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We present the quantization program of the free field theory of massless antisymmetric tensor gauge fields
of second rank introduced by Kalb and Ramond as carrying the interaction between closed relativistic strings.
This has been done both on the constant-time surface and also on the null plane. Dirac’s method of
quantization for constrained Hamiltonian systems has been invoked.

I. INTRODUCTION

The study of the string picture of dual-resonance
models has given birth to a large number of in-
teresting problems. One of these is the action-at-
a-distance theory of interacting strings'+? obtained
in the manner of the action-at-a-distance formal-
ism of interactingpoint particles.®* The generaliza-
tion from the point-particle mechanics to the string
mechanics is ensured by the correspondence be-
tween the line element of the world line of the
point particle and the surface element of the world
sheet traversed by the string in time. In order to
develop consistently both the Lagrangian and Ham-
iltonian formulations of the action-at-a-distance
theory of interacting strings, we need to make a
common time identification for all the strings in
the same manner as that for the interacting point
particles.® This is achieved by exploiting the pa-
rametrization invariance of the postulated free and
interstring actions.?

The nature of the interstring forces, as shown by
Kalb and Ramond, depends on the type of strings
involved.! For the closed strings, which satisfy
Lorentz-type equations of motion for the string
bodies, these forces are mediated between the
strings by a massless scalar field. On the other
hand, for the open strings, the interaction is
mediated by a massless vector field if we consider
the end-point interactions and ignore the body in-
teractions; whereas the presence of both body and
end-point interactions requires a massive pseudo-
vector field as the mediating field.

We shall consider here only the field that is re-
sponsible for the interaction between the closed
strings. In analogy tothe electromagnetic gauge
field A, which corresponds to interactions between
point particles, we have an antisymmetric gauge
field A, , that mediates between the closed strings.
The free field theory for these two fields can be
obtained from the Lagrangian densities 3F, F""
and {5 F, ,oF"v% respectively, where F,, is the
usual antisymmetric field tensor of the electromag-
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netics and F, , can be given an analogical defini-
tion in terms of A, ,."*** In a similar fashion, we
may define the field A, . for the interaction be-
tween the closed shells and the corresponding field
tensor F, ,,5." There are gauge invariances in all
these cases.

In the following we shall study the quantization by
Dirac’s method® for the free field theory of A, .
The corresponding problem for the electromagnetic
gauge field has been done by Dirac, Anderson, and
Bergmann, and Kundt.® Here we shall follow the
program in close analogy to this electromagnetic
gauge field theory as presented in the review by
Hanson, Regge, and Teitelboim.®

The paper is divided into two parts. In Sec. II we
shall describe the dynamics on constant-time sur-
faces and in Sec. III we shall describe the dynam-
ics on the null plane.

Describing the dynamics on the constant-time
surface, in Sec. IIA we shall work out the Hamil-
tonian without the gauge constraints for our free
field theory. In Sec. II B, choosing the radiation
gauge, we shall work out the constant-time Dirac
brackets of the canonical field variables. Section
IIIC contains a discussion of quantization. De-
scribing the dynamics on the null plane, in Sec.
IIIA, we shall develop the Hamiltonian without
gauge constraints. Choosing a null-plane radiation
gauge, we shall work out the null-plane Dirac
brackets in Sec. III B. Quantization will be dis-
cussed in Sec. IIIC. Section IV will contain some
concluding remarks.

II. DYNAMICS ON CONSTANT-TIME SURFACE

Here we shall describe the dynamics of massless
tensor gauge fields of second rank on constant-time
surfaces.

A. Hamiltonian without gauge constraints

We shall start with the Lagrangian density as '+
L=-1F*'Fy, ., (2.1)

where the antisymmetric field tensor is defined
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in terms of the antisymmetric tensor potentials
AF¥x) as

8AY % (x) +aA"“‘(x) +6A””(x)-

(2.2)
dxy ax, 9 Xy

FHv¥(x)=

The Lagrangian density defined above is invariant
under the gauge transformations

APV (x) =AY (x)+0H AV (%) -8VA* (x). (2.3)

The Euler-Lagrangian equations of motion that fol-
low from this Lagrangian are

8, F*¥*(x)=0. (2.4)

In order to write the Hamiltonian for our gauge
field, we define the canonical momenta conjugate
toA,, as

v (x)= 2L =—FOY(x)==1"* (x), (2.5)
8A uv

where we intend to describe the dynamics on the

constant-time surfaces. We note that this gives us

weakly vanishing 1%, i=1,2,3, due to the anti-

symmetry of Fe#v, Thus we have the primary con-

straints as

n°=~0, :=1,2,3. (2.6)

These constraints, along with the Euler-Lagrang-
ian equations (2.4), imply another set of weak equa-
tions

8,1 =0, (2.7)

These in fact are the secondary constraints, as
will be shown later.

The canonical Poisson brackets between [T"? and
A*V can be written as

[H“u(iv t)yAa B(}.’y t)]p
=—(g"%g"B - gu%" B)5*(x-F).  (2.8)

The other Poisson brackets are zero. These, as
expected, are incompatible with the primary con-
straints (2.6) and also Egs. (2.7).

In order to obtain the secondary constraints, we
need to know the canonical Hamiltonian. To that
effect, we first write down the canonical conserved
currents:

1 a8
TRV == —= — A _V4ighrg

20A4p, *° g

:%FpaﬂAanU_ -;‘.2_ uFaeuF(!Bb (2'9)
and
oL oL
MY =TV — VT AVs + A¥
94,5 .« A, 0" °

=quav_quau +Fau6Au6 —-F“”‘SA”,,,
(2.10)

where we can easily verify, using equations of mo-
tion, that

8, T"" =0

and (2.11)
3 M v=0.

The corresponding conserved generators of the

Poincaré group are

P“=fd3xT°" and M‘“’=fd3x&m°’“’. (2.12)

The canonical Hamiltonian is
HCEPO:] d3xT®
=j Ax(31% P4, 5 —111V 11, + 1G?), (2.13)

where G2 =F'*°F,,.

Following Dirac, we add arbitrary multiples of
primary constraints to this Hamiltonian so that our
preliminary Hamiltonian becomes

Hy=H_+ J d?x v, 1% (%)

= [ @it 167 - 216 A, - 8,4 )+ 0,1,
(2.14)
where we have used

Auznu‘atA/o*a;Aeo, (2.15)

which follows directly from the definition (2.5)of
m,

Since the constraints have to hold for all times,
we have from

ﬁm:[noiaHo]Pzakﬂki (2.16)
the secondary constraints as
8, M*=0, (2.17)

which is the same as Eq. (2.7). There are no more
secondary constraints and, therefore, we have only
two sets of constraints:

¢ =11% =0,
(2.18)
d)g saiH‘kZOy

which are, as can be seen, first class.

To obtain the final Hamiltonian, we add arbitrary
multiples of these first-class constraints to the
canonical Hamiltonian H,_ given above:

H=H,+ | a'o,(x)9{() +0,()9}()]
= j d3x[al_nijn”+%c2+vinol +(wj +Aj°)a'_r[”]’

(2.19)
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where we assume fields to vanish at infinity so that

the surface term does not contribute. To evaluate
the Lagrangian multipliers in (2.19), we note that

A’°=[A’°,H]p=—vj, (2.20)
Al =[A H) =11 - 8 (wy+ A o) + 05 (w; + A o),
(2.21)
and
['111.:[“1»,11]?:1:!#1.1. (2.22)

Thus we may choose v’ =-A and w!=0 so that our
Hamiltonian finally becomes

(2.23)

where we have the arbitrary functions A, which
can be eliminated by imposing gauge constraints
on our system. This we do in the next section.

B. Radiation gauge and Dirac brackets

To make the set of constraints second class, we
add two kinds of gauge constraints to the already
mentioned ones. In correspondence to the con-
straints I1° =0, we choose A°*=0. This choice is
ensured by the following gauge transformation:

0

dtA°% (%, t)

~ X

APV (x) =AY (x)=AFY (x)+ 0¥ J

]

0
x
ov [ ata¥ & 0. (2.29)
0
From the Euler-Lagrangian equations 8,F#/°’ =0,
this choice of gauge gives us
9, A" =0. (2.25)

The other kind of gauge constraints we choose will
have to fix A*/ for us. In analogy to the radiation
gauge of electromagnetics, we therefore choose

8,AY" =0, (2.26)

which is ensured by the following gauge transfor-
mation:

A () =AY (x)=AY (x)

vol [ a3GE-$0,,4% F, )

-8 f d’yGx-7)a, AM ([, x°)

(2.27)

and
A% (x)= A" (x) =A% ()

+89 J d*yGx - -}7)3%A”'(§, x°)

R H J' d*yGEx-y)p, A* [, x),
(2.28)

where the right-hand side of (2.28) is weakly zero
because of A*’=0, and Eq. (2.25). The Green’s
function G(x - ¥) satisfies

v2GE-§)=-03&-7Y), (2.29)

which has a solution G& - )= (4r|x-¥|)"".
Finally, dropping all the primes, we have our set
of constraints as

(2.30)

xs EalA“=0.

The matrix of the Poisson brackets of these con-
straints is singular, which reflects that there are
combinations of these constraints which are first
class. In fact there are two such combinations.
Equivalently, we may notice that only two each of
the constraints x! and y] are independent. In par-
ticular, we may choose those with j=1,2 as the
independent ones, then the matrix of the Poisson
brackets of the independent second-class con-
straints becomes

] 0 g“
0 0 g'v*-a'e’
(xi&, 1), %G, 0] p) = & *x-7), (2.31)
-g 0 0

0 —gvr+ats! 0

where i,5=1,2, 3 for constraints a=1,3 and i,j=1, 2 for the constraints a=2,4. The inverse of this matrix
exists, if we assume that the fields vanish at infinity, and it is
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0 0 -g83x -¥) 0
- 0 0 0 GHY(x-
(ax,y) = . ; (2.32)
g953x -7) 0 0 0
0 -GHx-7) 0 0

where again i,j=1,2,3 for a=1,3 and ,j=1,2 only for a=2,4 and G*(x - y) satisfy
(g11v - 8%9)G*(x - ) =-8"6°(x - V), (2.33)

where 7,j,k=1,2. The solution to (2.33) can be written as

GUE-7)= J‘ da) w! "'“’a e‘a.(;_;),

27) wiw?
(;22(,;._§)=f d'w W +ws G- (2.34)
217 wiew? ’ ’

- - - d3w w
12 _9)=2x -7) = __1_2_ 0. (%- y)
G2x-y)=G*"'(x-Y) J @1 wle? e

Now defining the Dirac bracket of two variables A and B as®
[AR), B§)]3=[AR), BF)] p- f d3x’ f Ay TAR), x}&] paAHE, )X, 3, B)] p (2.35)

we have the Dirac brackets for II*? and A%® as

[N, 0,47, 0] 3 = (g4 -5 )6 E - 3) - (g% - 8 87N 8"~ % 1)6° R - §)

~(g"g"h - g**g (g8 P - &' 2" )0 0,G (X - §), (2.36)

where in the last term 7,5=1,2,3 and k,1=1,2. The other Dirac brackets are
[m#* (X, 1), I8y, )] £ =0, (2.37)
[A*ux, ),A%5(@F, 1)] £ =0. (2.38)

The last term on the right-hand side of (2.36) can be re-expressed in terms of the Green’s function G(x - y)
which is a solution of Eq. (2.29) sothat (2.36) becomes

(M &, 0,4 %, )] 3 == (g"g"* - g" Pg" )X - 7) - (g"%" - g 2" )" e*® - 8P4 )X - )

~(ghight - g"* g ) (g g"? - g7Pg" )0 0,6 - ), (2.39)
where now i,j,k=1,2, 3.
Now we may set the second-class constraints to be strongly equal to zero. The Dirac bracket relations
given above are compatible with this.
In order to verify the Hamiltonian equations of motion, we note that our Hamiltonian has become

H=fd3xT°°=fd3x(§ﬂ”H¢,+%Gz) (2.40)
and Hamiltonian equations of motion read

[A;;’H],.;,=H¢J=_30A¢J=Au (2.41)
and

[, H]% =0 F* =ﬁu’ (2.42)

where we have dropped the surface integrals as usual.
The Poincaré group generators are

Pk=fd3xT°k=—% fa'sxl'l“A”'kv (2.43)
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MY = J' d3xm° = f a3 -3 R (x'e! — x93 1)A,, - ITRA T, + T17*AY,), (2.44)

and

M= [ @oxme= [ ax[-4PYA, P - 2 GV, 367 (2.45)

It can be easily verified that P* and M"Y obey the Poincaré algebra under the Dirac bracket operation.
The effect of P, M*/, and M°® on A’™ can be easily seen to be as follows:

[P*, A'™(x)] 5 =0%A"™(x), (2.46)

[MY,AM™(x)]5 = (20! — 1 )A™(x) +[ g AT™(x) —g "A (x)] - [g 'AI™ (x) - g ImA T (%)), (2.47)
and

[MO, A'™(x)] £ = (xP8f — x*30)A "™ (x) — f d3y8°At(x) (g™t - ga™)GX - V). (2.48)

Although the choice of gauge that we have made above is not Lorentz invariant, the presence of the second
term in the right-hand side of (2.48) ensures that the constraints are respected in the new Lorentz frame.

C. Quantization

With the choice of constraints as given in (2.30), we have only one each of A*Y and [I"V as independent
canonical variables. The quantization is achieved by replacing the Dirac brackets of the independent varia-
bles by the (1/7) times the commutator of the corresponding operators. Thus the canonical commutation

relations for A,; and II,, are

[H”GI, t)9Alk(.’ 0]=-i(gugm— L& )6 (x ~ ;,)_i(g{mgjs ~ 158 im) &ni&sk = Bnk 851 )2 md .,G(-J2 -9), (2.49)
—
and A. Null-plane Hamiltonian without gauge constraints
[0,k 1), 0,,, )] =0, (2.50) Since the evolution of our system takes place on
[A”(i, t),A,k@, £)]=0. (2.51) constant-x* surface, the canonical momentum con-

Similarly, with this prescription we may translate
the other Dirac bracket relations of the previous
section into quantum-mechanical language.

III. DYNAMICS ON THE NULL PLANE

Instead of describing the dynamics on constant-
time surfaces, we may also describe a Hamilton-
ian field theory for A*Y on the null plane in the
same manner as Kogut and Soper” have done in the
case of free electromagnetic field theory.

The null-plane coordinates are defined as

x* =ﬁ1(x3tx°)=x, =7-;:(x3¥x0),

afﬁl(asiao)ﬁhff (@3%2°), (3.1)

w=x, i=1,2.

The metric therefore reads g*~=g ™" =g''=g% =1,
others zero. We shall denote the two-dimensional
vector (x*, %) as x.

Having established the notations, we shall now
write down the Hamiltonian without gauge con-
straints.

jugate to A, , may be defined as

mv(x)= 3L

= =_FtHY =_JIVH
50,4, F*HY(x)=-1"*(x), (3.2)

where £ is the same as in Sec. II. This yields the
primary constraints to be

n*i=0, i=1,2 (3.3)
n+-=0, (3.4)
m2+0_A"”+8, A% +9,A%*'~0, (3.5)

where the other two components of [T" are given
by

n-*+8_A'+8, A" +3,4*"=0, i=1,2, (3.6)
which are dynamical relations and not constraints
because of presence of the x* derivative.

The canonical Poisson brackets on constant x*
surface may be written as

[Hﬂu(x+’x-’z)’AaB(x+’y-,2)]P
=—(ghg"P—g"Bg" )o(x~ = y7)B%(x —y). (3.7

The other Poisson brackets are zero. Here we
may note that it is A ~* and not A ** that is con-
jugate to I1**. Also, as expected, it may be noted
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that our constraints (3.3)—(3.5) are not compatible
with these canonical Poisson-bracket relations.

The constraints (3.3) and (3.4) are first class,
whereas constraint (3.5) is second class, as can
be seen from

[(Im*2 +0 _A' +3, A% +3,A™")(x)

X(M'2 +3_A'?+08,A%* +8,A*")(y)] p=20_8°(x - ),
(3.8)
where 6°(x = y)=6(x" ~y7)6%(x = y).
In order to write conserved ge-nerators of our
system, we note the conserved currents may be
written as

TH =3 FFPAgY = ;8" Fo0F 5 (3.9)
and
g kv :x“TaV—x”Ta“+F°(“6AU5—Fa"‘SAuéy (3.10)

where the metric is as defined above following
Egs. (3.1).
The generators of the Poincaré group thus read

PH= fdx'dsz"“(x),
(3.11)
MW = jdx’dzxﬁn*””(x).

The canonical Hamiltonian is given by

H,=-P =~ fdx’dsz“(x)

= fdx‘dzx(é—ﬂ"‘BAaB"+ 5 F*® Fugs),
(3.12)
where we have chosen H,=-P~ and not H_ =+P~

so that Hamiltonian is positive definite. The Ham-
iltonian can be re-expressed as

Ho= [ax-as 3 an- A, 0,4, )
+ 50,4, -8,A,)]. (3.13)

Given the canonical Hamiltonian as in Eq. (3.13),
we obtain the preliminary Hamiltonian by adding
arbitrary multiples of primary constraints to it:

H,=H_,+ de'dzx{ V)T (%) + 0~ ()T ~ (%)

+w(x)[ M%(x) +8 _A"%(x)

+9, A% (x) +8,A* (x)] } .
(3.14)

J

Since the constraints have to be valid for all times,
the canonical Poisson brackets of the primary
constraints with this Hamiltonian have to be zero.
This gives the secondary constraints

o, I* =[I*" H p=0_""+8,II'"~0, i=1,2
(3.15)

8,II*~=[II*~ H,]p=-9;1""~0, (3.16)
8, (IM2+08_A' 40, A% +9,A%")

=[I'"*+2_A'"+8, A% +3,A*"  H ] p

=20 _w(x) = 8,l172(x) +8,I1"}(x)

=0. (3.17)
Here we have used the fact that the fields vanish
at infinity. Equations (3.15) and (3.16) give us
genuine secondary constraints, but (3.17) is rather
a condition on function w(x). There are no more
secondary constraints.

Thus finally we have two sets of constraints as
follows:

¢;=N1**~0, i=1,2
=[I*"=
¢; =I""~0, (3.18)
$ipi=0 M4+, M* =0, i=1,2
¢Gsain"'z0,
and
XEH12+8_A12+31A2+ +82A“=0, (319)

which are, respectively, first class and second
class.
Now we define the inverse of the Poisson bracket

[x(x),x(¥)]p as ¥(x, y):
[ dza2l xo), (@] sz, ) =567 = y5Hx - ),

(3.20)
wherefrom we note
Ylx,y) =5e(x™ = y7)6% (x =), (3.21)
where €(x~—y~)=sgn(x~-=y~). The first-class
Hamiltonian may be written as

H'=Hc—fdx'd2x fdy'dzy[Hc,x(x)]

X p(x, I () . (3.22)

Using (3.21), we compute the preliminary brack-
ets between two variables A (x), B(y) as®

[AG), B o =[A(), BO) o= [de"a’e [z a2 [A),x(2)] sz, ) [x(2) BO)] 5, (3.23)

so that we obtain

[AFY(x),A%8(y)]

P :(gulguz __guzgul)(gotlgBZ_

’
xt=y+

&g )ie(x™ - y7)6%(x - y), (3.24)
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[H‘“’(x), Has(y)] ’ p += _[(gmguz _guzgvl)a_ +(gu2gu+
£+ =

=y

p+ V2

P+ U1 Pl v+

g"%)a, +(ghtg"t —ghg?*)a,)

X[(g™'gP —g*%gP )0 _+(g°%g®" —g* g ®)o, +(g™ g P —g*'g P*)8,] te(x™ = y7)6%(x - 3),

(3.25)
and
(" (x), A““(y)]’+P =—(g"g"? -g"g"*)6%(x = y) +[(g"'g"* - "% ) o +(g"%g" - g"'g"%) 0, +(g"g" - g"g"") 8, ]
xt=yt
X (g™gP% —g%%Pt) felx™ = y7) 6%(x - ) . (3.26)

All other relevant equations may now be obtained by evaluating preliminary brackets. These preliminary
brackets are compatible with the second-class constraint (3.19). Working with the prime brackets, we
have to use the Hamiltonian to which arbitrary multiples of first-class constraints have been added:

H=H_+ fdzx dx {0 () T (x) + 0~ () T (x) +f (x) [0 1T 7F (x) +9, T*¥ (x)] +2~ (x) [0,l1 "¢ (x)]}, (3.27)

where H, is given by Eq. (3.13). The Hamiltonian
equations read as follows:

(4710, H]p=0'(x),

[A¥ (), H]p=0, AY (x) = 8% (x) +87u' (x),

[A* (), H]p==-0v"(x),

[A* (), H]p =0, A" (x) —8,u" (x), (3.28)

[n+- (x), H];? = ‘3.;'“_" (x):o )

(% (x), H]p =0 07 (x) +3,117 (x)=0,

(M7 (), H]p =0, 17 (x),

[1% (x), H]p =0, (x) .
Thus, we may choose

vi=0, A7, v =-p, A*T, (3.29)

w =0, u =0.
The arbitrary functions present in our theory due
to the first-class constraints have to be removed.
This is done by imposing gauge constraints on the
system.

B. Null-plane radiation gauge and Dirac brackets

Analogous to the gauge we have chosen in Sec.
IIB, we choose conjugates of IT1*,II*~ to be zero,

ATi=0, i=1,2
A™*=0,

(3.30)

which is ensured by the following gauge transfor-
mation:

+

AHU_.AUU'=AHU_aﬂf th'"(t,x',_x_)

0
X+
+a"f atA™H(t,x",x) . (3.31)
()

This choice, using the Euler-Lagrangian equation

F™ =0,

r
gives us

8, (17" +3;A"')=0. (3.32)

Thus the other set of gauge constraints we choose
are

7 +9, A0, j=1,2
a,.A“"zO ,

which are ensured by the following gauge trans-
formation:

pur pvr _ 4 put
AT —=A =A

(3.33)

—ot [ a6l -p) [BLA™ (3) +11(»)]

vat [ty 6~ o™ () 1),

(3.34)
where Green’s function G(x —y) satisfies
8** G (x —y) =6°(x =),

which has a solution G(x = y) =In(x - y)?/4x.

Thus, finally, our set of constraints consists
of the constraints (3.18), (3.30), and (3.33). How-
ever, all of these constraints are not independent.
Dropping all the primes we may choose the follow-
ing set of constraints as independent:

XiEH“'zO: i=1:2

Xs=1I""=0,

X4=0_I1""+2,11%=0,

Xani=ATI=0, i=1,2 (3.35)
X,=A7"=0,

Xre =170 40,4710, i=1,2

X10=0,AF=0.

The two constraints from (3.18) that we have
dropped from this final list of constraints can be ex -
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pressed in terms of these. The matrix of prelim-
inary brackets of these constraints C, (x, y)
=[x,(x),xs(9)]5 has the following nonvanishing
elements:

Cls(x; y)zcze(x:y)=ca7(x) y)="051(x; 3’)
= ‘Csz(x:y) = =Cq(x, y)==06%(x-v),
Cug(%,9)= =Cyy(x,9)=8,20%(x =),

Assuming that the fields vanish at infinity, the in-
verse of this matrix can be defined. The nonvan-
ishing elements of this inverse matrix A, (x,y)
are as follows:

A15(%, ¥) = Bye(x, ) = Ag(x, ¥) = =A4(%, y)
= =Bg(¥,9)= =B o(x,¥)=0%(x - y),
Au=Gy A=Gl A=Gs Ay 1076,

’ 3.37
Cao(¥,9)= = Cos(%,9)= =0,00%(x =3), (5 ) Doy =Gy, Dgg=Gyy =Gy, Agio= Gy 30
Carol%,9)= =C4(x, )= =8,8_0%(x =), 06=Ga1s Dog=Gap Age=Gas, Agio=Gagy
Corol%,9) = =C (¥, ¥) = =0,0%(x =), A101=Ga1y B10s=Gazr BDioo=Giss Ajoro=Gass
Coro(%,3)= =C 109(%,3) = =3,0%(x =) . where the 4X4 matrix G,,(x, ) is given as
,
Gpun(x,9)= %1%::- Gun(w) expliw « (x = y) +iw, (x~ = y7)] (3.38)
and

0 wlzi w,’ wy(w, 2+ w,?) 0

-1 2iw 2w, lw,w, (W, =w,?) iw,
Gal))= | @070 (@, @) wrefre )t wtret ) (3.39)

w, iw, w, (W, —w,? -2iw,%w, iw,

w(w 3+ W) wy(w,+ w,?)? (W 2+ w,?)? w2+ w,’
0 e o 0
W, + w, w2+ w,

Thus, defining the Dirac brackets of two variables A(x),B(y) as®

[A(x),B(y)F=[A(x),B(y)]p

- [azaz 2 [z a2 (A0, 0 @)p (e, 2) @), B3,

we have the equal-x* Dirac brackets for A*Y(x",x7,x), and I""(x*, y7, y) after some straightforward cal-

culations as
[A*(x",x7,2), A% (2", y7, M7
=3(ghlg"2-g"%" ) (gVg™
+2[(g Mg -g g ¥)o, +(g‘”g2“ -
-(g"g™-g"g"(g™"g" -
—(glog®

geg®-g* g“‘)[(g‘“g
[ﬂ‘“’(x*,x',&),ﬂ"‘“(x*,y‘,y)]*

IJX v2 B2,V g2 vt
-:((g -g"%g"e .+ (g%
[(gul B2 gazgﬂ1)a_+ (ga2g8+

[ (x*, 27, x), A% (x*, 97, 9)] %
-[(ghg"® —ghBg" ) -3 (g*'g"?

-(g" g -g"%g " N g g - g "Bg*) -

+3l(g"2g VT —g" g e, +(g‘”
-(g" g -g"g") (g™ g -
-(ghig”

g F(x - y)
g7#g™)o, (g ¥ -2

*g')0,+ (g 8>~ g "¢ *)2,]G(x - y)
-g7"gMo,+(g7"g?

-8 g™, + (g% gH

—gheg V) (gMgB2- gBlga) (gh g
(g¥~g"" -g*
-gtlgth)e,l(gg0 -
“Pgl*ye, +(g7Bg% - g g”)a}a G(x-Y)

-8 g ) g %g® - g8 g ")p,0,G(x ~Y), (3.42)

Bg1%)0,+ (g Pg* —g"g®)a,]a_H(x - )

" -g T g™)e,]G(x =), (3.40)

Hrg")o,+ (g4 g™ - g g")a,]
*1gB)e,|F(x -y), (3.41)

-ghg" ) g gt gt g'?)
gV Ng g - g B gT )63 (x - y)
2 BI)F(x—y)
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where

F(x-y)=%€(x" —y-)éz(i_z)’
G(x-y)= % In(x =yPo(x~ =y7),

9_F(x-y)=0%(x-y), (3.43)
(812 +322)G(x "y) =63(x —y) s
(0,2+3,2)H(x-y)=G(x V).

The second-class constraints (3.35) may now be
put equal to zero strongly. These Dirac brackets
are compatible with these constraints. The Dirac
brackets for the transverse components may be
written as

[AY(x*, 27 ), A™(x", 57,9}
=i(gg?- g% )(g" g™ - g2 gM)F(x -Y),

(¥ (", %7, 2), 1" (x7,57,9)] 3
=-3(g"g” - g"g")(g"g" - g"g"M ) 0% (x -Y),

(3.44)
(¥ (x*, 27, x),A™(x", 97 ,9)] %

=3(g'g?-g%g")(g" g™ - g"g" )03 (x - ).
In order to obtain the Hamiltonian equations of
motion, we notice that our Hamiltonian, putting

second-class constraints strongly equal to zero,
has become

H=fd2x dx~ 1[0, AR + (0, A2)] . (3.45)
This gives
0, AY(x)=[AY(x),H|}
=-i(g'g” -g"g"")(8,% +3,?)
x fdy‘A‘a(x*,y‘,f)e (x~ =y7),

(3.46)

which when differentiated with respect to x~ yields
the Klein-Gordon equation

0.0, A" (x)=[o_AY(x),H]}
=—1(0,2+2,2) A (x)
or (3.47)
aka, AY(x)=0.

Thus Eq. (3.46) is the x~ integral of the Klein-
Gordon equation (3.47).

The other Poincaré group generators can also
be obtained in the same manner as in Sec. II.
These have regular Dirac bracket properties with
A'. An additional term in the same manner as

in the right-hand side of Eq. (2.48) is needed when
Dirac brackets of the Lorentz boost generators
with A¥ are taken. This term ensures that the
constraints are valid in the new Lorentz frame.

C. Null-plane quantization

The constraints (3.35) and (3.19) leave only
one of the components of A*” independent. The
Dirac brackets for this independent component,
A'*(x), given in Eq. (3.44) are the starting
point of the quantum theory. In quantum theory
these Dirac brackets are replaced by commuta-
tors, [A,B]% = (1/i)[A,s,Bo). Thus the canonical
commutation relation in this case are

[AY(x*, x7, %), A (x*, 37, y))
i i
- -E(g“gjz -g 2g11)(gugk2 _glzgkl)F(x - y)’

(I, x7, %), TH(x*, 37, )]
_ %(gilgjz ~g2gi)(gh g®2—g"2g")a _6°(x - y),
(3.48)

[ (x*, %7, %), A (x*, 37, )]

- _%(gixgjz _gi2g11)(gugk2 _glzgkl)as(x - y) .

IV. CONCLUDING REMARKS

We have presented the quantization program on
the constant-time surface and also on the null
plane for a massless antisymmetric tensor gauge
fields of second rank by invoking Dirac’s method®
of quantization of constrained Hamiltonian sys-
tems. The presence of arbitrary functions, re-
flected by the first-class constraints of the theo-
ry, is disposed of by imposing gauge constraints.
These gauge constraints are ensured by invariance
of the free-field Lagrangian (2.1) under the gauge
transformations (2.3). The gauge constraints make
the set of constraints second class, which are
put strongly equal to zero, once the Dirac brackets
are obtained. Eliminating the redundant compon-
ents of the gauge field A*Y and their conjugate
momenta II*Y, we are left with one each of A"’
and I1*Y as independent variables in the case of
quantization on the constant-time surfaces and
only one (A!?) in the case of the null plane quan-
tization. The quantization is achieved by replac-
ing the Dirac brackets on these independent com-
ponents by 3 times their commutators.

In a similar fashion, as above, we can develop
the quantization in other gauges, for example,
in the axial gauge, which has been studied in the
context of electromagnetic field theory by Arnowitt
and Fickler.®
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