1.8a)

where

c = fol am} | a7, (1.8b)

Now if G:(0,T;%) is represented as a sum of poles
in momentum space we must have the coordinate-
space asymptotic expansion

GS(0,T; 1) ~m/ 2y1 2727 Soa, e ™. (1.9)
1

However, in (1.8) & always appears as k7%’ 2,
Therefore the only way for (1.8) to be of the form
(1.9) is for

K, (r) =h? 3k, (1.10a)

and

a,(n)=ha,. (1.10b)
Thus the functional dependence of (k) and a,(r)
on z as given by (1.3) and (1.4) follows from the
string property on the n-point functions alone.

The result (1.9), while only an approximation,
is already sufficient to demonstrate that the mag-
netization M (k) is not analytic at #=0 even though
M (n) is infinitely differentiable’” at k=0. To see
this we note that 8M (k)/8h = x (k) may be expressed
as the value of GS(k; 1) at k=0. However, the fac-
tor h2/% in (1.10a) guarantees that x(e**|%|) cannot
equal X(e™™|k|). Therefore we conclude that M (k)
has a discontinuity across the negative & axis and
hence that hystersis in the sense of analytic con-
tinuation of M (k) through % =0 does not exist for
the two-dimensional Ising field theory. This lack
of analyticity has been previously discussed in the
context of the cluster or droplet models of conden-
sation by Langer® and Fisher.®

Of course we must actually demonstrate that
(1.8) does indeed have the form (1.9). To do this
we need the explicit formulas for the functions #,,.

II. AN EXPRESSION FOR ¢,

From the explicit expression (I13.5), we have
for n=0

hy=%(2m)™2 f doxydx,(x, +x,)%e""1%=®/2 | (.1)
Therefore,
Co=h,=1/87. (2.2)

Moreover, whenzn =1 and

0<7ﬁ1<7h—2<'“<’;’.ﬂ<7zm1=1r (2.3)
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(7, 7)) = @y regon 3 [ i
oMy, i) =2 (2m) 220270 f dx,**+dx .
1 2(n+1) -
feg) 7= " Xy =Xy +i€
n=1 2 ( )
X ) (X, +X
11 (xlol"xuz‘”‘x) el T a2
n-1 ) 1
* i — (Xgpep + %)
g (x"*"z_x"*l*1+7'€l) Xomsg = Xone1 + 1€ 2ns2 T4y
1< 2
Xexp [_3 2 Tl(xla"'xzn'los )
=1
il —
-1 Znt(xx"xlu—xg,,.us+x2"_“3)j| , (2.4)
1=1
where
T=My, —My (2.5)
and
n+l
E T,=1. .
1=1

To obtain ¢, we first integrate 4,,, over —~<zn, <« to obtain

f diy * * ARy, (M, 7,) =3 (2m)"(m22 ()
XE fwdx"'dx 1
w ¥ 2ml) y _x,+i€

(e} 77
n=1 ( 1 )
X ———— ) (% + %2
g xhl_xl+2+261) e

nL 1 1
X H ; — (Xgnp+%))
71 Xnetsz = Xnega1 H1€; ) Xapip = Xpn,y +1€

n+l
X exp[ -2 Z Tz(xxz"‘xzn-usz)]

I=1

n
X H 0(x; =244, —x2n-h3+x2n-l+2) . 2.7)
I=1

We now may carry out n of the x, integrations by use of the & functions. To do this, define the variables
20=X; =X ne1) =Xz = Xone1 = "= Xy =X pazs (2.8a)

which incorporates the 6-function constraint, and

22, =X, +Xgmyer-1s L=1,...,m+1. (2.8b)
Thus,

X, =z,+w, (2.92)

Xa(m1)e1=1 =2~ W, (2.9p)
and

[dx,] = 2dw[dz,] (2.10)

and, hence,
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© _ o @ 2
f ity dig by, (M, 7)) = (21) ™2 ) f dw f dz,***dz,,, (Z——_—}ﬁ>
- - 1= 22

(6;} et
n=1 1 2 n+l
X o - 2 ,2
g (21+1—21+2+i€1) lemlexp[ ; Tl(z‘ e )]. (211)

The w integral is trivially evaluated using {2.6), and hence

. B - 1 2
g =) _ 1 ~(n+3/2)
f diiy**di b, m g m ) = amm 3 Z f dz,***dz,,2,2,,, < 7
. - 2z, —2,+1

n+l

n=1 1 2 .
N () o (L) ew

1=1

We now must carry out the integrations over all » of the m, satisfying 0<r;1_.,< 1. The form (2.4) is valid
only in the region (2.3); however, the other n! -1 regions are equal by symmetry. The symmetry factor
cancels the »n! in (1.8) and hence we find for n> 1

1 ' (ne3 J‘w © n+l 1 2
—p =4i-- /2) 5 _ P
oy Cn= T > L dzyerdzgy, fo dry**dt,, ( xZﬂ:'r, 1) 212 <21_22+i€

{e;}

n-1 1 2 n+l 2 (2 13)
X _—_—— - .
I (=) (-2

1=

Then, using the integral representation

6( gf,q)ﬁl; f_:dpexp[ip (1_2‘;7,):’, (2.14)

we have
wd d 6 n+l 1 n+l 2 1 f aod i n+l 1
o T3 HTmn ( ,Z;T'— )exp (_ ,Zﬂ:‘rlzl >=§1? - P M7
n+l n+l
= 3y exp(-z)) J]'(e,-2/)", (2.15)
j=1 1:1

where in IIi%" the term !=j is omitted. Therefore

1 c _%n-(ms/z) z j‘ de cordz o zZ.2 <—1 )2
n~— 1 n+1%1%n+1 ;
nl tep) 7 == 2, —2,+1€

n-1 1 2 n+l n+1 .
1 (smemm) Somten [Le-=om. .10
1=1 * * j=1 1=1

Now the sum in (2.15) is continuous when z, =z,, but term by term there are poles. However, since in
(2.16) z, appears as (z, —z,+i€)™, we may write in (2.15)
22 =z2=(z,+2z,+i€)(z; =z, —i€). (2.17)
Then in all terms in the sum over j in (2.16) with j#1, all singularities in the z, integration lie in the lower

half plane, and since there is no factor of e"lz, the contour may be closed in the upper half plane to give
zero. Thus only the term with j=1 survives in (2.16) and we obtain .

1 nl_=(n+3/2) ® 1 2
o Cn= (13 .(5;] eyt dzagz,., ( PR
1

n-1 1 2 2 n+l 1 (2 18)
o .
x H <2,+1—z,+2+i€,) ¢ H [(21+z,+i€)(zl—z,+i€) ]

1=1 1=2

From this we may evaluate c, for arbitrary » by elementary means. For example, ifn=1
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- b 1 2 1 1 2
= _in-5/2 _—— L,z
Cr= =zl _L, dz,d25212, <21—22+i€) (2, +2,+1€) (2, —2,+0€) © ' (2.19)
The z, integral may be evaluated by closing in the lower half plane at z,=-z, —i¢€ to find
=it -3/2'[” 52 _ _Ll--1/2
¢, =—1am . dz PRYT: e = gt/ 2, (2.20)
To proceed, in general, we let
z2;=2,Y;, 1=2,...,n+1. (2.21)
Then
1 1_(n+3/2) f" --3*2-31/-” 1
n——!Cn=("'1)"z1T n+3 {EZ) _,d21(21+£€) n*2o7e, -”dyz dyn+1y'|+1(1 —y2+i€)2
1
n=1 1 2 n+l 1 9 )
X - - — |- .22
g(y,,l—y,,zﬂi,) ‘Il[(1+y,+z€)(1—y,+z€)] (
We now define an operator
1 1 1
K = -t
(x,9)= - (1+x+i€)(1 —=x+i€) [(x—y+i€)2+(x—y—i€)2} (2.23)
and hence obtain the desired expression for n>1
1 1 _s/sz .\ 2 (% 1 y
—cC,=—3T dz,(z, +i€)3n*2g"® f dy,dy,,, ~—————— K™ ol
nl Cn= 2 - 12, +1€) e - Y2 y"*‘(l—y2+i€)2K (yz’y"u)(1+y,,ﬂ+i€)(1-y,,.,1+i€) ’
(2.24)

where K™ (y,,y,.,) is the n -1 iteration of the operator K.

III. SUMMATION OF THE SERIES

We now make use of (2.24) in the series (1.8) to formally obtain

-> 1 1 2 1
c B ~ 2,21 1 =5/2p,3/2 -z
Gz(O,r,h) v e l——B -2m hy j: dzle 1 f_ dyzdyn+2-————~(1 : o

1 Vns1
X (2,+1€)° —hr®/%K(y,, Ypey) (1 +Ypey +IE(1 =94y +i€)] .
(3.1)

To proceed further we need the eigenvalues and eigenfunctions of the operator K(x,y). Accordingly, we
define the eigenfunction f,(x) by

[ ayKG,9)f5) =2 (3.2)
and the adjoint eigenfunction f%x) by

[ ax sk, y) =2, 750). (3.2b)
Using the explicit form of K (2.23) we find

fHx)=(1+x+i€)(1 —x +i€) f(x). (3.3)

In terms of f,(x) and A, we may formally write the resolvent operator as
1 _ 1 g
(z+1€)° —vh3/*K(x,y) ~ IZ (z+1€)° —7rh*/2x,; £ fiy) (3.4)

where we have the normalization condition
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1=fmdxf;‘(x)f,(x)=f”dx(1+x+i€)(1 —-x+1€) f3(x).

(3.5)

Note that because K(x,y) is an unbounded operator our operations at this stage are purely formal and ques-
tions of convergence will be discussed later. Using (3.4) we then may write

-> ‘ 1 1 f‘n 2 1

c Y~ agm2m2r) = Loes5/2 -2 2 E

Gz(ovryh) r-e }81!' 2™ _wdzle 121 . [(Z +i€)3-—h7’372).
fdy - f @Y arYer [ 1y I, (3.6)
2(1 y +Z€)2 n+l)n+l n+l .
We must now explicitly solve the integral equation (3.2a) which, using (2.23), is explicitly written as
1 1

_ -1 i =\ . _ . i

m f dy{(x T ieP ‘G e _ie)z]f(y) (1+x+i€)(1 —x+i€) f(x) (3.7)

The left-hand side of this equation is a convolution.

Therefore, we introduce the Fourier transform
H) = (2m)2/2 [ dx e () (3.8)
and, using the fact that if Rek>0,

” o 1 1.
f_”d"e”’ [(x+i€)2 +G -ie)z]" —21k,  (3.92)

while if Rek<O0,

® ikx 1 1 -
/:adxek [(x+i€)2+(x_i€)2]_ ork,  (3.9b)

we find the second-order equation for Rek> 0

(k) =A(1+ie+ akz)h(k) (3.10a)
and for Rek<0
—2kh(k)=h(1 +1,€+——-> h(k). (3.10b)

To complete the definition of A(%k) and to deter-
mine A we need boundary conditions for (3.10).
First of all, we see that in (3.7), if we send x~ -x
and y~ -y, f(x) and f(-x) satisfy the same equa-
tion. Therefore, the symmetric and the antisym-
metric parts of f separately satisfy (3.7). How-
ever, in the integral over y,,, in (3.6), only the
antisymmetric eigenfunctions give a nonzero con-
tribution. Therefore we may restrict our atten-
tion to antisymmetric eigenfunctions satisfying

h(=k)= —n(E) . (3.11)

Moreover, in order for the second derivative to
exist at £=0, k(k) must be continuous and differ-
entiable at #=0. Therefore, from (3.11) the quan-
tization condition for A is

h(0)=0. (3.12)

Because of (3.11), it suffices to consider the dif-
férential equation (3.10a) derived for Rek> 0 con-
sidered as an equation valid for all 2. To solve

the equation let
E=(GN 2k —2A(1+i9)] , (3.13)
where the cube root is defined to be real and posi-

tive for X real and positive and by analytic contin-
uation elsewhere. Then, writing

h(k) = NOOR(E) (3.14)
we have

This is Airy’s equation.

To determine which solution to (3.15) we need
first consider A real and positive. Then for the
normalization integrals to exist we need

nk)=0 as k=, (3.16)

The solution which satisfies this boundary condi-
tion is'® (for £ > 0)

R(E) =17 (E/3)M 2K, , 5 (8)¥2). (3.17)
Now from the quantization condition (3.12) we need
(- GN*3)=0. (3.18)

When £<0, the solution (3.17) may be written as'®
h(g) = 3(=£)2[J,, L 3(~£)*/?)
+d., L3=£)¥?)]. (3.19)
Therefore A; are determined from the equation
gy o(30) + .y, 5(30,) = 0. (3.20)

It is most important to realize that (3.20) has
two sets of solutions. First, there are an infinite
number of solutions which are real and positive.
Indeed, when I is large'®

A~ 3m(l-%). (3.21)
However, if we analytically continue A and use

Ja o350 )= e, (5 0], (3.22)
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we see that, if A, is real and positive and satisfies
(3.20), then

? . 37
A =e"'

also is a set of eigenvalues, provided the boundary
condition at |k |~ « is analytically continued simul-
taneously with A. This continuation may be made

without upsetting either the normalization integrals

—

or the integrals over the eigenfunctions in (3.6), and
indeed mustbe donebecause inthe integration over
3,, thephase of (z, +i€)® goes from real and positive to
e%!. With this continuation of boundary conditions,
the eigenfunctions for A} on the continued contours
are the same as the eigenfunctions for x; on the
original contours. Therefore we may write (3.6)
as

- {1 f" 1 1
c B~ p2p2r) — 1.5/2p,.3/2 52, 2
Ga(0,T5h)~ 7" }FBTr e R de,e'a, Zl [((zl+i€)3—h1'372>\,+(zl+ie)3+hr3’2>\,)

where we now may restrict our attention to the
eigenfunctions with A, real and positive satisfying
(3.16).

We next need to evaluate the y, and y,,, integrals
in (3.23). First we have, using (3.8),

[Cavsrin=@n [Carne) [ avyet

-

= —i(2m)*/214(0) (3.24)

where the prime indicates differentiation with re-
spect to k.
Second we have

f y(l y+z<)2
-lhy

-(27r)'”2f dk h( k)f dym

J

f ay, L1132 o _filyl)

YV, +i€)?

j:mdynolyndfl(ynd)]}’ (3-23)

=(21r)1/2f dk hy(k)ke™* . (3.25)

Now we use the differential equation (3.10b) with
k<0 to write

()
(21r)‘/2f dk h,(R)k &~

=—@/2r, [ anet (1+—)h (k).  (3.26)

-

Then we may integrate by parts to transfer 8%/ak?
to e”** using the boundary condition (3.16) and
(3.12) to obtain the desired result

f @ 1f'yy+)1 T -2, (.27

Therefore, (3.23) becomes

1 © 1 1
c -2 2r 1,_-3/2 /2; -2 2 ’ 2
G3(0, Th)~r {BTI_ 232y lJ‘-@dZIe 1%z, Z': M[h (0] [(Z1+i€)3— hriT2, + (Zl+i€)3+h73/27\,]}'

It remains to use the normalization condition
(3.5) to evaluate #2/(0). From (3.5) we first obtain

1= j::dkh,(-k)(l+;7;)h,(k)

=-4x,“f dkkh*(R) (3.29)
o

where, to obtain the last line, both (3.10) and
(3.11) were used. To evaluate this integral
consider for the moment %, and k,, which for

k >0 satisfy
2kh, (k)= )\1(1 + i€ *3 )h () (3.30a)

and

(3.28)

hy(R) (3.30b)

2kehy(k) =, (1 +i€— 8k2

with the boundary condition (3.16). Then

i(h 4 _h ihz) =200, = 2 khyh, (3.31)

i\ M
and thus
_4f dk khy (k)hy (k)
o

2 d d
- 4, i 3.32
N xz'l(hzdkh‘ hldkhz) (3.32)

k=0

We now let A, ~x,. Then, since
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hzc—f;hl— hlﬁhz [ﬁz(s)j—kﬁl(g)_ El(g)%ﬁz(g)] ‘H
=N(WNO( 2)[ 2(5) h(e) h(&)dk 2(5)], -—3[ (s)———h (&) - h(s) 2(5)] (3.35)
k=0
(3.33) Then expanding
o= () + g = 1) (8) (3.362)
and since and
&)l =-3— h(s)’ (3.34) d‘i Ry (£) ==—T0, (£) + (A, -)\l)d)\zh (£), (3.36b)
we have we find
- d - - d - z . a: -
x]:iril__—x—-z [hz(g)t—ﬁ;}ﬁ(g)—hl(&)ﬁhz(g)} L=0= —lez[(d)\lh (5)) —hl(g)mhl(g)] 4o (3.37)

Therefore, using (3.34) and the boundary condition (3.12), we obtain
1= —N*( )50 [0 P = =50, [0 (O F. (3.38)
This may now be substituted in (3.28) to find

- - 1 “ - 1 1
GS(0.T:h)~r2e2m{ — 3.-3/2p,..3/2; f 22, 2
¢(0,T;h)~ e {81r+ T3 23/ 2 . dz,e™?%z, zl: (zl+ie)3—hr372>\,+(zl+ie)3+hr”2x, . (3.39)

We may now return to the questions of convergence which we postponed earlier. First of all, because of
the behavior of , for large ! given by (3.21), the terms with +x, and —x, must be grouped as in (3.39) to ob-
tain a convergent expression. Moreover, by construction, when 2 -0

1
c 2 =2r
GL(0,T ;1) —~ B (3.40)

However, when k-0 the z, integral diverges. Therefore in our formal manipulations we have lost a con-
stant term (independent of %) which must be determined by the requirement (3.40).

The integrand in the z, integral is antisymmetric in z,. Therefore only the contribution comes from the
poles at

zl+ie=17“2(h)\,)‘/3. (3.41)
Thus the integral is carried out and we find
- (7 - 1 1 - R
e [ dee a3 [(Zl+i<)3—hr37"’>\,+(21+i€)3+hr3/27x,] =d A T (3.42)
= 1 1

As -0, we use (3.21) to find

T

%"-1/2}”3/226-”“,)2/3 Lyt/2p,s/2 fmdle-r(arhx)Z/fi _:; 73/2 mdt -2/3
! 0
-—%n"/zhr“/zfmdle"”"'””a, (3.43) =iz ‘3/2f dx x'/2e™>
0
Let =5- (3.45)
1
= 3 . erefore we must subtract » % 7 from the
l Wt (3.44) Th f t subt t r227/81 £ th

formal expression (3.39) to obtain the correct
to find answer which satisfies (3.40). This just cancels
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the first term of (3.39) and we obtain the final re-
sult

- - - ~yn2/3312/
Gg(O,F;h)"‘Y 1/2e 2'%.” 1/2h Z e~ Th?/ 3 3’
1

(3.46)

where A, satisfies (3.20). Comparing this with the
definition k,(k) and a,(k) in (1.9), we find the re-
sults (1.3) and (1.4).
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APPENDIX

We here derive (1.5) from a lattice theory and
express & in terms of lattice parameters. The in-
teraction energy of the two-dimensional Ising mod-
el in the presence of an external magnetic field is

8=8,-HY 0,,, (A1)
with
8=-E, ) 0,001 -E, PILIIE (A2)

The correlation functions at finite magnetic field
are, by definition,

1
©ocOunu= ZH) E O009 yn €XP (' Bé,- BH Z f k) ’
{o}

(A3)

where

Z(H)=) e¢ (A4)

{o}

is the partition function at finite H. This expres-
sion for the correlation function may be expanded
in a power series in H as

CAPE M (H) = i ’—11_, (BH)"

n=0

(]
X Z <0000MN0M1N1 i 'ou,,N,,> ’

MnNn
(A5)
where IM(H) is the magnetization at finite H.
On the lattice we have the representation'!
©ooOun- "+ UM,.N,.>= Meene ez, (A6)

where F,,, is a function of the 2(r — 1) variables
M,Nand M;,N,, and

M= [1 - (sinh2BE, sinh2BE,)2/® (A7)

is the spontaneous magnetization.
We take the continuum limit by defining

m=limM[z,(1-2,2)]"/2]z,2,+2,+2,-1], (A8a)

n=limN[z,(1-2,2) " ?]z,2,+2,+2,- 1], (A8b)

h=1lim BHM[z,z,(1 - 2,2} (1 - 2,)['/?|2,2,+ 2, + 2,

-7, (a9)
and
G(0,T; k) = 1im M2(00,0 wVu » (A10)
with
z,=tanhgE, (Al11)
and the limit is
2,2,+2,+2,-1-0, (A12)

with m, n, and % fixed. In this limit, (A4) reduces
to (1.5).
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FIG. 1. A path in the (H,T) plane that goes from
T=T, H=0 (point a) to T= T, H= 0" (point e). By the
Lee-Yang circle theorem the only singularities of the
correlation functions will occur at H=0 for T<T,.
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FIG. 2. The singularities in the complex k plane of the
connected two-point function for the five points of Fig. 1.
Only the upper half plane is shown because the singular-
ities are symmetric about the real axis. In (a), (b), (d),
and (e), the position of the lowest pole and lowest branch
cut is indicated.



