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A classification of gauge fields in terms of spinors and the rank of a matrix of Lorentz invariants is

proposed. A peeling theorem for the Yang-Mills field in the asymptotic limit is shown to follow from an

earlier work of Roskies. An analogous theorem is proved for all gauge fields in the geometric optics limit.

I. INTRODUCTION

The realization by Poincare and Einstein that
the invariance group of the laws of electromag-
netism contains the Lorentz group and not the Galilean
group was a major step in the history of physics.
For this implied, as made explicit by Minkowski,
that the geometry of space-time must be deter-
mined by the Lorentz group. Jt iswellknown, how-

ever, that electromagnetism has in addition a U(1}
invariance which has been referred to as an "in-
ternal symmetry "Bu.t the action of this U(1) group
on the electromagnetic field F„„is always the iden-
tity transformation and hence can be ignored in the
study of the geometry of F„„.

The situation, however, is different in the case
of gauge fields corresponding to non-Abelian gauge
groups such as the Yang-Mills fields' which are
used in the description of weak and strong interac-
tions. The gauge field F„'„corresponding to the
gauge group G transforms under the Lorentz group
L in the indices p, , v, and under the adjoint repre-
sentation G of G in the index i. If G is non-Abelian
then G is nontrivial. Thus in this case, even for
the study of the classical field it is necessary to
extend Minkowski's idea and let the group L && G
determine the geometry of the gauge field.

By the geometry of the gauge field we mean the
set of properties of the field which are invariant
under the invariance group. A study of these pro-
perties has led to a classification of the electro-
magnetic field into null and non-null types. ' An

analogous classification of the gravitational fieldR„„,in vacuum due to Petrov' and Pirani is al-
so well known. These classifications were sub-
sequently refined and made more natural by the
use of the spinor formalism. ~ ' Similarly, the use
of spinors elucidates and extends the recent classi-
fication of the Yang-Mills field proposed by Ros-
kies. ' [Throughout this paper, the Yang-Mills
field will refer to the gauge field with SU(2}or 0(3)
as the gauge group. ]

The purpose of the present paper is primarily to
investigate classification schemes for an arbitrary
gauge field. In Sec. II, a brief introduction is given
to spinor algebra' and gauge fields are presented
in the spinor formalism. A spinorial classification
of ageneralgaugefield is thenmade. InSec. IIIargu-
ments, are presented which give the number of inde-
pendent invar iants that can be formed from F„',pro-
vided G defined above is a subgroup of an orthogonal
group. For the Yang-Mills field, we describe the
classification of Sec. II in terms of invariants of
the field thereby showing its relationship to Ros-
kies's classification. We remark that a peeling
theorem for the Yang-Mills field follows from Ros-
kies's work. A further refinement of the classifi-
cation is made, for an arbitrary gauge field, by
considering the rank of a matrix of Lorentz scal-
ars. In Sec. IV we show that the classification
from the peeling theorem arises for any gauge
group more easily from a consideration of the
geometric optics limit.

We hope to stress an underlying unity of all
gauge fields by means of this classification. This
is especially important in view of the attempts to
construct unified theories of weak, strong, electro-
magnetic, and gravitational interactions. Also we
hope to draw attention to the spinor formalism
which has proved to be useful in the analysis of the
electromagnetic and gravitational fields; it may
likewise be useful in the study of the Yang-Mills
field and other gauge fields apart from its use in

classifying these fields which is demonstrated in
this paper.

II. GAUGE FIELDS IN SPINOR FORMALISM

It is well known that the group of unimodular
transformations of a two-dimensional vector space
over the field of complex numbers C, denoted by
SL(2, C), provides a double-valued representation
of the proper orthochronous homogeneous Lorentz
group. An element of this vector space, which can
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be represented by a pair of complex numbers n

(A =0, 1), is called a contravariant spinor of rank
1. For any given Lorentz transformation, otA

traJlsfol ms Rs

~A LA ~a (2.1)

where I."a is a 2 x 2 complex matrix with unit de-
terminant, which represents the given Lorentz
transformation. On defining gA = ~A* and I.A'a,

= I."a*, the asterisk denoting complex conjuga-
tion, it follows from (2.1) that

A'
L

A' B'
(2 1')

0 1
AB A'B'

~A'B' ~AB 1 0 (2.2)

It can be verified easily that the q" and p» are
invariant under Lorentz transformations. Thus

plRy R x'ole ln splnor Rlgebx'R

analogous to the role of the metric in tensor alge-
bra. Given the contravariant spinors o.A, $A we
can form the covariant spinors

B
+A + ~BA& &A

= «BA" (2.3)

Then since from (2.2) e"cqsc= 5"B,
AB~ (A'

~
Aa'p (2.3 ')

It follows immediately that zAp"= -aApA. Hence
o'" o.A=O. Conversely if o.A and pA are linearly
independent, then aA p"c0.

Given any tensor, one ean form the spinor quan-
tity corresponding to it by using the connecting
quantities o'AA, introduced by Infeld Rnd Van der
%aerden. 'o

eoAA, here is the identity matrix and
o„"„,for p. =1,2, 3 are the Pauli spin matrices. A

vector V, corresponds to the two-index spinor
oAA. V„.Given the Maxwell tensor E„„,it ean be
shown using the skew symmetx'y and the reality ofE„„that the corresponding four-index spinor may
be written

AA' aa' &v ~ AB ~A'B' ~AB~ A'B' &
(2.4)

~AB is a symmetric spinor Rnd &A'a' = &A~a

JAB is also the spinor corresponding to the anti-self-
dual field E +&*E, where

AA' BB'( uv ~ Fur) ~ABACA'8' ' (2.5)

In general, any spinor that transforms according
tp (2.1') is denoted by a prime in the index. A con-
variant spinor (A is defined as a pair of complex
numbers that transform according to the inverse
transpose of (2.1). A general spinor of arbitrary
rank with covariant and contravariant indices
primed or unprimed is defined in a manner anal-
ogous to tensors.

An important set of spinors are the Levi-Civita
alternating symbols in two dimensions,

Since P» is symmetric, it can also be shown that'

~AB + (A~a ) (2.6)

for some spinors aA, pa and the parentheses de-
notes symmetrization.

The only invariant that can be formed from p»
is the complex invariant (or two real invariants)

It follows that only two real invariants
can be formed from E,„.A classification of E„„
in terms of its invariants can be obtained by notic-
ing that Q„BQ"B=0 if and only if o„and p„in (2.6)
are proportional. In this case both the real in-
variants of F,„(F,„F'"and F„„*F'")vanish. So
an obvious classification of E„„is into the follow-
ing two types:

Type I: General. No relationship between o.A
Rnd p A.

Type N: QAa=nAo. afor some spinor eA. Both
invariants vanish. The above classification also
arises immediately if one considers what algebraic
condition on the spinors nA, pA is invariant under
the transformation group.

To generalize this classification to an arbitrary
gauge field F'„,i=1, . . . , 9/ with gauge group G,
consider the spinor QA'a corresponding to E'„„.
Analogous to (2.6),

= o. ', „pB, (no summation over i) (2.&)

for some spinors &A, p B, where the index i is just
a label and is not. a gauge index. As before, a
classification may be obtained by considering
algebraic relations among these spinors which
are invariant under the entire invariance group
which is now Lx G. If the adjoint representation
G is irreducible (which is the case if and only if
G is simple), we then obtain the following classifi-
cation":

Type I: General.
Type A:

i
4AB = &(Apa) i=1 ~ ~ &

fol" Some sPlnol S Q» ISA.

Type D:

OAB
= 4'& (A pa) i = 1 ~ ~ ~

(2.8)

(2.9)

for some spjnors ~, pa RIld R vector p with +
complex components.

Type N:

~AB ~ ~A~a~ (2.10)

for some spinor ~A and a, vector p'.
The above classification is also valid if G is re-

ducible but not fully reducible. But in this ease a
refinement is possible by placing more conditions
on the spinors, which are invariant under the
transformation group. If G is fully reducible then
E„'„maybe regarded as consisting of several gauge
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FIG. 1. A spinorial classification of agenera1 gauge field (with anh-parameter gauge group) compared with the
well-known classifications of the electromagnetic field into null and non-null types, and the Petrov-Pirani
classification of the vacuum gravitational field. The partitions in square brackets represent the degeneracies
of spinors, corresponding to each type. The arrows point in the direction of increasing specialization. (a)
is a special case of (b) corresponding toN=l for which I, A, and D become identical.

fields, each of which belongs to an irreducible or
not fully reducible representation of G. Then each
such field is subject to the above classification or
its refinement as mentioned above. An example
of 6 being reducible is when 6 is Abelian. 6 in
this case consists only of the identity matrix and
so the E„'„maybe regarded as R independent Max-
well fields which can be classified separately.
(For the Maxwell field, types I, A, and D above
may be regarded as identical).

This classification can also be obtained by con-
sidering an eigenvector problem which does not
require any knowledge of spinor formalism. No-
tice first that if the Maxwell field E„„is of type N

it has exactly one real nulleigenvector correspond-
ing to eigenvalue zero. So for more general gauge
fields it is natural to investigate the eigenvector
equation

yu yips (2.11)

%e notice now that a null eigenvector V" corre-
sponds to a common spinor of P„'3. So we obtain
a classification identical to the one above in the
following way:

Type I: no real null eigenvector in general.
Type A: at least one real null eigenveetor.

4 0 in general.
Type D: two real null eigenvectors, distinct in

general. A. 't0 in general.
Type N: One real null eigenveetor. A.

'= 0.
Figure 1 compares the above classification with

the Petrov-Pirani classification of the vaccum
gravitational field and the classification of the
Maxwell field, by means of Penrose diagrams.
%e shall see in See. III that the three types of
Yang-Mills field that occur in the asymptotic limit
considered by Roskies, ' are just the types I, A, and
N above" for this special case. The situation here
is analogous to the Petrov-Pirani classification
where also the asymptotic limit does not give type

D, which may be obtained instead through the spi-
nor method. Type-D fields have physical relevance,
since any time-symmetric field which is alge-
brically special must be type D. Because if such
a field has one common null eigenvector [see
(2.11)]then by time symmetry it must have two.
This mill be the case also if the field is symmetric
with respect to a spaeelike direction.

Our focus so far has been on gauge fields defined
in Minkoswki space-time. Indeed (2.4) is valid
only if E„„is a real field in Minkowski space-time,
and the self-dual field corresponding to Q» as
seen from (2.5) must then be complex. But it is
possible to define F„'„and/~i~ in the four-dimen-
sional Euclidean space E4. The self-dual field can
then be real as in the instanton solutions. " Since
the classification obtained in this section was in

terms of f„'~,it covers all these cases, i.e. , it
is a classification of E„'„andthe self-dual field
both in Minkowski space-time and E4. This is also
true of the refinement of this classification that
will be obtained in the next section by considering
a matrix L of Lorentz invariants.

III. ON THE INVARIANTS OF GAUGE FIELDS

Let F,'„,i =1, . . . , R be the gauge field corre-
sponding to an&-parameter gauge group 6. An in-
variant ofE„'„is defined to be an algebraic function of
p'„which is a scalar under L xG. A systematic study
of the invariants of E„'„wasdone perhaps for the first
time by Roskies for the special case of an SU(2)
gauge field. In this section we shall attempt to ex-
tend this analysis to more general gauge fields.
For the purposes of this investigation it is useful
to define the matrix

2yiBy jA

where ft)„'~ is the spinor corresponding to E„'„de-
fined in (2.4). It follows from (2.5) that
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where

and

2 pv

Jtj 1 Ff +Fjvw
WV

/~i itjjAB 8 (gi + ii'pi )(gjvvy ikpjuu}

Therefore,

(3.2}

(3.3)

shall now show that 6N —6-N independent invari-
ants can be formed from F,'„.

Since Ga (I ) by assumption, N c 1. Also it can be
shown easily that GOO(2) for any Lie group G.
Hence N + 3. As in case a, in any given gauge, we
can go to the canonical Lorentz frame in which 6
of the 6N components of F'„„vanish. Consider now
the tensor K'j defined in (3.3). Since K'j are Lo-
rentz scalars we can use them to study the effect
of G on F„'„independently of the effect of L. Under
a gauge transformation K transforms as

The NxN matrices J, K, and L are all sym-
metric.

We shall now obtain the number of independent in-
var iants that can be formed from a gauge field for
which the adjoint representation of the gauge group

GcO(N}, (3 4)

where O(N) is the orthogonal group in N dimen-
sions. Since the arguments are rather subtle, the
reader may omit them during a first reading.
(3.4) includes all cases for which the gauge
group is compact. For instance it includes the
usual gauge fields such as the Yang-Mills field,
for which G=SU(N) where N is any positive inte-
ger. It is convenient to consider two cases.

Case a: G={I)where I is the NxN identity
matrix. G is then an Abelian group and F',„may
be regarded as N Maxwell fields. Of their 6N

components, when ¹1 four components and when
N ~ 2 six components, can always be made to van-
ish, using the freedom of the six-parameter group
of Lorentz transformations. ' This can be seen
from the fact that E'„„consideredas a Maxwell
field has a canonical Lorentz frame in which it
has at most two nonzero components. In such a
frame, four components of I '„„arezero. We
have however a two-parameter subgroup of the
Lorentz group that will leave the remaining two
components invariant. For instance if E',

„

is non-
radiative we can go to a frame where its "E field"
and the "B field" are parallel to the x axis. We
can then rotate around or translate along the x
axis while maintaining this situation. When N & 2,
using this two-parameter freedom, two of the
components of F'„„canbe made to vanish and we
have no more freedom left. . Therefore, in this
canonical frame, six components always vanish
when N~ 2. Hence 6N-6 independent invariants
can be formed from the 6N —6 independent com-
ponents in this frame.

To summarize, for case a, the number of inde-
pendent invariants are two when N = 1 and 6N —6
when N ~ 2.

Case b: (I}cGc0(N) Let N be the di. mension
of G regarded as a Lie group. Then N ~ N. We

K-GKGr, G cGc0(N).
Since K is real symmetric, there exists Oe 0(N)
such that OKO is diagonal.

Consider the set of all real N x N diagonal ma-
trices KD which are inequivalent (under similarity
transformations) with respect to O(N). These
matrices are then inequivalent with respect to the
subgroup G. Now let 9 be the Lie algebra of G
and g„.. . ,g„-a basis for 9. Extend this to a basis
gy gpss hg„,. . . , h„(pf y) /2 of the Lie algebra of
O(N}. Let X be the subspace spanned by

hg„,. . . , h~(y 1)/2 Then

a nse =(oj. (3.5)

We shall restrict our considerations to infinitesi-
mal transformations since this restriction does
not alter the number of independent invariants.
Also we consider the general case when the ele-
ments of each diagonal matrix K are unequal. The
set

S = (HKn H H = e", h c K)

is then easily shown to be the set of inequivalent
matrices under G. For if HKDH = GH'KDH' G

(G cG, H=I+ h, H'=I+ h', h, h'cX), i.e. ,
H' G HKD=KDH' G H, then since the elements of
K are unequal, K' G H=I. Therefore, h' +g
+ h = 0 or g= h —h ' which contradicts (3.5). The set
of matrices K~ depend on N parameters. There-
fore, the matrices belonging to S depend on
N+ ,N(N —1) —N = ', N—(N+ 1) —N para-meters. But
the set of all real symmetric matrices K depend
on ,'N(N+1) para. met—ers. Hence for the set S of
inequivalent K matrices under G, there must be
N independent relations on the components of K.
These are also N independent relations on the 6N
—6 nonzero components of E„'„in the canonical
Lorentz frame mentioned above. Hence the set
of fields inequivalent under L x G depend on 6N —6
—N parameters. Therefore 6N —6 —N independent
invariants can be formed from E'„„in case b.

Consider now the special case G=SU(2) or O(3).
In this easy N =N=3 and the number of independent
invariants that can be formed from F„'„is 6N —6
—¹9. A set of nine independent invariants in
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j. +y )very sp
6 ijP v v p

{3.10)

is independent of (3.6). But it can be shown using
(3.7), (3.8) of Ref. 8 and (3.S), (3.14) of the pres-
ent paper that

terms of the matrix I- defined in {3.1) for this case
ls

TrL, Tr(L'), Tr(L'), Tr(II ), Tr(L'I. ).
(3.6)

Since Tr(LL) is real and all other terms are com-
plex, there are altogether nine real independent
invariants in (3.6). By the Cayley-Hamilton
theorem

L' —(TrL)L'+ —,'[(TrL)' Tr(L')]L
—(det L)I= 0. (3.7)

On taking the trace of (3.7) one obtains

detL= ,'Tr(L'—)—,'(TrL—)Tr(L )+ ~ (TrL)'.

(3.8)

Hence detL is not independent of the invariants
(3.6) since it can be expressed in terms of them.
It may appear at first sight that the invariant

y f8
y jCyAA

=t+it',

matrix for the four types in the spinor classifica-
tion of See. II for the Yang-Mills field. This re-
lates the spinor classification to Roskies's classi-
fication in terms of invariants for this case.

Type I: L is general; no relations among the
invar iants.

Type A or D: In this case we can write

L' —e'e' (3.15)

detL=0,

Tr(L') = (Tr L}'.
(3.16)

(3.17)

From (3.11) it follows that (3.16) is equivalent to

t=t'=0 (3.18)

Thus L has rank 1. Conversely, if L which is
symmetric has rank 1 then its elements have the
form of (3.15) and it is a simple matter to prove
that the field is of type A or D. These two types
cannot be distinguished on the basis of the L ma-
trix alone. However, they ean be distinguished by
the fact that type A corresponds to two linearly in-
dependent P~ while type D has only one linearly
independent fA'~.

The statement that L is of rank 1 implies the six
conditions on the invariants which defines Roskies's
type 11 [(3.18)-(3.20) below]. To show this notice
that if L has rank 1 then it has two zero eigen-
values, which means that from (3.7)

7'= -detL . (3.11)

Hence because of (3.S} r is not independent of
(3.6). We can then replace Tr L' in (3.6) by r and
obtain as a set of independent invariants

and from (3.2), (3.17) is equivalent to

Tr(J') —(Tr J)'= Tr(K') —(TrK)',

Tr(JK) =Tr JTrK.
(3.19)

7', Tr, L, Tr{L'),Tr(LL), Tr(L'L) . (3.12)

(3.12) and their complex conjugates are equivalent
to Roskies's fundamental invariants,

f, t', Tr 8, Tr(J'},TrK, Tr(K'},Tr(JK), detZ, detK.

(3.13)

This can be seen from the fact that the real and
imaginary parts of (3.12) give the first six invari-
ants of (3.13) and Tr(K'+ J'K), Tr(Z'+K'Z). But
the last two terms can be replaced by det J and
detK because of (3.7), (3.8) of Ref. 8 and the fol-
lowing relations obtained from the Cayley-Hamil-
ton theorem:

Tr{Z') = 3 det j+ —,TrZTr(Z') ——,'(Tr Z)',

Tr(K') = 3 detK+ ~ TrKTr(K~) —z(TrK)'.

(3.14)

We now investigate what characterizes the L

Also, since L is of rank 1, K= —,'(I +I-) and 8=(1/
2i)(L —L) can have at most rank 2. Therefore,

det J= detK= O. (3.20)

However (3.18) (3.20) do not imply that L is of
rank 1, so that Roskies's type II includes our type
A as a proper subset. "

Type N: Hexe L is the zero matrix; thus all the
invariants vanish. Conversely, if all the invariants
vanish then the matrix L must be zero and the field
must be type N. (See the appendix and also Ref. 8.)
This proves that our type N and Roskies's type I
are ldentlcal.

The classification in Sec. II was obtained entirely
by considering invariant conditions on irreducible
spinors. But the important role played by the ma-
trix L in the above discussion of the Yang-Mills
field calls for an investigation of the classification
of gauge fields in terms of the L matrix. Fox the
Maxwell field L is a 1@1matrix and L=0 for the
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0 Number of )incor/y

independent

Rank of L

-0

FIG. 2. The classification of a general gauge
field using the matrix I.. A refinement of Fig. 1(b) is
obtained, with type II as the extra case. Type 0 is the
trivial case for which the field i.s zero. Pz'& can also

null field and I 0 0 if the field is non-null. Hence,
the only classifications of gauge fields based on
the L matrix that will give the known classifica-
tion of Maxwell field as a special case is a classi-
fication according to the rank of L or according to
the number of zero eigenvalues of L. The eigen-
values of I. are invariant under the invariance
group L x G if and only if 6 satisfies (3.4). But
the rank of I is invariant regardless of the nature
of Q. We shall therefore obtain a classification of
all gauge fields based on the rank of L keeping in
mind that a further refinement is possible accoxd-
ing the number of zero eigenvalues when G satisfies
(3.4), which is the case for the Yang-Mills field for
instance. Also we shall take into account the num-
ber of linearly independent Q„'~with respect to
complex coefficients, in obtaining the classifica-
tion, which as we saw earlier was needed to distin-
guish between types A and D.

Since P„'~is symmetric in A, 8, there cannot
be more than three linearly independent p„'~for
given i. Consequently, for any gauge field, the
rank of I. cannot be more than 3. This gives a
classification of gauge fields into five nontrivial
types, the four given in Sec. II and a. fifth which
we shall call type II corresponding two linearly
independent P„'~and I- being of rank 2. We illu-
strate this scheme in Fig. 2. The proof for the
nonexistent types in Fig. 2 is given in the Appen-
dix. Since f is given by (3.2) and $„'scorresponds
to I'„'„+i~E'„this classification can also be de-
scribed in terms of E'„without the need for the
spinox formalism. For the Yang-Mills field, type
II is given by the vanishing of detL, with no other
relations among the invariants.

We conclude this section with some remarks
about the peeling theorem which illustrate the use-
fulness of the eigenvector problem (2.11). Roskies
has shown that the asymptotic form of the Yang-

Mills field, is
(1 )i (2)i (3)i

yi ~ ~B p ~AB + ~ABr' (3.21)

1 1
~~a 0 orna+ 2 ~ &~ Ps)+ 3 f ~a ~y J' y'

whexe e„is tangent to the radially outgoing null
direction.

IV. THE GEOMETRIC OPTICS LIMIT

In this section, we show how the methods of
geometric optics applied to gauge fields lead to
the classification in terms of types I, A, and N

obtained in Sec. II. This may be regarded as a
further indication of the physical significance of
this classification. For simplicity we shall con-
sider first the Maxwell field.

In geometric optics one considers special wave-
like solutions of the field equations for which the
amplitude and polarization are slowly varying in
comparison with the phase. In other words one
considers the limit when the dimensionless para-
meter e = X/f approaches zero, where X is the
average wavelength and L is the typical length
over which the amplitude and the polarization
vary. " This can be mathematically accomplished
by writing the electromagnetic vector potential A
as Re(g„c'~')and requiring that each succeeding
derivative of a„is smaller than the preceding one
by an order of magnitude q. The latter require-
ment is a generalization of the requirement that
a„beconstant. Performing then a Taylor expan-
sion of a„around any space-time point z, we can
write

Re[( (0 )+ (1)+ 2 (2)+ .. .)ei0/&] (4 1)

where q is a small constant. By the propex'ty of
the Taylor expansion,

where for P„'~'all the invariants vanish and Q„"~"
is general. Hence they must be of types N and I
in our spinoral classification. For this to be
analogous to the peeling theorem of general rela-
tively, it is also necessary to prove that Q~"~" is
of type A and moreover the repeated spinor of
Q„'~"and the common spinox of the three P„'~"are
the same and are tangent to the radially outgoing
null direction. This can be proved by using condi-
tions (4.6) and (4.8) of Ref. 8, Eq. (2.11) of the
present paper, and the remarks which follow this
equation. With these observations, (3.21) may be
stated as a peeling theorem for the Yang-Mills
fields: The asymptotic form of the Yang-Mills
field is

(0) A i 1) A (2)
a~, p= 0» a f, , pp= 0) a 1,, vpo= 0~ ~ ~ ~ ~ (4.2)
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On substituting (4.1) in the source-free Maxwell's
equations

ClA, —v (v"A„)=0, (4.3)

(k„k-")a"'"+(k "a„"')k'= 0,
where

(4.4)

k„=—v„P. (4 5)

Now the Maxwell field E„v=A,„„canbe written
using (4.1), (4.2), and (4.5} as

1
Vv Wv Wv Vv (4.6)

where

F (0& Re(
~ io&k iQ/E)

uv [w v)

F(&& R ( (1&k iit/e)
vv v) (4.7)

Re[(ja ' k a )e'o/')
t

But from (4.4) either a'o&'~k~ or k„k"=0. In the
former case E,"„'=0 and in the latter case k"g„'"

all of type I, but F„"„'differs from the succeeding
ones in that it always has k as an eigenvector
corresponding to an eigenvalue which is in general
nonzero.

We apply now essentially the same procedure to
any gauge field corresponding to a gauge group G.
The field equations in the absence of sources are
then

E'"v + C- A'E'""=0
, v i» v (4.8)

and using (4.2), one obtains on equating to zero the
coeffic ient of I /q',

1
~AB ~ A B (APB& ~ AB ' (4.15)
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APPENDIX: PROOF OF THE NONEXISTENCE OF THE TYPES
OMITTED IN FIG. 2

I.et pA'B, i= 1, . . . , N represent an arbitrary gauge
field and L" the N Y N matrix defined in (3.1). Then
clearly

Fi io& Re( ~ i (0&k eiy/s)
VV fp v] )

F' '"= -Re[(a""k (4.14)

+ C g(o) P(o)~ ai))/i» u v

It follows from (4.12) that either a„"0&~k„orkP"
=0=k"g„'"'. Therefore, for E„''„'the J and E ma-
trices defined in (3.3) are both zero. Hence F'„„'"
is of type N. Also it is easily checked that when
F'„',"'10, F„'"'"has the null vector k" as the corn-
mon eigenvector cor. esponding to a nonzero eigen-
value in general. It follows from the remarks after
(2.11) that F''„"is of type A. It can also be verified
that F,''„"and all other succeeding fields in (4.13)
are of the general type I. Hence the geometric
optics limit provides a classification of all gauge
fields into types I, A, and N. Also we have proved
an analog of the peeling theorem for geometric
optics which in term of spinors, with obvious nota-
tion is

where C,.» are the structure constants of G and X'= 0~L "X'=0AB (A1)

We expand

(4 9)

i (0) A i(1) g f(2)a„v 0) Qg vp 07 Qg vpy Op ~ ~ ~ ~ (4.11)

Substitute (4.10) into (4.8) and using (4.5} obtain to
the lowest order in g,

-(k k")a''"+(k"a'' ')k =0.
From (4.9), (4.10), and (4.11),

(4.12)

E = —E' +E +qE + '''
gv vv Wv vv (4.13)

where

A'„=Re[(a'"'+pa''"+q'a''"''')e'~ '] (4 10)

where a', '"', z= 0, 1, 2, . . . satisfy

where X' are N complex numbers. Therefore
since at most three QA'B can be linearly indepen-
dent, rank L & 3. The fact that there are no types
above the diagonal in Fig. 2 also follows from the
implication (Al).

If rank L =2 then there exists a nonsingular
N &&N matrix P such that L '—= PLP satisfies L"
=L" =L" =0. We can write L" =2/„' QB", where

~J 2' 3I
~AB P ~AB' ~AB +A™B 4 AB + (A PB) &t AB

+ (A ~B) m pin +A PA ~A Since at
most two of the spinors aA, p„,yA can be linearly
independent, at most two ft)A'B and consequently
at most two ft)A'B can be linearly independent.

Finally we note that rank L =0 is equivalent to
I "=0. Then QA'B must be of the form X'nA(yB.
Hence it is not possible to have more than one li-
nearly independent ft)A'B in this case.
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