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Instantons in (1+1)-dimensional Abelian gauge theories
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We study the Abelian Higgs model in 1+ 1 dimensions with the addition of a fermion of arbitrary charge

g to understand the effect of instantons on the gauge and chiral structure of the model. Semiclassical

approximations are used assuming a small instanton density. Without fermions, the global gauge symmetry is

found to be restored, resulting in a linearly rising potential between static charges (+Q) and a complete
screening of integral charges (Q/e = integer with e the scalar charge). This gauge structure persists with

the addition of a massive fermion. The spectrum of fermion bound states and the stability of the 8 vacuums

are discussed. For a massless fermion, the gauge symmetry is spontaneously broken. We explicitly show that
the chiral symmetry is also spontaneously broken, but that the Nambu-Goldstone pole decouples from the
gauge-invariant sector of the theory.

I. INTRODUCTION AND SUMMARY

The theory of quarks coupled to non-Abelian
gauge bosons is the most promising field-theoreti-
cal model for understanding the reactions and
spectroscopy of hadrons. Because of its asymp-
totically free behavior at short distances, it is
capable of explaining the scaling behavior of high-
energy hadronic reactions. The logarithmic vio-
lation of scaling which it predicts may even have
been observed. Furthermore, the growing ten-
dency of the effective coupling constant at large
distances has led to the speculation that quarks and
gluons may be permanently bound within hadrons
and never appear as asymptotic particles. '

An attempt to implement these ideas is the for-
mulation of gauge theories on a lattice. ' It has
been shown that in the strong-coupling limit quarks
are indeed confined. This approach suffers from
two drawbacks, however: the lack of Lorentz co-
variance at any intermediate stage of calculation,
and the assumption, yet to be proven, that there is
no phase transition at nonzero values of the coupl-
ing constant. ' (The latter is important in under-
standing the approach to the continuum limit. )

Recently Polyakov pointed out' that certain clas-
sical gauge field configurations in the continuum
Euclidean space-time, which have since been
termed instantons, may be relevant to the problem
of quark confinement. In fact, for "compact" quan-
tum electrodynamics in 2+1 dimensions, he has
shown that instantons (which are Polyakov-'t Hooft
monopoles') boost the logarithmic Coulomb poten-
tial into a linearly rising one. For non-Abelian
gauge theories in 3+1 dimensions, Callan, Dashen,
and Gross' have argued that the instanton discov-
ered by Belavin et al. ' does not confine quarks by
itself, and proposed "half instantons" or "merons"
as the relevant field configuration. Another im-
portant observation, by 't Hooft, ' is that in the

presence of massless quarks the instanton of Bel-
avin et a/. induces an effective interaction which
breaks the chiral U(1) invariance down to a dis-
crete symmetry, thus providing a possible way
out of the U(l) problem. "

With these ideas in mind, we have studied a sim-
ple model possessing instantons, namely, the U(1)
gauge theory in 1+1 dimensions specified by the
Euclidean' Lagrangian density

', F„„F„„+(-S„+ieA„)p*(S„—ieA„)p

+ k&(p *p —v')'+ p(y s„+m) g+ ig py„gA„.

Here F„„—= S A„—S„A is the curl of the U(1) gauge
field A„,Q and P are complex scalar and Fermi
fields of charges e andg, respectively, and we
choose &, v) 0, namely, the classical potential for
Q has a, degenerate set of minima at ~P ~

= v. This
Lagrangian density is invariant under the local
gauge transformation A„(x)-A„(x)+s„&(x),Q(x)
—p(x) exp[ieX(x)], t((x) —P(x) exp]ig&(x)], and also
under the global chiral transformation A (x)
-A, (x), Q(x)- p(x), t/r( )x-exp( yo, )t/i( )xup to the
mass term mug.

In the conventional perturbative approach, the
system undergoes a spontaneous breakdown of the
gauge symmetry signaled by a nonzero vacuum ex-
pectation value for Q,

"which in turn generates
a mass for the gauge field. In addition, the chiral
symmetry which holds at m =0 remains unbroken. "
Thus the spectrum includes a massive vector bos-
on, a massive neutral scalar boson, and a charged
(massive or massless) fermion. As a result, elec-
tric charge is screened and the static potential be-
tween charges damps exponentially with their in-
creasing separation.

Except for terms containing Fermi fields, (1.1)
is identical to the Ginzburg-Landau free energy
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density for a two-dimensional superconductor.
Such a system is known to possess vortex config-
ura. tions, i.e. , localized regions with Q(x) =0
through which a "magnetic" field (F,) penetrates
perpendicular to the two-dimensional plane. They
have the property that the phase of P(x) changes by
2wN (NF Z, the group of integers) along a closed
path encircling a vortex. They are the instantons
in our terminology, and we have studied how they
modify the gauge and chiral structure of the system
obtained in a perturbative approach.

The main tool of our analysis is the so-called
dilute- instanton-gas approximation which takes
into account field configurations consisting of an
arbitrary number of instantons widely separated
from each other as compared to their sizes. The
range of validity of this approximation is limited
to S„»1where S„is the Euclidean action of one
instanton. (This condition will be made more pre-
cise in Sec. II.) The conclusions we have reached
are summarized as follows:

(1) The system without fermions: Instantons
mediate quantum-mechanical tunneling from one
classical vacuum configuration to another. ' ' As
a result, the true vacuum is a linear superposition
of gauge vacuums centered around the classical
zero- energy configurations which are connected to
each other by an instanton. The new vacuum is
parametrized by an angle 8 and is called the 6)

vacuum. "
The 8 vacuums respect the global U(1) gauge

symmetry, i.e. , in the 6) vacuums, the expectation
value of ~t) vanishes and the gauge field propagator
acquires a massless pole" in addition to the mas-
sive pole present in a perturbative treatment.

As may be expected from this, the static poten-
tial between a pair of charges Q and -Q separ-
ated by a distance R consists of two terms: a
short-range piece damping exponentially with R,
and a long-range piece rising linearly with R. The
latter has two noteworthy features: (a) It becomes
dominant over the former on a length scale charac-
teristic of the mean instanton separation, i.e. , the
linear potential becomes appreciable only when the
charges are far enough apart so that there are
many instantons between them. (b) The coefficient
of R is periodic in Q with period e, vanishing for
Q =ne (nE z). This is indicative of charge screen-
ing due to the scalar field P (with charge +e) which
is present under the guise of instantons. We verify
this explicitly by calculating the expectation value
of the total charge in the presence of an isolated
external charge. Some of these results have pre-
viously been obtained by Callan et al."

The 6) vacuums have a background electric field
proportional to sin8. Thus, for 8m 8 and w (mod2w),
parity and time-reversal invariances are spon-

taneously broken. '" In order to see whether
these effects are phy=ically meaningful, we ex-
amine the stability of the 6) vacuums against
charged pair production. The energy density of
the 8 vacuums is proportional to -cos6." The
creation of a pair of charges Q and -Q effectively
changes the value of & between the pair into 6

+2wQ/e [the sign depends on whether Q is on the
right (-) or left (+) of -Q]. From these consider-
ations, we show that the introduction of an addition-
al field with charge g (one, nF Z) induces the decay
of the 8 vacuums except for 8=0 (mod 2w)."

(2) The system with massive fermions: All the
results described above apply to this case. In par-
ticular, the existence of a linearly rising term in
the static potential indicates that, unless g =ne
(nE-Z), a single fermion state has infinite energy
and hence disappears from the spectrum. In order
to confirm this and also to analyze the spectrum in
general, we derive an effective Lagrangian for the
Fermi field. This is done by integrating out the
scalar and gauge fields in the Feynman path inte-
gral within the dilute-instanton-gas approximation.
We then express the effective Lagrangian in terms
of an equivalent boson representation and apply
semiclassical techniques. The result: for 8/e = p/q,
a rational number (p, q&z), there are finite-en-
ergy bound states of l fermions and l antifermions
with I 7= +q an-d with (fermionic) charge Q&

= +pe.
(This is possible since the fermionic charge can
then be screened by vacuum polarization of the
scalar field. ) There are also bound states contain-
ing an equal number of fermions and antifermions.
If g/e is not a rational number, only the latter type
of bound state exists.

We also show that unless 8 and g/e satisfy 8

+2wmg/e =2wn (m, nEZ) the true vacuum breaks
parity and time-reversal invariances spontaneous-
ly. The above criterion is interpreted as the con-
dition for an exact cancellation of the background
electric field by the creation of charged fermion
and scalar pairs.

(3) The system with massless fermions: As has
been shown by Callan et al. ,

"massless fermions
induce a logarithmic interaction between instan-
tons. This long-range interaction prohibits tun-
neling in the global sense although it is still al-
lowed locally. " The question then is to understand
the effect of the long-range interaction on the gauge
and chiral structure of the theory.

In order to analyze this problem, we continue
to use the boson representation of the effective La-
grangian (with m = 0) obtained in (2), and invoke
two statistical-mechanical analogies. One is the
two-dimensional Coulomb gas analogy discovered
by Callan et al."in which the instantons are iden-
tified with the Coulomb charges. The other is an
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analogy to the continuum limit of the classical X-Y
model in two dimensions. The equivalent Bose
field (with a certain smearing due to the finite in-
stanton size) is regarded as the angle of the two-
dimensional classical spin relative to a fixed di-
x ection, and the instantons induce an "external
magnetic field. " The temperature for the former
is given by T'=e'/4wg', while for the latter, T
=

4wg '/e'.
For the Coulomb gas, Kostex'litz" has carried

out a detailed renormalization group analysis. His
results relevant to our study will be summarized
in Sec. IV. To further facilitate the analysis, we
have constructed a simple mean-field approxima-
tion for the X-Y model which is valid for low tem-
perature. (For a more precise statement, see
Sec. IV.) Roughly speaking, the behavior of the
two systems that emerged is as follows: They both
have a phase transition at g'=g, ' =2e'." For g'
&g,', the Coulomb gas is in a dipole phase (i.e. ,

two oppositely signed charges bound together) and

the X-E' model is in a "disordered" phase (i.e. , the
free energy is analytic at vanishing external mag-
netic field). For g'&g, ', on the other hand, the
Coulomb gas behaves as a uniform plasma, and
the free energy of the X-Y model develops a sin-
gula, rity at vanishing external magnetic field ("or-
dered" phase).

In terms of these analogies, the gauge and chiral
structure of the theory that we have found is des-
cribed as follows:

(i) the gauge symmetry is spontaneously broken
for arbitrary values of g'. The mechanism res-
ponsible for its breakdown is quite different; below
and above g,', however. For g'&g, ', a, pair of in-
stantons with the phase change of P(x) equal to 2w

and -2w are closely bound together. (They corres-
pond to Coulomb charges + 1 and -1.) Thus, as
far as the gauge symmetry is concerned, the 8 vac-
uums have essentially the same structure as that
of the perturbation-theory vacuums, and hence the
gauge symmetry is spontaneously br oken. For
g' &g,', on the other hand, the instantons form a
uniform plasma which exhibits a Debye-Hiickel-
type screening. This means that the gauge field
propagator has a massive pole in addition to that
present in a perturbative approach. The former
becomes massless as g'-g, ' —0, but the residue
also vanishes in this limit, ensuring a smooth tran-
sition to the region g'&g, '. The gauge symmetry
i.s therefore still spontaneously broken, and there
is no linearly rising potential between a pair of
charges.

(ii) The chiral structure is as follows: In terms
of the X-Y model analogy, the angle 8 determines
the direction of the external magnetic field induced
by the instantons. Obviously, the behavior of the

system does not depend on the value of 8. Thus the
8 vacuums form a degenerate set of vacuums which,
we note, are mutually connected by chix"al trans-
formations. In addition, the X-Y model spin, which
rotates under a chiral transformation, has a non-
vanishing expectation value for all g'. Thus the
chiral symmetry is spontaneously broken" and
moreover the 8 vacuums are the correct vacuums
satisfying the cluster decomposition property"
(see Sec. IV C for details).

The corresponding Nambu-Goldstone pole appears
in the Green's function (& ~T~(Z' (x) sing(y)) I 8)
where 8'„is the conserved but gauge-noninvariant
axial-vector current and sing(y) is one of the com-
ponents of the X-Y model spin. " This Nambu-
Goldstone pole decouples from the gauge-invariant
sector of the theory: The "seizing" mechanism
proposed by Kogut and Susskind" is at work.

Actually the effective Lagrangian fox' the fermion
is still invariant under a discrete chiral transfor-
mation g-exp[w(e/g)ny, ]g (nEZ) which, if not spon-
taneously broken, is enough to prohibit a nonzero
fermion mass. " We show that this symmetry is
spontaneously broken only for g' &g,'. This is
made explicit through the observation that for g'
&g,' our effective Lagrangian is a cut-off version
of the sine-Gordon Lagrangian.

The xest of the paper is a detailed account of the
results described above. Sections II, III, and IV„
respectively, deal with the three cases (1), (2),
and (3), Section V is devoted to discussion. In
particular, we compare our results with the recent
work of Callan et aE."in which, instead of one
fermion with an arbitrary charge g, they introduc-
ed N species of fermions all with charge e and
studied the chiral structure as a function of¹

II. SCALAR ELECTRODYNAMICS IN 1+1 DIMENSIONS

We consider the system having the Euclidean
Lagrangian density

z = .' E„„E„„+(s„+ie-A„)y*(s„fed„)y-
+ —g(f+P ~2)2 (2.1)

A. Instantons and the 0 vacuums

In the usual perturbative treatment, the system
described by (2.1) undergoes a spontaneous break-
down of the gauge symmetry due to the degenerate
minima [~ y(x)

~
-5] of the scalar field potential';

which in turn generates a mass for the gauge field.

which is invariant under the U(1) gauge transfor-
mation A„(x)-A„(x)+S„&(x),p(x) - Q(x) exp[iex(x)],
and we choose X, v&0.
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A (x)-()„X(x),

(h(x) —v exp[ie&(x) ],

as lx I
-=(x,'+x,')'i'-+

(2.2)

The function z:—exp[ie&(x)] then defines a mapping
from the one-dimensional sphere at Euclidean in-
finity Ix I

=+ to the unit sphere in the complex e
plane. Since P(x) must be a single-valued function,
such mappings fall into homotopy classes charac-
terized by an integer winding number

e eq= — dxf F dx A &Z.
4~ gv gv (g(~

(2.3)

In the case that the inequality e «v~ is satis-
fied," the explicit form for an instanton with wind-
ing number q=N(40) in the Landau gauge (() A =0)
is given by

As a result, the particle spectrum consists of a
vector boson with mass m~= ev and a neutral
scalar boson with mass m, = ~v. Consequently,
charges are completely screened and the static po-
tential between a pair of charges separated by a
distance R decreases as e

However, as discussed by Callan et al. ,
'4 the ex-

istence of instantons in this system completely al-
ters the perturbative picture described above. In
order to see how this comes about, we describe
below the properties of one-instanton solutions and

briefly outline the effect of instantons on the vac-
uum structure.

The Euclidean Lagrangian density (2.1) is identi-
cal to the Ginzburg-Landau free energy density for
a superconductor in two space dimensions. Such
a system has space-dependent field configurations
with finite action known as vortices, which are the
instantons in our terminology.

Recall that a field configuration has finite action
only if it satisfies

F„"„'(x-R) =e„„—m~'K, (m~lx —R I),

for Ix-Rl & 1/m, , (2.4e)

N'm ' mS'"&-=S[A'"' y'"'] =v ln ' =S . (2.6)7 e' m W

In Fig. 1, the functions p„(lx-Rl) and
E'~'( I» R

I ) =—a e „F„'"„'(x—R) are sketched.
In quantum mechanics, the existence of a solu-

tion to the Euclidean equations of motion is asso-
ciated with a tunneling process in which a particle
penetrates through an energy barrier. " Analo-
gously, instantons are interpreted as mediating
the tunneling between two different gauge vac-
uums. """To be more precise, in the A4=0
gauge, " the winding number is given by

q = n(+~) —n(-~)

where

(2.6a.)

n(x, ) =— dx,A,(x„x,) .
77 co

(2.6b)

By a suitable time independent gauge transforma-
tion, we may take n(-~) to be an integer. The in-
stanton thus describes a tunneling from a classical
zero-energy configuration labeled by n to one la-
beled by n+q. As a result, the true ground state
of the system is a linear superposition of gauge
vacuums (denoted by In)) centered around the zero-
energy configurations labeled by n. As was
shown, "there exists a unitary operator

T= exp ——E x4, x~ =+ + E x4, x~ = — )

(E ae„„F„„)=-,(2. 'I)

p.(lx R-l) v-+O(e™.)-"), - lx-RI-+"
(2.4d)

(K, is the modified Bessel function). The corre-
sponding gauge field strength F„„andthe Euclidean
action S—:fd'x Z are given by"

A„'"'(x—R) = —()„8(x—R)A„(lx—R I), (2.4a)

P'"'(x —R) = exp[i%8(x —R) ]p„(Ix —R I), (2.4b)

where e(x) =tan '(x, /x, ) is the angle of the vector
(x„x,) measured from the direction of the x, axis,
8 is an arbitrary two-dimensional vector repre-
senting the position of the instanton, and"

A.(l»-R I) =I-m~l»-RII~, (m~1»-RI)

for Ix —R
I
+ 1/m,

-1+O(e w'" '), as Ix —R
I

— (2.4c)

—rn IX-R I

IX-R I
e

= Ix-Rl

FIG. I. Schematic plot of p~(/X R/) and E~ '(/X R/)--
~&»E„'„'Q-R)for the case e«v ~.
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which executes a global gauge transformation such
that T~n)= ~n+1). By gauge invariance of the Ham-
iltonian H, we also have [T,H]= 0. Thus, the par-
ticular linear superposition of n vacuums which
simultaneously diagonalizes T and H is given by"

(2.8)

with T~8)=e'"~8). Note that the conventional per-
turbation-theory vacuum is obtained by expanding
around any classical configuration labeled by n,
neglecting the possibility of tunneling.

In the rest of this section, we explore in detail
some properties of the theory in the 6) vacuums
via a semiclassical approximation. This is ap-
plicable if the tunneling amplitude is sufficiently
small. This is given by C„e /m», ' [see (2.5)],
where C„is the result of Gaussian corrections
about the classical configurations, and 1/'rn~' is
roughly the volume in space-time over which tun-
neling takes place. We thus consider the range of
parameters"

(2 9)

Unless C„is extremely large this suffices to have

A«& "&p&,&(x) —g A&&pi&(x (2.11a)

m'"i&(x -R )iP& ~ ~ ~ N~ (x) ~ II e&6i i
8

(2.11b)

where N,. are integers, and &,. are real constants
(0 & 5,. & 2»). This configuration has the following
properties: (i) The winding number is q=Z, ,N, .
(ii) ~R, -R&

~

- 4» 1!m», for any pair of i and j, it
satisfies the equation of motion up to terms of or-
der e &~. The Euclidean action is given by

g[A &"'"» p N&'""&, ] = Y P& +Q(e™&F~).
i~1 (2.11c)

and Z &--(I/2a)(B, A )' is the gauge fixing term.
In the following, we work in the Landau gauge (a- 0).

As already remarked, we approximate the func-
tional integral (2.10) using a semiclassical (saddle
point) method. For this purpose, we need solu-
tions of the classical equations of motion. For
each value of q=N, the exact solution is given by
(2.4). In addition, we have the following set of ap-
proximate solutions:

B. The gauge structure of the 0 vacuums

In order to examine the physical consequences
of tunneling, we compute the transition amplitude
of the & vacuums (from x, = -~ to x, =+~) in the
presence of a conserved source J„coupled to A.„.
In terms of the Euclidean Feynman path integral,
this is gi.ven by

&fp. ; p&= I Ipp &I&pl&p*&.

Thus, (2.11) represents an ensemble of k instan-
tons interacting with each other through an expo-
nentially damping potential.

The integrals over A„and f are now carried out

by computing the Gaussian fluctuations about the
classical configurations A„'"i" ~', Q'"j." ~' for
all N„.. . , N, . In doing this, we neglect the effects
of interactions between the instantons. The posi-
tions of the instantons R„.. . , R~ are treated by the
method of collective coordinates. "" Up to an
overall multiplicative constant, the result is given
by

Xexp tqe- d2x g+gtf+JpA

(2.10)
zfp. ;p& =e p(- F. pp 'Ip„;p&), (2.12a)

where q is the winding number defined by (2.3), where

IV' '[p p]= — ""
y f d'R p( —

J d'*p I*&A ' '(* —R&

+g d'x d'y J„(xD„'„~(x,y;R —D„'0'~ —y) J„y), if NW P, (2.12b)

dxdy J x D „,g —y)J y), jf N —p

Here D„'„'is the Gaussian approximation to the
gauge field propagator in the presence of an in-
stanton with winding number q = N and at position
R (N=O means no instanton), and y~=C„e

where C~ is a positive finite constant including
finite Gaussian corrections and the normalization
factors resulting from the extraction of the collec-
tive coordinates.
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Recall that in deriving (2.12) the interaction be-
tween instantons has been neglected. This should
be a good approximation if the average distance
between instantons is much greater than 1/m», so
that their mutual overlap is exponentially small
[see (2.11c)]. To check this, notice that the num-
ber density of instantons with winding number q=N
is given by

Ing[Z„=0, 8] = 2y„cos(f&I8), (2.13)

with V= fd'x. " This is in fact quite small com-
pared to m~' due to our assumption (2.9). Our ap-
proximation may thus be termed a dilute-instan-
ton-gas approximation. Notice also that y„de-
creases quite rapidly with increasing ~f&t~ (S„&xN').
From now on, we therefore keep only those terms
having N= 0, +1. (We have checked that retaining

terms with ~N ~

& 2 does not change the qualitative
features of our results. )

Let us now discuss several consequences of
(2.12).

(1) The energy density e~ of the 8 vacuums nor-
malized so that &~= 0 for y, =0 is given by

&g= -2j'~ cos~. (2.14)

Clearly, the vacuum
~

8 = 0) has the lowest energy
among the 8 vacuums. For this reason, we shall
concentrate on the 8= 0 vacuum in the rest of this
section. The question of stability of the vacuum
for general values of 8 will be treated in Sec. IIC.

(2) We can examine the gauge structure of the 8
= 0 vacuum by computing the expectation value of
&t&(x). In the dilute-instanton-gas approximation,
we easily find

(8=0~p(x) ~8=0) =&&exp -y &I'8 2 — " =0,y&'&(x I~)+~&-'&(x E)
0

(2.15)

since the integral of &t&'"'(x —8) over the angle of
the vector A vanishes. Thus, the ~= 0 vacuum is
invariant under the global gauge transformations. "
Intuitively, what has happened is this: In any one
of the n vacuums, the phase of the sca,lar field &t&(x)

has an infinite correlation length. The instantons
have destroyed this correlation by the rotating
phase of p"".

Since the vacuum is globally gauge invariant, we
expect a massless pole in the gauge field propa-
gator In fac. t, with the help of (2.12), we find

is easily evaluated by substituting

Z„(x)= ige„„8„8,(x) (2.18)

into (2.12) where S denotes the a.rea of space-time
enclosed in the contour C, and 8 (x) = 1 if x & S and
= 0 if x gS. Neglecting terms independent of g and/
or 8, we find

2

E(E) e fll ps
2&k gf

g+2y, 1 —cos 2w — B+O(y, Re™w),
J

(2.19)

P~Pp g Bg g m ~
p2 p2 ~ 2 ~2 1 p2 p2 ~ 2

(2.16)

where we have used (2.4) and have neglected the
short-range piece D"„"—D„'0„'.

(3) The presence of a massless pole in the gauge
field propagator indicates that the energy E(R)
stored in a pair of charges g and -g placed at a
distance R has a Coulomb term which grows lin-
early with R. This can be checked by the Wilson
formula"

where the last term represents the correction to
the second due to the finite instanton size.

This result has two important features:
(i) The energy E(R) contains two terms, the first

vanishing exponentially with a characteristic length

(8= 0; out~ T exp[-igfcdx„A„(x)]
~

8= 0; in)

(8 —0 out
~

8 —0 in)

+ OO

where the contour integral is taken along the path
&- depected in Fig. 2. The left-hand side of (2.17)

,

-g/2

FIG. 2. The contour C for the %ilson formula (2.17).
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scale I/m~ and the second rising linearly with A

and becoming appreciable for R»y, ' '. This may
be interpreted as follows: Recall that the avera. ge
distance between instantons is roughly given by
y~-i/2 Thus, on a length scale shorter than yi x/2

the ga, s of instantons is essentially nonexistent and
the gauge symmetry remains spontaneously broken.
Consequently, a pair of external charges feels a
potential characteristic of a massive gauge field.
On the other hand, on a length scale much greater
than y, '~', there are many instantons between two
charges. These instantons restore the global gauge
symmetry as we have seen in (2.15). As a result,
the potential rises linearly with increasing separa-
tion.

(ii) The coefficient of the linearly rising piece is
periodic ing/e vanishing for g/eE. Z. This is in-
dicative of charge screening. In order to verify
this conjecture, we compute the total charge in

the presence of one external charge of magnitude
g. Denoting such a state as ~g; 8= 0), we obtain
using (2.12) that

—2vg/e is replaced by 8+ 2vg/e. ) We see that un-
less g/e and H satisfy

eosH ~ cos 0 —2m-ej

cosg ~ cos 8+ 2w-
g'}

ej '

(2.23)

it is energetically favorable for the charged pair
to recede from each other to spatial infinity, ef-
fectively changing the value of H into H +2mg/e. In
such cases, the introduction of an additional field
with charge g will induce the decay of the 8 vac-
uums via charged pair production. "

Of course there is also the possibility that the
creation of more than one charged pair decreases
the energy density even though one charged pair
may not. This means that the 8 vacuums are un-
stable unless H satisfies

cose ~ cos H —2nn-
g'|
ej

4", 8=0~It.tlg; 8=o&

g' 8= 0 tkc~e~E~4 x g~ 8= 0
%CO

and

cosg ~ cos 8+271'n—
e

(2.24)

=—y, sin m'— (2.20)

C. Stability of the 0 vacuums

Let us now go back to the general H vacuum. A

peculiar property of the 8 vacuums [8& 0 (modv)]
is that they have a nonvanishing background elec-
tric field. In fact, using (2.12), we find

(8~E(x) ~8)=i —y, sin8 (E=-,'e„„E„„).(2.21)

Thus, the external charge is completely screened
only if g/e&z. This is a quantum effect due to the
creation of pairs of scalar particles (with charge
+e) which are present under the guise of instan-
tons.

for any positive integer n. As an illustration, we
plot in Fig. 3 the values of g/e and 8 fulfilling
(2.24) for n= 1 and 2. It is easily seen that except
for the l.ines g/e&Z the overlapping region of (2.24)
for n = 1,2, . . . , n, becomes smaller as n, in-
creases, and shrinks to the line 8= 0 (mod2w) in
the limit no ~. We thus find that only the 8=0
(mod2v) vacuum is stable. This does not mean,
however, that the 8 vacuums (8&0) necessarily de-
cay into an "effective" H=0 vacuum, since pair
production can change 6 only by an integer multiple
of 2'/e. In order to determine the parity and
time-reversal properties of the true ground state
for H +0, we have to introduce the additional field
explicitly. This we shal. l do in Sec. III.

This implies that the parity and time reversal in-
variances are spontaneously broken for 84 0 (mod
m}."" For this effect to be physically meaningful,
however, the H vacuums must be stable against
gauge-invariant perturbations, in particular,
charged pair production.

In order to examine the latter possibility, we
compute (2.17) for an arbitrary value of 8 and find

2

Ee(B)= — e™&"+ 2y, cos8 —cos 8 —2v — A.

(2.22)

(If one reverses the direction of the contour C, 8

III. ADDING MASSIVE FERMIONS

In the preceding section, we have shown that the
global gauge symmetry is restored in the 8 vac-
uums. As a result, there exists a linearly rising
potential between a pair of charges g and -g which,
however, vanishes for g/e&z. In order to study
the spectrum which results from such a potential. ,
we introduce a massive Fermi field g with charge
g. The Lagrangian is given by

2[A„,Q, g) = g [A„,p]+ g(y„s„+m)/+eggy„pA„.
(3.1)
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0 l

FIG. 3. The shaded region and the straight lines at g/e = ~/n (ng~ Z) satisfy (2.24) for (a) n =1 and (b) g =2. The
periodic extension 8 8+2ml (E & Z) is understood.

A. Effective Lagrangian for the fermion

The spectrum in the fermion sector is most
easily discussed in terms of an effective Lagrang-
ian Z, «[&(&] which is obtained from the transition
amplitude (e;out]&;in) by integrating out A„and
Q within the dilute-instanton-gas approximation
introduced in Sec. II.

In order to handle the 8 vacuums correctly in
the presence of fermions, we make a slight di-
gression. To keep track of boundary conditions,
we work in the A, =o gauge, The equations of mo-
tion for E(x) = ~c„„E„(x)are given by x Z igJ„;~+2&& —( (3.9)

The n vacuums are thus a tensor product of Fermi
and scalar sectors, namely, ~n) =T,"~n;q), where
~n; q) = T„"~0)is the n vacuum in the absence of fer-

mions. Since the operator T commutes with the
Hamiltonian and rl(+~) is equal to zero for any in-
stanton solution, the boundary condition for $(x~)
is given by ((+ OD) = $(- «&) (—= $). Dropping an infi-
nite multiplicative constant, we then find

8„(c„„E)=i'„+fej „, (3.2)

with J'„=gy„gand j„=$*8„$—e„p*p—2ieA„Q*Q.
Since J„andj„areseparately conserved, one can
write

where Z in the integrand is defined by (2.10), and
we have returned to the Landau gauge. Replacing
2 by its dilute-instanton-gas approximation (2.12)
and ignoring the short-range terms D~„'and D„"„'
—D„'o& (as well as terms with ~N

~

~ 2), we obtain

1
8 X,v ~ v@ (3.3)

(3.4)

&e'o«l ~'~« f&~4&&~4=&~xu( fd'*~ „-It&], .
(3.10a)

Combing (3.2}-(3.4), we obtain

~ =i X+i —~, (3 5)
-ycos g l

d'y J„}A„"'-x}
where the integration constant has been absorbed
in X. In terms of X and f, the unitary operator T
defined by (2.7) is expressed as 6- 2~~-g,

e (3.10b)

T=exp -i2~s~g(x4} exp -i2~ir g(x, ) =—T&&„,

(3.6)

where

with y=—2y, .
In order to understand the significance of the co-

sine term of (3.10b), let us expand it in powers of
g. Setting 8 = ( = 0 for simplicity, we find

~(x,) =-.' [X(x„»,=+ )+ X(x„x,=- ) ],

r}(x,) = ,'[f(x„x,=+—~)+0(x„x,=- ~)].

(3.7)

(3.8} with

d'xd'Y Z„x}~„„(x—y}J„}+0'},
(3.11)
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(x-y) = d'zA" ](x —z)A" ](y —z) ~, ,e' " '
[x-a]"+"e' (2z) "" p p'

Thus, as is expected from the results of Sec. II, there is explicitly a linearly rising potential induced by
instantons which couples to the fermion current. Of course we should not neglect terms higher order in g
since we would then miss the charge screening effect which takes place for g/eeZ.

The nonlocal Lagrangian (3.10b) can be simplified considerably if one uses an equivalent boson represen-
tation of the Fermi field": The generating functional for a free Fermi field of mass m

&, [ss„,a„,] f[-aa][aa]sxp — asia(s„s„s ' ](+a,xa„sssxa„s.il a])
4

is equal, up to a constant, to that of a sine-Gordon field y given by

x..lss. , a.l-f [ax] i — a'* —.'s„xs,x-M .o (sx x&- —' „.s„xx];+—s„xa„
w

(3.13)

(3.14)

In particular, we have the correspondence

(3.16)

In the boson representation, a single fermion ap-
pears as a soliton having X(x„=+~) —X(x, = —~)
= Wxand classical mass m=4M/Vv. More gener-
ally, the fermion content of a state in the boson
representation can be determined from its ferm-
ion number Nz and (fermionic) charge Qz given by

1
(fx,Z, (x) = ~ [X(x, =+ ) —X(x+ = — )],

(3.17)

(3.18)

Expanding the right-hand side of (3.10a) in pow-
ers of p, replacing each term by the equivalent
representation through g, and then resumming
them, we obtain an equivalent boson representa-
tion of Z,«(Ref. 32):

Z„,[X]= zS„X(x)S„X(x)- M'cos[2vz X(x)]

—icos 2~m~ d'y X )p"' -x)+ ~

B. Spectrum in the Fermi sector

%e now study the spectrum of states containing
fermions in the 8=0 vacuum using semiclassical
techniques. Recall that the linearly rising poten-
tial becomes appreciable on a length scale -y ' '
which is much greater than 1/m~. Thus, one may
take the limit m~-~ in (3.19),"which gives

a.„[X]=-.'S„XS„X-M*o (SAX) —i'sos (SW —X).

(3.21)

The classical potential for g is thus given by

l'[X]=M'[1 —cos(2VwX)]+y 1 —cos 2&w~X
8

(3.22)

where we have explicitly subtracted the classical
vacuum energy density.

Let us first study static solutions to the classi-
cal equation of motion. Such a solution X,(x, ) is
obtained by solving

d'x„(x,) «[x,]
dx, '

with the requirement that the classical energy

(3.24)

with

p"'(x) =—z s A(x](x)e
2w

(2m)' p'+ y~~'

[see (2.4e) ].

(3.19)

(3.20)

is finite.
As an example, we consider the special case

g/e =-, . The potential V[X] is plotted in Fig. 4(a).
The classical solutions are easily found to be

2 ~
4M~+y '~2

x'(x, ) =*~ tan '

1
X

sinh[v v(4M +y)'~'x, )„'

(3.25)
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2J~jl &

FIQ. 4. (8,) The shape of the poteatia1 Vty] for gle =21.

(b) Two Static solutions to the classical equation. of mo-

tion for g/e =&2.

The corxesponding classical energy is given by

4 2, /2 y 2M+(4M1+y)'~1

(3.26}

As is seen from Fig. 4(b), Z,'()(,) has the structure
of two bound fermions (or antifermions)separated
by R d1stRnce

4M'+y '«' ~'+2

ber p/q (p, qE'Z}. Assumillg g,(- ) =0 without loss
of generality, one then has 1,(+~)=~qvw, and
consequently, N& = yq and Q = y~. This repre
sents a bound state of )q )

fermions (or )q )
anti-

fermions). There are several features worth men-
tioning. (i) The total fermionic charge is an inte-
ger multiple of e. This conforms with the result
of Sec. II that only such states can have their
charge completely screened [see (2.20)], and hence
have finite energy. (ii) A single fermion state re-
mains in the spectrum only if q = 1, i.e. , g/eC Z.

Its mass, however, is shifted by an amount pro-
portional to y. (iii) The linearly rising potential
is attractive for a paix of charges of the same
sign as well as that of the opposite sign.

So fRx', me have discussed the clRsslcRl approxi-
mation to the lowest-lying states with fermion
number N& =+q. Clearly, there mill also be ex-
cited states having / fermions and E antifex'mions
such that l- / =+q. In addition, for any value of

g, there will be states having an equal number of
fermions and antifermions. Classically, all these
states will appeax" as periodic solutions to the
equation of motion.

It mould be interesting to quantize these solu-
tions by the method of Dashen et az. '~ Since the
binding of fexm1ons occurs on a length scale ~ '«2,

me mould need solutions which represent large os-
cillations of g. So far we have been unsuccessful
in finding such solutions.

Another possible quantization scheme is to mx ite
g as a linear superposition of basic solitons and
antisolitons and construct an effective Hamilton-
ian fox' their positions and conjugate momenta. '
This has offered us little progxess, howevex, ex-
cept, that the periodicity ln g of the l1nearly llsing
potential is correctly reproduced.

C. Stability of the 9 vacuums-massive fermions

TIle clRsslcal potent1Rl fox' g 1n an Rrb1tlRry
VRcuuD1 18 given by

If the fermion is very heavy (m' = 16M'/w» W), we

have

lnJR

and E, -2m+ 2yW, . The latter shows that for g/e
= a there is an attractive linearly rising potential
between a pair of static charges with the same
sign.

Fol' general VRbles of g/e, tile flnltelless of tile

clRsslcR1 ellel'gy 1'squires 'tllat X 8R'tisf les V[X (+~)]
=0. For nontrivial static solutions X,

„

this is pos-
sible if and only if g/e is equal to a rational num-

V~[X]=M'[I —cos(2um X)]+y 1 —cos 2vw —Z+8
I

(3.28)

Barring large quantum fluctuations, the ground
state of the system is determined by the absolute
minimum of V~[X]. Let us denote the correspond-
ing value of )( as y. „.If g/e is a rational number

p/q (p, qEz), there are a countably infinite set of
such minima connected to each other by shifting

X „bynqvw (nE. Z). Of course they are RII equiv-
alent. For g/e not a rational number, there is
only one absolute minimum.

Consider 8=0 (mod2w), we have y, „=0.Hence,
the unperturbed Fermi vacuum ()( =0) is stable.



(3.29)

{8~m((y, /~8) =M'sin(2@w}f „). (3.30)

In general the 8 vacuums are parity and time-re-
versal noninvariant. However, for those values of
e such that both expectation values vanish, namely,

(3.31)

In addition, for the set of points 8=w(mod2w)
and g/e =n (nE Z}, we also have }|„=0(if the rela-
tion M2&yg2/e2 is satisfied). [These points are
what remain of the stability lines g/e =n {nez} in
Fig. 3.] For all other values of 8, we have }t,'„
WO and thus in these cases the unperturbed Fermi
vacuums are unstable to the production of charged
fermion pairs as discussed in Sec; II.

Let us now discuss the parity and time-reversal
properties of the true vacuums. Two quantities
which directly measure spontaneous violations of
these symmetries are {8~E~8) (E= —,'a„„E,„),the
background electric field, and (8~may, /~8). In the
classical approximation, these are given by

(4.1)

Nevertheless, since the right-hand side is a total
divergence, one can define a conserved axial-vec-
tor current by

(4.2)

Although 8'„itself is not gauge invariant, the cor-
responding charge

+ eo

dxJ' x (4.3)

is invaI iant under local gauge transfor'mations,
i.e. , those which have the same value at x, = +~.
Furthermore, Q, generates the global chiral trans-
formations and thus commutes with the Hamilton-
ian. The problem then is whether the chiral sym-
metry is spontaneously broken.

In order to study these problems we again use
the dilute-instanton-gas approximation and the bo-
son representation of fermions introduced in Secs.
II and III. By taking the limit m —0 in (3.19), we
obtain"

2~xx „=2nw, m, nez (3.32)

8= 2mw —2n.wg/e (3.33)

the ground state is both parity and time-reversal
invariant.

Eliminating }(
„

from (3.31) and (3.32), we have

-ycos 2~m~ d'yxy p"&y g +8

(4.4)

(4.5)

The corresponding generating functional

Z= dX exp — EPxcC f~ X

Intuitively, this may be understood as follows: The
angle 8 introduces into the theory an effective inter-
action q8= (e/2w)8f E(x)d'x [see (2.10)]. This means
that there are effective external charges +e(8/2w) at
spatial infinity x, =+~. Such charges can be com-
pletely screened via the pair production of both
fermions and scalars only if (3.33) is satisfied.

IV. MASSLESS FERMIONS

In the present section, we consider the limiting
case in which the bare mass of the fexmion van-
ishes. Two questions that immediately arise are
the following: (1) How does the massless fermion
modify the gauge structure of the theory studied
in Sec. II'? (2) What is the chiral structure of the
theory'P

The latter may need a bit more of an explanation.
Recall that although the original Lagrangian den-
sity is formally invariant under the global chiral
transformation g(x) - e "5$(x), the gauge invariant
axial-vector current J'„is not conserved because
of an anomaly:

is independent of 8 since Z is invariant under the
transformation X-X+const. ' For this reason,
we set ~=0 in the following.

A. Statistical-mechanical analogies

We shall analyze the system described by (4.5)
using two statistical-mechanical analogies. One is
the two-dimensional Coulomb gas analogy dis-
covered by Callan et al. ,

"and the other is an anal-
ogy to the two-dimensional classical X-F model.

Two-dimensional Coulomb gas analogy

I et us rewrite (4.5) as

(4.6)

where p, is an infrared cutoff. Expanding the ex-
ponent in powers of y and carrying out the )( inte-
gration term by term, we find up to an overall
multiplicative constant that
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N~+ N N~+ E
2= lim Q & t& ( (-) fl d R~ sxp —,P g~ 1g(v(Rg —R~, fl)

NgN ~0 k=1 fvgel
(4.7)

where q, = 1 for 1 i -N, and q,. = -1 for N, +1 -i
~N, +N, and"

2 rn 2

[We have used (3.20). ] Defining

V(R) = lim[V(R; p) —V(0; p,)]

m 2 2
(eisa 1) w

(2w)' p' '+ m ' (4 8)

g q, q&V(R, R&)+(N—, —N )'V(0; p). (4.10)

we may rewrite the sum in the exponent of (4.8) as

Suppose the gas is confined within a sphere of ra-
dius L. Then the free energy f per particle is
given by f -(1/4v) lnL —T'lnL' for L»1. Hence,
for P'&P™8m,two oppositely signed charges are
bound together to form a neutral dipole, whereas
for P'(P,', these dipoles dissociate and the charges
form a uniform plasma.

This picture has been confirmed by a detailed
renormalization group calculation carried out by
Kosterlitz. " Here we summarize his results rele-
vant to our analysis: In terms of the effective var-
iables x = [p '(7') —8w ]/4w and y = 2ay(r) r with 7' be-
ing the scaling variable [in our case r~ 1/m
If'(1/m(() = p', y(1/m((, ) = y], his renormalization
group equations read

Since V(0; i(,}-—(1/2v) in(p/m~) as &-0, only
those terms of (4. 'I} satisfying N, =N remain in

this limit. . We thus obtain
00 2N

Z= P 1 y
'" Qd'R; exp[ P'&, ]-,

(((=0 (N! }' 2

dx =- —,'(x + 2)'y' —,
dT

1,d7'
dF = —y2 —,

8p 7

(4.14a)

(4.14b)

(4.14c)

where P'—= 4vg'/e', and

(4.11)

1 2$
H,„=—Q q,q)V(R, -R,.), (4.12)

with q, being defined as after (4.7) by setting N,
=N =N.

Notice that V(R) behaves as

V(R) 0 as R-O,
1- -—»(m. lR I) as IR I

-+".
27t

(4.13)

Hence (4.12) is identical to the grand canonical
partition function for an (overall neutral) gas of
particles with charges +1 interacting through the
two-dimensional Coulomb potential with a soft
core. The temperature is T'= 1/p' and y/2 rep-
resents the fugacity.

As is easily seen, these charged particles can
be identified with the instantons at positions R,
and with winding number q, . Thus, the massless
fermion has produced a logarithmic interaction
between instantons. This long -range interaction
has the initial effect of restricting the total wind-
ing number N, -N equal to zero. Namely, the
massless fermion prohibits tunneling in the global
sense although it is still allowed locally. "

Returning to the Coulomb gas analogy, let us re-
call' that there is a phase transition at P'=P™8m:

$=+~ for P'&P,',
y-K(g')/2 f pi (p g

c~ (4.15)

F=analytic in y for P'&P',

- y+ "&~'& for P'(P' (4.16)

with x(P') =8v/(8w —P').
These results show that the free energy density

is analytic in y and p' except at lines given by

where F is the free energy density defined by F
=- V ' lnZ (V is the volume of two-dimensional
space occupied by the system). As long as y is
sufficiently small (dilute gas), these equations are
expected to be valid for the entire range of P'.
Linearizing (4.14}around the critical point, Koster-
litz obtained the following results: (1) The critical
inverse temperature is given by p,'=8a+8wy/m~'.
(2) The correlation length $ is infinite for p'&p,'
and grows as exp[b(P,' —P') ' '] for P'-P,'- 0 where
b is a positive constant. (3) The free enrrgy den-
sity has the behavior E-exp[-b'(P'-P, ') ' '] for
P'-P,'+0 (b' is another positive constant) and E
-exp[2b(P,'- P') ' '] for P'-P,' —0.

Away from the critiral temperature, (4.14) shows
that the renormalization of temperature is small.
Hence x may be regarded as constant. Integrating
(4.14b) and (4.14c), we then obtain the following
small-y behavior of $ and F:
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2. Two-di mensional classical X-Y model analogy

Define a new field y(x) by

)')*) -=xX —,J x'x x)x)x"')x -*)

Using (3.20), one can express )((y) as

(4.17)

y=0, 0 ~ p'&8w and p'= p,'(=8w+8wy/mw'). In par-
ticular, the series expansion in powers of I given
by (4.11) will be valid only for P'&P,'. This can
easily be checked by examining the convergence
property of the integral which appears in the y'"
term of (4.11). Since the only source of possible
divergence comes from the region in which the
R,. 's are large, we may replace V(R) by its large
~R

~

asymptotic form (4.3). One then finds that the
integral is completely convergent for arbitrary N
if and only if P'&8m. Thus, barring a possible di-
vergence of the series itself, the partition function
is analytic at &=0 for P'&8m. Of course, the con-
vergence radius of the series is further restricted
by the phase transition line P'=P,'.

Although the Coulomb gas analogy provides a nice
intuitive picture of the dynamics of instantons, it
is not very suited to compute Green's functions of
physical interest. This is because all fields have
been integrated out. This leads us to study the
second statistical-mechanical analogy, that of the
classical X-Y model.

F &F,+ (H-H—g»,P
(4.21)

where F, is the free energy density for H„and
( ~ )» means the expectation value with respect to
H, . Of course H is given by (4.20). For H„we
choose

0 2

H, = d'x —,'y(x) (- 0+ p') 1—, y(x)
mw

(4.22)

and determine p' (o 0; the mass of the spin wave)
by minimizing the right-hand side of (4.21). The
validity of this choice will be discussed later to-
gether with the results obtained.

Computation of the right-hand side of (4.21) is
straightforward. Denoting it as F(p,', mw', T), we
find"

F(p', mw', T) =mw'f(o), (4.23)

This suggests that the behavior of the system may
be approximated at least for low temperature by
an ensemble of spin waves. In order to make this
idea more precise, we develop a simple mean-
field theory based on a variational principle for
path integrals due to Feynman ': Given two Ham-
iltonians H and H„the free energy density F for
H defined by F= V' -lnZ (V is the volume of space
occupied by the system) is bounded as

x)x)=x» ()—,)x)X) ( =x x ).
w

(4.18)

In terms of y, the generating functional Z of (4.5)
is given (again up to a multiplicative constant) by

where o = p, '/m w' and

0 y T 1 1
f(o) =——,exp —— —, , lno

8m mw 8w 0'- 1 (0'- 1)

(4.24)

Z = [dy] exp[-PH], (4.19) As is easily seen, f(o) has its absolute minimum
at o =o(T) with

where P=e'/4wg' and

H = d x —,y(x) — 1—, y(x) ——cosy(x2 1 y
mw' P

o(T)=0 for T&8w

WO for T &8m (4.25)

(4.20)

We recognize H as the continuum limit of the two-
dimensional classical X-Y model Hamiltonian.
Namely, y/P is the magnitude of a uniform extern-
al magnetic field and p(x) is the angle of a classic-
al spin of unit length located at x measured from
the direction of the external field. There is an
effective large-momentum cutoff at -mw. Z is the
partition function of this spin system at tempera-
ture T = I/P =

4wg '/e'.
The X-Y model is usually defined on a lat-

tice.""'" In that case there are two kinds of im-
portant excitations, i.e. , spin waves and vortices.
In the continuum limit, however, the energy of the
latter becomes infinite and hence they disappear.

(see Fig. 5). Thus this approximation predicts a
phase transition at T=8w. For T-8w —0 or y/mw'
—0(T&8w), o(T) vanishes as

a(T) - T (4.26)

ff )x) I- — (x .)
as T-8w —0 or y/mw'-0 (T&8w). (4.27)

with»(T) =-8w/(8w —T). Hence, the spin wave mass
mwo(T)'~' is nonzero for T &8w, continuously goes
to zero as T -8m —0, and remains zero for T & 8m.
For the free energy, we find
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g/8a since the system is invariant under the transfor-
mation i[](x}——p(x}.

We have also computed the second-order correc-
tion to (4.21) given by

(4.31)

FIG. 5. Schematic plot of the function f(e) for T &Sx
and T & Sn.

The expectation value for the component cosy(x)
of the spin is given by -&F/&1'. Replacing F by F,
we obtain

(cosy&(x))~ = a(T), (4.28)

e(T) - (T,) for T -8m —0

or y/m~'-0 (T &8m),

for T&8m.

For the other component sing(x}, we have without

any approximation

(sini[)(x)) = 0 (4.30)

where the subscript E indicates our approximation
and

T 1 1
8 e(T) 1[e(T)—1] — ]

(4.29)

for T &8m

We have found that this correction, though not nu-
merically small, does not qualitatively change the
results given above.

Let us now examine the range of validity of the
mean-field approximation. We shall do this by
comparing its predictions with those of Koster-
litz's renormalization group equations (4.14) which
apply to the X-Y model as well. (The correspond-
ence of temperature is P'=T=4vg2/e'. ) First of
all, we observe that the mean-field approximation
gives rather poor results near the critical point.
In fact, it gives the critical temperature 8m com-
pared to the renormalization group value T, = 8m

+ 8sy/m~'. It also gives a behavior for the corre-
lation length I/m~o(T)' ' (to be identified with $)
and the free energy density E different from those
of the renormalization group. This, however, is
not so surprising since H, of (4.22) suppresses
large fluctuations of y(x) which in fact are quite
important near T, . Below and away from T„on
the other hand, the mean-field approximation cor-
rectly describes the behavior of the system for
sufficiently small p, as may be seen by comparing
(4.15) and (4.16) with (4.26) and (4.27). Finally,
for T & T„ourapproximation becomes poor again:
It ignores the effect of the external magnetic field.
In particular, it predicts (cosp(x)) = 0, while in
fact it is nonvanishing and has a series expansion
in y. Summarizing, it would be fair to say that
our mean-field approximation provides a simple
way of describing the system below and away from
T ~

B. The gauge structure

Let us go back to the field theory language and examine the gauge structure of the theory making use of
the results and techniques developed above. Using (2.12) and (4.4) and (4.5). we obtain for the gauge field
propagator"

d'xe '~"(& tT(A„(x)A„(0))~8)= 5 „—," + —j(p }
W

(4.32)

The first term in the square brackets comes from D„"„'in (2.12), D„"„"—D„'„'has been neglected, and

& InZ [J']
5J(x)RT(0) z ~ '

with

z[d]= ' [dx]e 8 —
I

d* —,'e„x(*)e„x(*)—xe (d*x xde —x(x)e —J(x)}ee'(8 —*) )

(4.33)

(4.34)
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Explicitly, I(P') is expressed as

y(y') = —y(cosy (O)&„+y' J eyes '"(y [sic(c( ) s'o(c(O) }&„, (4.35}

where q&(x) is defined in (4.15) and (*)„means the expectation value with respect to S,«[}(]2~of (4.4).
For g'&g, '=2e2+2we'y/m~2, I(p') can be computed by a perturbation expansion in y. After a little alge-

bra, we find

)(y'}=2[y=c[' —
}
S's( '' —1)esp[4 —,y( })

2

}(2 w (y/2) 2 N

+Z[J =0] ' —p d g d R [(X+1)e '22 —¹ '2 s2(v- 1]2 „(X+1)!f)![„
g 2 2N

x exp 4v —, V(z)+ q,. [V(g -R, ) V(R, )]
=1

q q, V(R; —R,.) (4.36)

where q,. =+1 for 1& 2&!)Iand=-1for!}I+1& 2 & 2N, and V(x) isdefinedby(4 9) C.lea. rly I(p') vanishes at p'=0.
Using Kosterlitz's renormalization group equations (4.14}, we easily find the leading behavior I(P )

2 2 2-([))')" ~' ' '. Thus the gauge field propagator does not have a massless pole and the gauge symmetry is
spontaneously broken.

In the region g'&g, ', the series expansion in powers of y is no longer valid. Instead, we use the mean-
field approximation developed for the X 1' mod-el analogy. To calculate I([})') (or more generally Z [8]), a
slight modification is necessary. The Hamiltonian (4.20) is replaced by

2 e2/H'= d x —,px) -Cl 1- 2 px) —,cos px +p,„,x)
m w' 4' (4.37)

q),„,(x) =
—, d'Y J(y)}3")(y—x),

and instead of II, of (4.22), we choose
s $2 2

Ho d x 2p x) —2 1—,t}ty x + —p x) + p,„,x) 1—,p x + pf2xt x)
mw] mw

(4.38)

(4.39)

This choice is motivated by the observation that for g'&g, ' the X-F model spins are strongly aligned along
the direction of the external magnetic field which, in the present case, is given by q),„,(x). The Feynman
upper bound }V[X]for W[J'] =- —1nZ [Z], after minimizing with respect to }(,, is given by"

2

}y[y[=je*s "-' e
Bm' Beg 2 'se'yy(s)D(*-y}y(y) —yo(i') fe' (S'ysoco(*s-y)y(y)), (4.40)

where p(g) -=m~o(4vg2/e2)'~2, T([(g) —= a(4wg2/e2)
[see (4.26) and (4.29)], and

4m 4 d p,. („,) p
(x -3 ) =,2 }(g) (2„}2e [p2, ( }2]2

(4.4S)

o(s) - (i —. .)
with [((g) =2e'/(2e'-g'), and p(g) =o[(g}=0for

~g, .]
Using (4.33) and (4.40)-(4.42), we find

+(x y )
— e t() (y y )

2K d p ( p
(»)' P'+ }2(g)'

'

[We recall that for g &g,',
g 2 y f['(g')/2

y.(g) -m~ ~4w —,

(4.42) 4w', 2 p'+ [[((g)'e'/4'�'y(2. (g)
F e2 )S P [p2+ }2@)2]2

(4.43)

(The subscript E indicates our approximation. )

Thus, for g' &g,2, the massless pole in (4.32) is
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+ 00

+ ya(g) dx,[l —cos(Z(x, )) ], (4.44)

where
g't R R

J(x,) =x—'sgn x, +
2

exp —iz(g) x, +—

R—sgn x —— exp }z(g) x, ——
1 2 2 ]

(4.45)

An interesting feature of the above result is that
the characteristic length scale beyond which the
gauge symmetry is spontaneously broken depends
on the value of g. It is given by 1/m~ for g'&g, z,

and as g' becomes smaller than g,', it changes
smoothly into 1/p, (g) (» I/m~). In terms of the
Coulomb gas analogy, the interpretation is clear':
For g'&g, ', the instantons (Coulomb charges) are
pairwise bound into dipoles with net winding num-
ber equal to zero. Hence, as far as the gauge sy-
mmetry is concerned, the structure of the 6) vac-
uums is essentially identical to that of the per-
turbation theory vacuums. Thus, the gauge sym-
metry is spontaneously broken beyond a length
scale -1/mv. For g' &g,', the instantons form a
uniform plasma which exhibits a Debye-HGckel
type screening with the screening distance -1/lz(g).
Beyond this length scale, the gauge symmetrizing
effect of instantons we saw in Sec. II is cutoff and
the gauge symmetry remains spontaneously broken.

explicitly canceled out and the gauge symmetry is
still spontaneously broken. Several qualif ications
are in order. (1) Our approximation breaks down
near g,'. Since the system is in the same phase
up to g,z, however, the gauge symmetry will also
be broken in this region. (2) The double pole of
(4.41) at p' = —lz(g)' may be understood as follows:
Our approximation is valid for small g'/e'. In this
case, we have 4zzg'ya(g)/e'p(g)' =1. Hence, the
double pole is approximately reduced to a single
pole with residue zz lz(g}'/g'.

The mean-field approximation provides us with
a stronger piece of evidence for the spontaneous
breaking of the gauge symmetry. Namely, it
gives us an upper bound for all values of g' for the
static potential E(R) between a pair of charges g'
and -g' separated by a distance R. We find that
E(R) damps exponentially with increasing R for
any value of gz and g". To show this, we once
again resort to the Wilson formula (2.17). Choos-
ing J(x) =g'8(x, +R/2)8(R/2 —x, ) in (4.40), recall-
ing that D",„'of (2.12) gives rise to the potential
—(g' /2m~)e we, and neglecting terms indepen-
dent of g, g' and/or R, we find

/2 / 2

E(R) ~ e mgR+zz iz(g)z Re vV)zz
2mw 2g

C. The Chiral Structure

(4.46}
where the massless pole of the second term comes
from A„"'(x)[recall (4.2)]." Using (4.35), we can
rewrite the second term as follows:

i —az (cosy(0))„+—I(P'). 2gp 1 z

e p' "y (4.47)

As we have seen, I(P') vanishes at P'= 0. In addi-
tion, the first term of (4.46) behaves as p„times
a constant for g'&g, ' since X, is a massive field
(see below), and as p, (p2)'~ ~' ' for g2&g, which
is obtained using Kosterlitz s equations (4.14).

Let us now turn our attention to the chiral
structure of the theory. Note first that the
field g is shifted by a constant under the
global chiral transformation: e osx(x)e
=X(x) —a/vzz . This leads to e' c'Te
=exp[2i(g/e)zz. ']T where the operator T is de-
fined by (2.7), and consequently Q, ~n&=2ni(g/
e} ln& and e' '18&= I,8-2czg/e&. Hoth In& and 18&

form a degenerate set of vacuums, the former as
a result of the absence of tunneling in the global
sense, and the latter because the Hamiltonian com-
mutes with Q, . In order to decide which are the
correct vacuums, let us calculate in the ~ vacuums
the expectation value of the operator cosy(x) which
is not invariant under the chiral transformation

A

[e c5y(x)e c5= y(x) —2ag/e] . Since the 8 vacuums
are degenerate, it is sufficient to consider the
case 8=0. As has been shown in Sec. IVA,
(8=0jcosy(x) ~8=0)= (cosy(x))„,where ( )„means
the expectation value with respect to 2,«[X]e., of
(4.4), is nonzero for any value of g'. For g'&g, ',
it has a series expansion in y, and for g'&g, ', its
leading term in the limit y-0 is given by (4.29).
This result has two consequences. (1) The 8 vac-
uums are the correct vacuums since they alone
satisfy the cluster decomposition property. "[This
can be deduced from the following: By chiral in-
varianc e (n (

e"'"'
) m) = 5„„(m—I

(
e'" '"'

( m& and

hence (8 = 0
( cosy(x) (

8 = 0) + 0 implies that

(m el~cosy(x) ~m&40. ] (2) The chiral symmetry is
spontaneously broken. "

The corresponding Nambu-Goldstone pole ap-
pears in the Green's function
(8= 0~ T [J'„'(x)siny(y)]

~

8= 0). After integrating
out A„and P within the dilute-instanton-gas ap-
proximation, this becomes

d'x e '~*(8= 0
~

T*[J„'(x)s iny(0) ] (
8 = 0)

=i a d'xe '~"(T[X(x)siny(0)]&„
vw

+i —y -az d'x e '~*(T[siny(x) siny(0)] &„,
. 2g p



The first term of (4.47) thus represents the Nam-
.bu-Goldstone pole. Note that the residue of the
massless pole has exactly the form expected.
Namely, it is equal to

lim p„d'xe '~" 8 = 0 T* 0'„'x s in' 0 6j = 0

=I —{&=0~cosrp(0) (e=0). (4.48)
.2g

Observe also that this Nambu-Goldstone pole de-
couples from the gauge-invariant sector of the
theory. In fact, Green'8 functions of gauge-invari-
Rnt operRtox'8 contRln +~ only In tex'ms of +~p
which does not give rise to a massless pole. We
thus have one more example of spontaneous sym-
metry breaking without the appeax'ance of a Nambu-
GoMstone boson in the physical spectrum. The
mechanism is exactly that of "seizing" proposed
tly Kogu't Rlld Susskllld Rs R WRy ollt, of the U(l)
probl. em.

It is important to observe that the chiral sym-
metry is actually broken down to a discrete sym-
metry X(x)-X(x) +WII{e/g) n(naZ). Since the mass
operator is given by Tiiij

- cos(2xi IIX),4' the discrete
symmetry still prohibits a nonvanishing fermion
mass unless g/e= 1/n {nez) or the symmetry is
spontaneously broken. " To examine the lat:ter pos-
sibility, let us consider the vacuum expectation
VRlue

(8= D~giji(x)
~

e= 0)-(cos[2v II}((x)])„. {4.49)

For g'&g, ', we can evaluate the right-hand side by
R series expansion in y and we find that it. vanishes
ordeI by order. Thus the discrete symmetry re-
mains unbroken and the fermion is massless. For
g'&g, 2, we compute (4.49) by replacing R,«[)(]Ii.,
of (4.4) by 2S„XS„}(+~ il(g)'X' where il{g) is given
after (4.42). This crude approximation gives

e2/ &2@2 g )
(«»(2v IIX))„=il(g)/)I. «m

Thus, below g'=g, ', the discrete symmetry is
spontaneously broken Rnd the fermion will acquire
a finite mass.

This result is confirmed by the folio%'lI1g obsel-
VR'tloll Takulg 'tile 111111'tmgx ~ ul ZveII[X]ii 0 of
(4.4), we obtain

&.„ixi,=. = -*'x„x(x)x.x(xi -xxox(x~ir-, x(*)) .

The right-hand side is nothing but, the si.ne-Gordon
I.agrangian which has been studied in great de-
tail. "'"'" In particular, it has been shown that
the sine-Gordon system is well defined for g'& 2e'
(which justifies our approximation) and the spec-

trum consists of solitons and soliton-antisoliton
bound stRtes. The sol, lton I1Rs R mass F71

= 4(y/II)I~'(2e'-g )/eg and satisfies X(x,;x,=+~)
—X(x„xl= -~}= ext II/g. It thus has fermion number
K&- e/g and fermionic charge Q&- e. This is the
massive fermion state anticipated above. Of
course the new fermion is not a one-particle state
of the ox'lglnRl fermlon. RRthex', lt is R composite
state of origina1. fermions and a cloud of instantons
surrounding them. The existence of R single fer-
mlon stRte wl'th Qy = 8 for g & 28 y In PRx'tlculRx'

for g/e 4 rational number, is consistent with the
spontaneous breaking of the gauge symmetry dis-
cussed in Sec. IVB.

There are two additional features wox'th men-
tioning. (1) The spontaneously generated mass nl
vanishes linea, xly as g 2e —0. However, this
behavior near g'= 2e is not a reliable description
of the theory for finite m~. (2) For g/e=1/n (n
E z), the limit in which the bare fermion mass goes
to zero is. smooth. Namely, the n massive fermion
bound state which we have shown to exist in Sec. III
smoothly goes over 1nto the Hew ferIQion of the
sine-Gordon system. An example is given by the
case g/e= 4 which was worked out in (3.25)-(3.27).

V. MSCUSSION

In this Rrtlcle %6 hRve studied the physics of
instantons in a U(1} gauge theory in 1+1 dimen-
sions. The primary objective has been to clarify
how instantons change the gauge and chiral struc-
ture of naive pexturbation theory. The xesults we
have obtained have already been summarized in
Sec. I. Hexe we want to add a few remarks.

(1}In order to make our formulas explicit, we
have restricted the range of parameters in the or-
iginal Lagrangian {2.1) by (2.9). However, the
range of validity of our results is only restricted
by that of semiclassical approximations. Namely,
the average distance between instantons must be
large as compared to their sizes. It would cer-
tainly be important to find a description of the
tlleory lr1 the opposite limit lIl whlcll the instanton
density becomes lRrge.

(2) We llRve showll 'tllat the Ills'taJl'tolls symmetrize
an otherwise spontaneously broken gauge vacuum.
This Inechanism becomes effective on a length
scale chaxacteristic of the mean instanton separa-
tion. A similar symmetrization of the gauge sym-
metry might very likely occur in unified theories
of weak and electromagnetic interactions, such as
the Weinberg-Salam model, which possess instan-
tons. Fortunately, the average distance between
instantons in such a case is fantastically large-10'" parsecs (see G. 't Hooft, Ref. 8).

(3) For 8 110 (modli), the e vacuums are both par-
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ity and time-reversal noninvariant. When mass-
less fermions are present, however, the resulting
chiral symmetry makes all 8 vacuums degenerate
allowing us to rotate ~ away. This of course is
true independent of the dimensionality of space-

14time and the nature of the gauge group.
We have also seen that even if fermions have non-

vanishing bare mass it is still possible to have a
parity and time-reversal invariant theory for some
values of 61. These are the values such that the
background electric field is completely screened
by the creation of charged fermion pairs. For non-
Abelian gauge theories in 3+1 dimensions, nonzero
8 implies a background I"„„E'„field which may be
screened by a similar mechanism. "

(4) It has been suggested that instantons might
solve the U(1) problem of quantum chromodynam-
ics by realizing the seizing mechanism of Kogut
and Susskind. ' We have explicitly shown that this
indeed occurs in our model: The instantons spon-
taneously break the chiral symmetry, but the ac-
companying Narnbu-Goldstone pole decouples from
the gauge-invariant sector of the theory. The chir-
al structure of our model is further complicated
by the fact that there still may remain a discrete
chiral symmetry. We have shown that this sym-
metry is also spontaneously broken for g' &g,'
and as a result the fermion acquires a nonvanish-
lng Inass.

(5) Let us compare our results with the recent
work of Callan et al, ." They introduce N massless
fermions P,(a = 1, . . . , N), all with charge e, and
discuss the chiral structure as a function of¹ In
terms of a set of equivalent Bose fields g'
(a=1, . . . ,N), the effective Lagrangian for ferm-
ions is given by

&„,= g Q s 4"(x)s„4"(x)+—,'8 4(x)s 4(x)

baal

-icos 2/mÃ l~ d y4 )p~ ) —z)+Q

(5.1)

where 4' =N ' 'Q,"~ y', and the 4 "s are related to
)f"s through )f'=N '~'4++, ~D„4'with Q,"~D~ =0
and Q,"~D„D~= 5», ." As is easily seen, the U(l)

chiral txansformation shifts 4' by a constant while
leaving 4"s unchanged. Thus, the U(l) chiral
symmetry is broken down to a discrete symmetry
4-4+n4v/N (nEZ). Furthermore, comparing
(5.1) with (4.4), we see that, with the identifica-
tion N g /e, our analysis of Sec. IV can be re-
interpreted to describe this model. There is a
phase transition at N=N, =2 +2y/ m'v. For N(N„
the discrete symmetry is spontaneously broken,
while it remains unbroken for N&N, . Notice, how-
ever, that the spontaneous breaking of the discrete
symmetry does not mean a nonzero vacuum expec-
tation value for g,4, . In fact, using the fox"mula"

(m
g, g, - cos 2

~

— 4 +2~m D~4,
b~

and the fact that the 4, 's are massless, one easily
finds (8

~

fr P
~

&) =0. [Another way to understand
this is the following. A nonzero vacuum expect;a-
tion value of g,g, means a spontaneous breaking
of the SU(N) SSU(N) symmetry, which is impossi-
ble in 1+1 dimensions due to the theorem by Cole-
man. "] This result has the following consequence
regarding the mass generation for fermion. s. It
does not in itself imply that a mass term is ab-
sent in the propagator (g, (x)g~(y)). If, however,
such a term were generated in the Hartree-Fock
approximation, as discussed in Ref. 16, this
would imply within the same approximation that
(g,(x)g, (x)) e0. We thus claim that the original
fermions remain massless for all N &1.
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