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Variational method for boson scattering
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The Hamiltonian for a scalar field interacting with a Schrodinger source is treated by coherent-state
methods. It is shown that meson scattering can be calculated by a variational procedure.

I. INTRODUCTION

Consider a theory of bosons and fermions with
Ham iltonian

best Y„(g) and, thus, a best phase-shift function
for the boson-fermion scattering in the n-meson
approximation. This is the sense in which the
scattering is variationally determined.

H= (&) &(I!) (k)dk j &(p)ilt(&)&(&&d&

+ c(k)[j t(k)a(k)+a~(k)j (k)]dk,

j (k)= e ' "j (r)'dr,

j (r) = p'(r)&t&(r) .
That is, the bosons and fermions of momentum k

have (bare) energies u&(k) and t(k), respectively;
the boson emission and absorption are by the
fermion currentj (r) The. Hamiltonian of Eq. (1)
describes a prototype of theories of bosons and

fermions with interaction of the Yukawa type. A

realization of such a theory is the polaron; in

that case &u(k) is a constant &u, t(p) is p2/2m, and

c(k) is y'~'&o'~4/2vm'~~k, with m the electron mass
and y a dimensionless coupling constant related
to the more usual coupling constant Q. by y= M2n.
Besides this particular example, a set of theories
with Hamiltonians similar to Eq. (1) has been
given in Ref. 1; these theories can all be treated
by methods similar to the one appropriate to the
prototype Hamiltonian. Reference 2 describes an

analogous situation involving isovector mesons.
The properties of the single-fermion states de-

termined by H have been the subject of extensive
investigation. In this paper, attention is focused on
boson scattering by the fermion state. The trans-
lated-localized-state formalism of Ref. 3 gives a
natural way of treating both the fermion ground
state and boson scattering in the no-meson, one-
meson, two-meson, . . . approximations. In this
paper it is shown that in the n-meson approxima-
tion a single function Y„(g) has zeros at the fermion
states and phase along the scattering cut equal. to
the scattering phase shift. The function Y„(a) de-
pends on the particular localized coherent state
used as a zeroth approximation to the fermion
state. Clearly the best localized coherent state
is the one that minimizes the energy of the ground
fermion state; this minimization determines a

II. NO-MESON APPROXIMATION

The localized fermion states in the no-meson
approximation are just the localized coherent
states described in Ref. 3:

x b f)=W„(b) g'(r) f(r x)dr-

&&(b) x» -' J=~&(&)~'d&+ f &(k) '(&) " dk'
(2)

where
l
0) is the boson-fermion vacuum, and b(k)

and f(r) are the two functions that determine the
localized coherent state. It is easy to see that'

a (k)
l x, b,f ) = e "'b (k)

l x, b,f),
e ' '" "ly, b,f)= lx, b,f),

where P is the total momentum operator of the
system. Now let

D»(y —x) —=(y, b,fix, b,f),
(y x)-=(y, b,fIf' lx, b,f);

then the translated local. ized states are

(4)

lK, b,f) -=(2v)-"' ""Ix, b, f)dx

(K, b,f l Q, b,f) = N ~(K)6(K —Q),

(K& b &f l
H

l Q, b, f) = ff ~ (K)~(K -Q),

with

N~~(K) = e ' "D»(x)dx, '

H,q(K) = e 'r "A,~(x)dx.

In the no-meson approximation, the best trans-
lated localized state is the one with functions band

f chosen so as to minimize the functional E~Ls
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ib, f),
F~„a/b, fj = H~q(0)(N~f(0).

It alsofollowsfrom (3) a.nd (5) that

(6)

are automatically included at all stages.
In the following, it is convenient to let

W~~ (K) = H~~(K}(N~~ (K) . (10)

a(k) IK) b)f &
= b(k) IK —k b f) .

This equation shows that in the one-meson approxi-
mation only the states at (k) IK, b,f) and the states
IK, b,f) need be considered; because the no-meson
states are coherent states, the states a(k) IK, b,f)

[As was noted in Ref. 3, it is not a good approxi-
mation to determine the effective mass from the
small-K behavior of W~&(K). ] Also, in the follow-
ing, H(K), N(K), and W(K) will be written without
subscript; in all cases, subscript bf is implied.

III. ONE-MESON APPROXIMATION AND SCATTERING

The one-meson subspace is defined as the space spanned by the states IK, b,f) and at(k) IK, b,f). From
Eqs. (6) and (9),

& P, b,f I
n'(q)

I Q —q, b, f) = b*(q)N(P —q) 5(P —Q), (ts)

so that the one-meson states orthogonal to the no-meson states are

IQ qq» f-& -=n'(q) IQ qb, f& --b"(q} IQ, b,f) (12)

Then

&p —p, p, b,f IQ —q, q, b,f) =5(p —Q) N(p —p)5(p —q)+b(p)b~(q) N(p —p —q)—N(P —p)N(Q —q) (13)

In the matrix elements of 0, the matrix element of j(k) is specified by

&K, b,f I j(k) IQ, b,f) = 5(K+k —Q) J~&(k, Q);

then some algebra gives

(P, b,f I
H

I Q —q, q, b,f) = 5(P —Q)(b*(q}N(P - q) [ W (P —q) —W(P) + z(q) ] + c(q}J (q, P)f,

&P »»b f IH I-Q qq b.f& ='(-P-Q} 5(p q}N(P p)[W-(P p)+-~(p)]-

+ b(p)b*(q) N(P —p —q) [ W(P —p —q) + &u(p) + v(q) ]

N'P ""'P "[W-(P ),-W(P, )N(P)

—W(P) ~ ()) ())]}

+ c(p)b (q) J (p, P —q) —
N(P) J(p, P)N(P —q)

+ c(q)b'(p) J*(q,P p) Z~(q, P)
N(P —p) (15)

Now consider a superposition of no- and one-boson states

IP, z, F, b, f& =Z IP, b, f&+ F(p) IP p, p, b, f&dp. -
Then

&P, Z, F, b,f IQ, Z, F) b,f) = 5(P —Q)Nr(P) )

& P, Z, F, b,f I
H

I Q, Z, F, b,f) = b(P —Q)H~(P) .
Only Nz(0) and Hz(0) are of interest here; these are given by

(16)
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Ns(0) = Ns s + Ndps p

z I'N(o) + N(p} I F(p} I'dp

b pF*p Np+q b*q F qdpdq,
N(p)N(q)

H„(0) = Hss+ Happ,

Hss ——
I
z I'H(0)+ z v*(p)N(p)F(p)dp+ z F*(p)N(p) v(p) dp+ [ w(p) + (d)(p)]N(p) IF(p) I dp,

(18)

p

pq„= p'(p) b(p)b'(q) Iw(p q) (p) ~ (q)]wtp q) q (wtp), cdp), wtq) ~ cdq) w(o)))
N(o)

~ c(P)b*(q) d(P, -q) — d(P, O) (q)b(P) d (q, P) — -d(q, b)) F(qidbdq,
N(q) N(p)

1 } V(p) I('N(p)dp

N(0) e —[ W(p) + &u(p} ]
(20)

then the fermion state is at energy E, given by

Y(E) = 0, E( W(0) (21)

and the boson-fermion scattering phase shift at
energy E is given by

e "" '= Y(E+i 0)/Y(E —i 0), (22}

that is, &(E} is the phase of 1'(E —io).
Clearly, in the one-meson approximation, the

best coherent-state functions b and f are the ones
that minimize the root E of Eq (21). O. nce b and

f are fixed, Y(e) is completely determined, and,
hence, so is 5(E).

Inclusion of effects due to N~„and HFN can be
accomplished by using separable approximations
for N(p+q), W(p+q), and J(p, q); for example, for
the spherical average of N(p+q), the M-term sep-
arable approximation is

where

V~y(p) = [ Wby(p) —Wby(0)+ (b)(p)]b(p)

+ c(p}J,~ (p, 0)/N, ~ (p)

and H and N are assumed to be even functions. In

(18), S and N are for "separable" and "nonsepar-
able, " respectively.

Consider first the case that N» and H» can be
neglected. Then it is a standard calculation to
show that if Y(z) is defined by (a complex)

Y(a}= W(0} —e

dQp dQ, N(p+ q) =—Q &,.n; (p)n, (q), (23)
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where Ref. 4 gives the technique for determining
the X, and n, (p). With the separable approxima-
tions, it is again possible to find algebraically
the function Y(e) that has zeros at the (possibly
several) fermion states and phase &(E) along the
lower side of the elastic cut. Again the one-
meson coherent-state functions b and f are varia-
tionally determined, and, hence, so is 5(E} in

the one-meson approximation.

IV. REMARKS AND SUMMARY

It is evident that the procedure can be carried
over to the two-, three-, and n-meson subspaces.
In each case, the energies and phase shifts are
(implicit) functionals of the coherent-state func-
tions b and f. Once b and f are variationally de-
termined by minimizing the energy of the lowest
state, then the entire scattering matrix is deter-
mined in the n-meson approximation.

Thus, the translated coherent states provide a
systematic framework for computing bound and
scattering states of the Hamiltonian of Eq. (1).
Since the procedure is variational at every stage,
both weak and strong coupling can be treated in

the same way.
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