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Bound states with a gauge monopole
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Relativistically exact bound states of a Dirac spinor and of a scalar with an SU(2) gauge monopole are
determined asymptotically for arbitrary (integer or half-integer) isospin. Independently, zero-energy bound

states of the Dirac spinor are proved to exist for each value of total angular momentum J less than the
isospin T. The spin of the system is shown to be the sum of the original spin and isospin of the bound

particle.

I. INTRODUCTION

Since the discovery of the gauge monopole by
't Hooft and Polyakov, ' its various properties have
been widely investigated. The gauge monopole
should have a mass about a thousand times the
proton mass, whereas a Dirac monopole (which
is described by an Abelian field theory) would
have a much smaller mass. These two types of
monopoles differ sharply in their other dynamical
properties. It was shown by Harish-Chandrae
that a Dirac monopole does not form 3 bound state
with an electron, whereas a gauge monopole can
form bound states with an electron (or a boson).
This property of a gauge monopole is evidently
due to its non-aphelian origin, and isospin plays
a crucial role in the binding.

Studies of bound states with a gauge monopole
have been carried out by several groups, and
interesting features have been discovered, such
as the zero-energy solutions first found by Jaekiw
and Rebbi, 3 and their physical impheations have
been explored. ' Owing to the nonlinear formalism
of a gauge monopole, solving for bound states
involves certain algebraic and mathematical
problems. Part of these difficulties are due to the
approach used. The studies so far have involved
direct investigation of the field equations to ob-
tain solutions. To avoid some of these difficulties
we use an alternative method, seeking to find the
eigenvalues of the energy, using physically jus-
tified approximations and techniques typical of
matrix solutions.

Ne are particularly interested in the spectrum
of bound states, including especially zero-energy
solutions, and in the feature referred to as iso-
spin-to-spin conversion, all for general isospin
values. It is now well established' that the total
angular momentum of a monopole-plus-particle
system includes the isospin added to the usual
orbital end spin terms. Integer-plus-~ isospin

values thus lead to integer angular momenta and
Bose statistics for bourid states with a fermion,
and vlcc versa.

It is thus clear that additional spin has appeared
in these bound systems; it is not immediately
evident whether isospin has disappeared as a
separate degree of freedom. Since neither spin
nor isospin is conserved in the bound system, the
only way to answer the question is to obtain a
complete set of solutions and then to analyze what
degrees of freedom are necessary and sufficient
to account for the multiplicities of the complete
spectrum. Vfe Ihere successfully carry out this
analysis„ in a reasonable approximation, and find
that isospin indeed disappears from the system as
an equal magnitude of spin appears.

II. DIRAC SPINOR

%'e consider the field equation of a Dirac spinor
particle, moving in the field of a static monopole
solution of the Yang-Mills and Higgs system,

(y"B„+m+Gg7' y' )i]I) =0,

where D„=(1/i)s„—gT'A„', T' are isospin re-
presentation matrices, and we have chosen to
write the Yukawa coupling constant as Gg rather
than Q.

For an eigenstate, (1/i)S, will give the energy.
Thus we identify the Hamiltonian 0:

Hg =Eg=y (y [(1/i)s —gT'A' ]+y gT'A '
+~+GgT'4] 4.

Introducing the neutral-monopole solution
forms, '

1-K(r) „0, F(r)
( )afg a

where r", =r,/r, and using y~=igy, a~=2iy y~S„;
p~=(1/i)8~, L, , =e,»r~p, , and the notation Vs
=2{V, , r, i for any vector V„we can express Fi
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H =»ysS~Pz —&ys(I/r)&~gaSiirg La+ Ta-&Ta]

+y'(m+ C T,F/r) .
HeI'e we mRy note thRt becRuse the monopole

solution connects isospin indices to the position
vectox', the usuRl momentum L+ g is Qot conserved;
to generate rotations we must use J =I +8+ T in
oxder to rotate isospin as well. Hence the total
angular momentum, which in a bound state may
be called the total spin of the composite system,
is tI, not L+ S„RQd 1f T is integer-plus- p, w'e find
Rn apparent Rnomalous spin-statistics relation.
However, it has been shown8 that the statistics
of such states are also anomalous, so that the
usual spin-statistics relation is restored.

Ne also observe that &o» anticommutes with
0. This implies that the simultaneous eigenstates
of H and y y, correspond directly to eigenstates
of H, and vice versa [H.g =Ep gives H'(1+y'y, }p
=E'(I+y'y, )P; H'P=E'P gives H(l+H/E)g=+E(l
+ H/E)g. For E =0 there is a one-to-one cor-
respondence rather than two-to-two. ]

%'e therefore transfer our attention to 0'. Using
the known limiting-cRse exRct 8olutioQ fox the
monopole,

K =Cr csehc~, F = —1+C~cothCr;

and making some simplifications, we find

H' =P„'+ (1/r')[ {L+7-Z T }'—(I -SC }'T,'

+2KE(8 .T —S~T„}(I—Gyoy, )

+ 2(1-zPs, T, (1 —cy'y, )]
+ [m+ (F/r)C T,]'.

%e now make the approximation that the mono-
pole is extremely localized, and replace 8' by an
approximate, soluble form, by neglecting terms
which are exponentiRlly 8MRll Rt 1Rx'ge distances
(Cy» I). This gives

H'= p~'+( Ir/')[(L T+)—2 TR'+2S~T~(1 —Gyoy, )]

+ pn+ -- GT~

with which TR commutes. A maximal commuting
operator set for further defining eigenstates thus

of ~0~5 ~~ J~ T~ and the express~on
in brackets in Eq. (7}. In general T~ may range
fx'GIQ —+ to T, Rs does Rny other component of
T, but when J & T, T~ is also I'estx'ieted by the
I'elation ship

IT~ I
=

l&R S~l- l&~ I+ IS~I =&+-k.

For determining the eigenvalues of the bracketed
expx ession, a px'eliminary basis diagonalizing

(L+7}', along with J' and T~, reduces it to a two-
by-two matrix which is quickly BQRlyzed. %'e then
fInd

where for lT~ l& g+-,', I may be either i=la =

[Ts'(O'-I)+(g+-,'}'j'~' or I=i, —1, independent of
y'y. f» IT~I=&+i »dy'y. =+I, I=fo= Ical
for lT„ l

=J + —,
' and y'y, = -1, I = I, —1 = lc T„ i

-l.
Approximate solutions (exact solutions of the

approximate H') cannowbe determined immediately
since Eq. (9) has the form of a well-known dif-
ferential equation. There is an extensive dis-
cx'ete spectrum for all T„values for which
(m+CGT~)GT~ is positive. The discrete spectrum
is characterized by the equation

(m+CCT, }'—E'=[(m+CCT, )C T/( „n +&+I)]',

n„=0, 1, 2, ~" ~ (10)

For lT~ l &J+-,', we obtain two series of solutions,
col respoQdlng to the two possibilities for E. In-
troducing Q = T~, the energy eigenvalues are given
by

E' =E„„'=(m+CCq}'ll —[Cq/(n+ I,)]']. (ll)
For E=]0 this fox'm is valid with g =a, +1 ranging
from 1 up, while fox' l=)0-1, n=@„ranges from
0 up. In either case 8= 0 does not occur since
10 & lcq l, and also the result is independent of
yoy, . Hence the eorx'esponding discx'ete eigenvalues
of H will be ~E„~, g =0, 1,2, . .. , with a two-
fold degeneracy for all B 0 0 [in addition to the
usual (2J'+1)-fold multiplicity of angular mo-
mentum multiplets].

For lT~ l
=&+-,', we obtain eigenvalues given by

the same Eq. (11), except that I, reduces to lGq l,
b«now n =n, +1 occurs only for Py, =+ 1 and

n =n„only for goy, =-1, corresponding to E= Eo,
E = Eo —1. The corresponding discx'ete elgenvRlue8
of H are then +E,~o, q=a (Z+ —,'). We note that
E,~o=O for q =a (8+-,'), occurring with yoy, =-1,
while the other eigenvalues ax'e not doubled as
they were for lT~ l & 8+-,'.

The multiplicity of any aE„z eigenvalue of H
is thus at least 2J+1 as always, since J commutes
with H. The multiplicity is doubled if lql «8+-,'
and naO. We also note that if m =0, q =a lq l

pairs are also degenerate, and depending on the
values of m/C and C, otheraccidentaldegeneracies
mRy occux'. In R second-quaQtized theory» +E
solutions will presumRMy correspond to partiele-
plus- monopole and antipax'ticle-plus- monopole
states, both with positive energy„ thus producing
another degenerRcy.
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III. KLEIN~RDON PARTICLE

m' ( ,'GT)'/t -. (13)

(1/z)s, gives the energy of an eigenstate, as before,
and using Eqs. (3) for the monopole fields, we
obtain

E' g = Qa' + ( 1/r' }[ (L + T —KT)' —(1 —K & Ta' + h I' ]

+ m' + G Ta F/r + A.g' jp .
Again, the total angular momentum must be J
= L+ T, and the composite must carry spin T, as
will be confirmed by the solution set.

We now go to large r as before, using Eq. (5),
and since bound-state wave functions fall rapidly
at large r, we also neglect the Xg' term. We
then find

E'g = [Pzz'+(m'+AC'+ CGT„) —(2hC+GTR)/r

+(J'+ h —Ta')/r']P. (15)

Defining )()+1)=J'+h —T~', we again find discrete
solutions whenever hC+-,'-GT~ &0, with eigenvalues
given by

(m +hC +CGT„)—E = [(AC+ zGTzz)!(n„+l+1)]',

nv =0& Iy 2y ' ' ' . (16)

Defining Q = T~, which is limited by the relation

IQ I
= IT, I

= [J, I
== J,

we find energy eigenvalues

(17)

E = E„~o' = m' —(z GQ)'/h

+ (1/h}(hC+ 2 GQ) [1-1z/(n+ l ) ], ,
(18)

where n =n„+ I.
Since

(l+ 2)' = l(l+1)+-,' = J(J+1)+fz —Q'+ —,
'

& J(J+1)+h —J +4 & g,

we have l &0, and further

A similar analysis can be carried out for a
particle satisfying a Klein-Gordon equation,
minimally coupled to the gauge field and with gen-
eral couplings to the Higgs field. For a fairly
general Lagrangian, we obtain the field equation

(-D,D'+ m'+hgzVz'+GgVz, T'+y((p')|( =0, (12)

where we have arbitrarily chosen to write factors
of g with the scalar-scalar couplings; T' are
gauge group representations for the p multiplet.

To avoid complications, we assume that rp cannot
develop a spontaneous symmetry breakdown effect
for any value of y; hence that m'+hg'y'+GgT'Cz,
is positive for all y. This implies h &0 and
4m'hg' & (Gg)T'), )', or

(n+l)' =(n +l+1)' & (l+1) &(l+ —,') = J+h+-,' &fz;

therefore the last term in Eq. (18) is positive;
the other terms give a positive contribution, by
Eq. (13), and we find E' &0 for all these bound
solutions. Solution multiplets are completely
identified in this approximation by n, J, and Q,
unlike the case with the Dirac equation where ad-
dition of S and T gave in general two possibilities
for each Q.

IV. ISOSPIN-TO-SPIN CONVERSION

We now consider the question of whether isospin-
to-spin conversion occurs, or whether some other
source provides the spin to convert spin —,

' or 0
into integer or integer-plus--, ' spin, while iso-
spin remains as an additional degree of freedom.
The answer is to be found by considering the
multiplicities of states with various total angular
momentum quantum numbers.

A two-body composite, in general, besides its
overall position and visible orbital angular mo-
mentum degrees of freedom, has radial, internal
(relative') orbital angular momentum, total spin,
and possibly other internal degrees of freedom.
Spin is distinguished from other internal degrees
of freedom (isospin, etc. ) by the definition that
spin S adds to internal orbital angular momentum
L to give J, the total angular momentum in the
center-of-mass frame, which is ordinarily (as
here) a good quantum number. We note that the
rules for adding angular momenta, applied to J
=L+8 where I, takes all nonnegative integer values
and S is fixed, give in general 2$+1 multiplets
with each J value, but if J &S then there are only
2J+1; there is one per L in the range P- S~ ~f,
~ J+S. However, an isospin degree of freedom
T should give a multiplicity of 2T+1 regardless
of J.

Looking now at our solution sets, we observe
that there are clearly quantum numbers corre-
sponding to the radial degree of freedom (n)
and to total angular momentum (J and also no~

which is not explicitly indicated). We find, for
given n, J, andm~, generally 2(2T+1) eigen-
solutions in the spinor case and 2T+1 in the
scalar case (respectively, 2 and 1 for each T~
value). However, the limitation ~Ta ~~ J+-,' or J
[Eqs. (8), (17)] reduces these multiplicities for
J~ T. The specific multiplicities correspond
exactly to a system having spin values T+ —,

' and

T ——,
' in the spinor case or T in the scalar case;

that is, to the hypothesis that the spin of the bound

system is the sum of its original spin —,
' or 0 and

its original isospin T.
The alternative hypothesis, that the interaction

of half-integral charges with a magnetic field
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has created addi. tional spin angular momentum
(to give the integer J values) while the isospin
multiplicity is unaffected, "predicts a general
multiplicity of (2S+1)(2T+1)which is too large,
since S must be changed. The low- J multiplicities,
in particular, directly contradict the hypothesis
tnat the isospin multiplicity is unaffected, since
they do not show a (2T+ 1) factor. Other hypotheses
claiming to describe the internal degrees of free-
dom must evidently either also contradict the
properties of this solution set, or else be equiv-
alent {for predictive purposes) to the assumption
of e omplete iso spin- to- spin conversion.

V. EXISTENCE OF ZERO-ENERGY SOLUTIONS

R~{r)= Qp „o(r) {S~ =~!, T~ =Q), (20)

this becomes the system of coupled equations

C' FQ
w + (p {r)Lgr

+—[(,I+ —,')' —Q']' '(p, (r)

—[(r+-!7 —(Qs!)']'~' rp, o~(r) =0. -(21)

For J.-. T, the index values are S~ =*-,.', T~ = JR- S„
= {-2—Sr) to (J —Ss), for a tots, l of 2(2g+1)
components; for J&T, the values are S~ =a —,-,

TR =-T to T, for a total of 2(2T+1) components.
Since the differential equation is first order in
each component, the solution space of Eq. (21) is,
respectively, either 2(2J + 1) or 2(2 T + 1) dimen-
sional.

For r -0, we have K -1 and +-0. Assuming
that the leading behavior of the solution as r-0
is &,, q=C, ~r" for some p, the leading terms of
Eq. (21) are those of degree p&

—1, giving an
eigenvalue equation for pg,

nC, o
= [ {g+ -,

' )' —Q' ]
' ~' C,—o

+ [{r+l P —(Q+ ,'P]'"C, „, - (22)

One interesting feature of this solution in the
spinor case can be partly confirmed by an exact
analysis, and that is the existence of zero-energy
bound state, i.e. , the existence of norma)izable
solutions to the exact wave equation at E =0. For
E. =0, the Dirac equation can be written as

~t&//dr —(1/r)( 1 + 2L S + 2{1 -K){S T —SzT~)]

+2y y, Ss[m+GTR(F/r))R~(r) =0, (19)

where the normalizability condition is fo {R~j'dr
/' ~

Expanding in eigenstates of S~ and T~,

0—+y'y, (m+CGQ)
~ ~, =0,

dr ) I y
(23)

which gives y, o-exp[my y, (m+CGQ)r]. For a
given Q and y'y„one of the two S~ values will
give a converging, one a diverging, exponential.
For J& T we thus find that half of the independent
solution: can be chosen to converge at infinity.
However, for J & T not every Q value has both

SR values allowed. For Q =+ (J+ —,), only S„=+ -„re-
spectively, occurs, and, aslongas ~m ~&CG{~+ z),
for y'y, =+1 both of these Q values give di-
verging exponentials, while for y'y, = -1 both
give converging exponentials. Hence as long as
~m { &CG(J+ —,'), for yoy, = —1 and J&T, one more
than half of the solutions can be taken convergent.
The solution space, of dimension 2(2J+1), thus
has a subspace of solutions convergent at the
origin whose dimension is 2J+1, and a subspace
of solutions convergent at infinity whose dimension
is {2J+1)+1.The intersection of these subspaces
must therefore be at least one-dimensional, and
there is therefore at least one solution which is
convergent at both extremes, and therefore nor-
malizable. There is therefore at: least one zero-
energy angular momentum multiplet for each
8 &T, as long as {m

~
&CG{J+-,'); it will have y'y,

= -l. [lf m+CGQ =0 for some Q, solutions with
leading behavior isolated in the y, components
do not occur, but the argument does apply for
components y~, ~ =(&p, +ay @) instea. d, and the
same final conclusion is reached. ]

VI. VALIDITY OF THE APPROXIMATION

Departure of the exact potential from its asymp-
totic form will certainly lead to modification of
the solutions found here. However, if the gauge-
field mass, which determines the monopole dis-
tance scale (1/C), is large compared to the par-
ticle mass (m plus the symmetry-breakdown con-
tributions involving G), the asymptotic form will

or in matrix notation -nC =C. By inspection
$p is a multiple of a spin reflection operator (p~:
S„——S~) and thus anticommutes with S~; hence
eigenvalues for pg occur in positive-negative pairs,
and we can select, among the independent solutions
of Eq. (21), half of them to correspond to eigen-
vectors of )g with eigenvalues n = 0, and hence tobe
convergent at the origin.

Considering r -~, we note that since the off-
diagonal terms in Eq. (21) fall off as r-~, while
m+ GFQ/r approaches a constant, m+CGQ, we
can conclude that for each component y, @ there
is a. solution in which only that component has the
leading behavior at infinity of the solution. That
leading behavior is therefore given by solving
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be accurate outside a small neighborhood of the
origin and the solutions'found here shouM also be
good, especially those with relatively large $

values in Eqs. (9) and (15), whose radiai functions
vanish strongly at the origin. Some effect of our
approximation is visible in the list of zero-energy
spinor solutions, where we found two for each
8 up to T- -,' [one for each sign of T8 =+(J+-,')],
while the exact analysis established only one per
J value. (We note that zero-energy solutions have

relatively small ) values, hence our approximation
was not expected to be good. This supporting
evidence fx'om the exact analysis for zero energy
thus lends some confidence to oux' approximation
for all l.)
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