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One-dimensional field theories with odd-power self-interactions
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Classical solutions to nonlinear field theories are considered as model particles. Two fields are examined
here, the XP' field and a generalization of the sine-Gordon system. Each of these fields is in one space
dimension and quantization is accomplished using the WKB method. Static solutions to the ),$' field are
shown to represent objects with an internal structure resembling a dumbbell. The quantum mass of these
objects is computed in the weak-coupling limit and an approximate expression for the classical force between
two of these objects is obtained. This force seems to be attractive and constant at large separations. In the
case of the generalized sine-Gordon field it is shown that classical solutions to the field equation may be
obtained by a transformation from known solutions to the sine-Gordon equation. The behavior of this field is
therefore similar to that of the sine-Gordon field.

I. INTRODUCTION

where E(P) is a functional of the real, scalar field
P(x, t) The subscrip. ts indicate differentiation.
Two cases are to be considered here:

E(y) = - —,'m'y'+ -,'ay', (1.2a)

(1.2b)

Recently there has been interest in constructing
model particles from exact solutions to classical,
nonlinear, partial differential equations. The pro-
cedure employed is to begin with a known solution
to the classical field equation and to construct
quantum states from it. The difficulty here is
that there are not many exact solutions available
for nonlinear field equations. Recently some static
solutions have become available for a number of
fields which have not previously been considered
in the literature. ' The purpose of this work is to
examine some of these fields, in particular those
which contain odd-power self-interaction terms.
The fields to be considered here will be in one
space dimension.

The behavior of both free and interacting parti-
cles will be examined at the classical level and
first-order quantum corrections to the classical
mass of these objects will be obtained using semi-
classical methods developed for field theory by
Dashen, Hasslacher, and Neveu. ' It will be as-
sumed that the rea, der is generally familiar with
the application of these methods and with the be-
havior of other one-dimensional field theories.
Units will be chosen such that h =&=1.

The fields to be considered here have a La-
grangian density of the form

The AP' field, Eq. (1.2a), is the simplest ex-
ample of a. Lagrangian density which contains an
odd-power self-interaction term. This field is
usually not considered suitable for constructing
model particles' because the Hamiltonian density
is not positive definite and therefore a state of
lowest energy may not exist. However, when
quantization about a static solution to the classical
field equation is carried out, we are dealing with
a. sector of Hilbert space separate from that which
would be accessible by the use of conventional per-
turbation theory and a conservation law may exist
which would prohibit transitions from one sector
to the other. Therefore, even though states built
around the classical vacuum might undergo radia-
tive collapse, this would not be allowed for states
constructed from static solutions to the classical
field equation.

A static solution to the XQ' field equation will be
shown to represent an apparently unstable particle
with an internal structure resembling a dumbbell.
First-order quantum contributions to the mass of
this object will be computed in the weak-coupling
limit and a calculation of the classical force be-
tween two of these objects will be made. The re-
sult obtained indicates that at large separations
this force is attractive and constant.

In the second case, Eq. (1.2b), the Lagrangian
density contains an arbitrary linear combination
of sine and cosine functions. The sirie function
may be considered to be an infinite sum of odd-
power self-interaction terms. For this case the
Hamiltonian density of the system will be positive
definite for all real Q. It will be shown that both
static and time-dependent solutions to the equation
of motion may be generated by a simple trans-
formation from those of the well-known sine-
Gordon field. The classical and quantum charac-
teristics of solutions obtained in this manner will
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therefore be similar to those of the sine-Gordon
field.

II. XP FIELD

The Lagrangian density corresponding to the
choice of F($) in Eq. (1.2a) is
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Z = —,'(y, )' ——,'(y, )' ——,'m'4'+-, 'zz. P'

and the corresponding Hamiltonian density is

K = —,'(yz)'+ —,'(y, )'+ —,'m'y' ——,'Zz/z'.

(2.1)

(2.2)

The equation of motion for this system will be

(f)g] —Q „+mQ —2A. Q =0.3

A. Constant solutions

(2.3) FIG. 1. The field P and Hamiltonian density 3'. corres-
ponding to the static solution for the ~P field. x, denotes
the location of the center of the extended object.

There is a constant solution, /=0, to Eq. (2.3),
which is a minima of the potential energy func-
tional V(P),

V(y) =-,'(y, )'+-,'m'4z' ——,'Xy'. (2.4)

This solution is nondegenerate and represents the
classical vacuum. However, this solution is not
an absolute minima of V(P) so that while the
vacuum state will be stable classically, when the
system is quantized there will be the possibility
of decay of the vacuum and states around it via
tunneling. In the weak-coupling limit ~- 0, the
barrier separating these states from those of the
continuum becomes very high and wide, and so
even though these states may not be absolutely
stable they could be very long lived.

B. Static solutions

There are two static solutions to the equation of
motion, Eq. (2.3), which are valid for all real
A. ' They are

m', m(x- x„)csch (2.5a)

m', m(x- x,)
Q = + sech~ (2.5b)

The corresponding Hamiltonian densities will be

m' „,m(x-x) „,m(x —x)

Each of these classical Hamiltonian densities
will be positive definite for all real ~. In the first
case, Eq. (2.5a), both the solution and its Hamil-
tonian density are singular at x=xo, this leads
to an infinite value of the classical energy for this
solution. Since this behavior is not acceptable for
a real particle, this particular solution will not

p(x, I) = y, (x) +z/(x)e' (2.7)

and if we require that z/z(x, t) satisfy the equation
of motion, Eq. (2.3), then for small z/(x) we must
have

d g, + z/(3 Iz.Q, + H —m') = 0, (2.8)

where $0(x) is as given in Eq. (2.5b). This is the
same differential equation which will be obtained
when computing quantum corrections to the mass
of this object and it will be shown that there is one
eigenvalue for which cu'&0. This result indicates
that this particular static solution will be unstable.
However, since z/(x) actually must satisfy a non-
linear differential equation, this conclusion is not
certain.

The classical mass of this object may be com-
puted from the Hamiltonian density by

8m5
M = JC (x)dx =

15~' ' (2.9)

As can be seen from this result the mass of this

be given further consideration.
The Hamiltonian density for the second solution,

Eq. (2.5b), is bounded and therefore this solution
will be interpreted as representing a stationary,
extended object. An expression for a moving ob-
ject could be obtained by a Lorentz transformation
to another inertial frame, but this will not be
necessary for purposes of this work.

A plot of P(x) and its corresponding Hamiltonian
density is given in Fig. 1. As can be seen from
the Hamiltonian density this object has a dumbbell-
like internal structure. At this point it should be
noted that solutions of this type also exist for
fields which contain higher-power, polynomial
self-interaction terms. '

The classical stability of this solution may be
examined by applying a small perturbation. Let
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object will be large in the weak-coupling limit.
This is typical behavior for these types of fields.

solutions available are time independent, the re-
sults obtained will be valid only in the weak-cou-
pling limit. For a Lagrangian density of the form

HI. QUANTIZATION & = 2(4 2)' —2(4.)'+ 80), (S.l)

First-order quantum corrections to the classical
characteristics of this field may be computed using
path-integral methods. Since the only classical

The propagator of the Schrodinger equation for
the state vector of the system may be expressed
as a path integra14:

d&g e2~ I

+ Cd) + 2 Qs =Oy
dx 4 ~&=50

where F(g) is from Eq. (3.1) and 4,(2) is the
classical solution to the field equation.

%ith these results the energy of the system be-

(3.3)

the energy eigenvalues of the system may be ob-
tained from the location of the poles of the I.aplace
transform of the propagator.

In general the above path integral cannot be
evaluated exactly so it is necessary to make an
approximation. The procedure' ' is to expand the
field into normal modes about the classical solu-
tion, retain only those modes which lie near this
solution and to treat each of these modes as a
quantum harmonic oscillator.

In the weak-coupling limit, ~-0, the equation
which must be satisfied by each normal mode
is' '

1
&xxc = Zr (n2 + 2) 11'&

& (S.'7a)

—(q 2 + n22)1/2 (S.'lb}

B. XiI5 field: heavy-particle sector

Here the relevant classical solution is given by
Eq. (2.5b) and the classical mass, E„byEq.
(2.9). The equation to be satisfied by each normal
mode in this case is

And so quantization yields excitations associated
with the classical vacuum. These excitations may
be interpreted to be mesons of mass m. In the
weak-coupling limit the mass of these mesons will
be small as compared to the classical mass of the
static solution. This is the sector of Hilbert
space which would be accessible by conventional
perturbation theory.

E =E, + N; + ~ (gp), (3.4a) d 221 2 2 mXli
+ 211 —2n +3&l sech ~222 =0. (3.8)

where

B,= X xdx. (3.4b)

This equation is exactly soluable. ' There are
three discrete modes and a continuum. The eigen-
values and unnormalized modes are

These results will now be applied to the X(t)' field.

A. X|I53 field: vacuum sector

The relevant classical solution here is (t) =0, this
gives &, = 0, and

5m', mx
Qo sech

mx 2 mx
u, ' =0, u, =tanh sech'

(S.9a}

(3.9b)

82F.
~ m

The equation for the normal modes becomes

Qj + ((d1 —m )221 = 0.

(3.5}

(3.6}

3m'
~ x x ~ x

u, = 4 tanh' sech —sech'

(3.9c)
m'

(02 +4),

u = 8 "~ "'sech' (Ae -' ~'+ae-mx-2'
Therefore, the normal modes of the vacuum

sector will be plane waves of momentum q;
=2nw/L, n =integer. The total energy of the vac-
uum sector will be

+ g@+xxxl2 +De +2mx/2)

(3.9d}
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A = ik' —11ik +6k' —6,
B= 3iks +27ik + 6k ' + 54,

C = 3ik' +2'7ik —6k' —54,

D = ik' —11i7e —6k' + 6 .

(3.10)

8m' fWSm W3m

15k.' 2 2 ~ 2

q
2 +g~2 1/2

where for large I.we must have
If M,(x) is to satisfy periodic boundary conditions

as the length of the interval, I., becomes large,
then we must have

V„L k„mL,k„(k„'—ll)
6(1 —k„') (3.15)

kmL, k(k' —l l)
4 6(1 —k') (3.11)

It should be noted that the lowest mode has an
imaginary eigenvalue, uPO &0. This is a. result
of the apparent instability of the classical solution.
Physically, this mode corresponds to a harmonic
oscillator with a reversed sign on the potential
energy. Considering each mode as a quantum
harmonic oscillator, the total energy of the heavy
particle mill be given by

y2 .y2.

y3 —.y3.

(3.16a)

(3.16b)

If the mass is computed here it will be found to
be infinite. The reason for this is that up to this
point in the computations, the classical form of
the Lagrangian density has been used. This theory
can be renormalized' by either working with the
normal-ordered form of the Lagrangian density
or by adding the appropriate counterterms to re-
move the ultraviolet divergences. The latter pro-
cedure will be followed here. Since

+ Q (N„+-2)—(k„'+4)'~'. (3.12)

we must add two counterterms to the Lagrangian
density to cancel the divergences. C,' and C,'

are divergent constants in momentum space.
With the addition of these counterterms the re-

normalized Lagrangian density becomes

As may be seen above, the lowest mode contri-
butes a term to the energy which is imaginary.
Since the wave function of the system may be
written as

~(4, )2 ~(4, )2 Im2@z + Iy@3

+C2$+Cg (3.17)

4t(x, t) =Me 'x'4(x), (3.13)
A

C, = — (q' +m') ' ~'dq
4m

1

(3.18a)

the wave function will decay with time and there-
fore this particle will be unstable.

The next mode has an eigenvalue which is equal
to zero, u, =0. This is the translation mode and
is a consequence of working in the rest frame of
the particle. If the computations had been per-
formed in an inertial frame in which the particle
had been moving, then the correct energy-momen-
tum relationship would have been obtained here.
The remaining discrete mode may be interpreted
as an excited state of the particle.

Next come the continuum states which have been
made countable by restricting —L/2 &x&Lj2.
These excitations can be interpreted as mesons,
of mass &», which are associated with the presence
of the heavy particle. These are not the same
mesons as were obtained from the quantization of
the vacuum sector.

The next quantity of interest to be computed is
the quantum mass of this object. The mass will
be given by the difference between the zero-point
energy of the heavy particle and the zero-point
energy of the vacuum. Therefore,

A2 k~dk

8x ~ (k2 +4)'~'(k'+1)(k'+9)—
2

(A 2 +4)1 /2 (3.18b)

The cutoffs A„A,are to be kept finite until all
computations are performed and then the limits

Ay A2 ~ are to be taken. C, will remove the
divergence from the zero-point energy of the
vacuum and C, will remove the divergence from
the mass of the heavy particle.

The mass of this object may now be computed,
and the result is

8~»' i~5'~ ~Su~ 3n~

153.2 2 2 n

~3m 61»~ 3 + ~5
8 16~5 3- ~5

(3.19)

And so in the weak-coupling limit the mass of
this object is dominated by its classical value and
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the quantum corrections are relatively small.
The imaginary part of the mass is due to the ap-
parent instability of the elassieal solution.

IV. CLASSICAL INTERACTIONS

It mould be interesting to know how two of these
elassieal objects interact. However, for this field
there are no exact solutions available which I epI e-
sent tmo interacting particles. Some idea of how

two of these objects interact at the classical level
may be obtained by using a method which mas
applied to the sine-Gordon equation by Huben-
steln. The idea, 18 to I'epresent the lQterRetion
betmeen tmo of these objects by the solution of the
initial-value problem corresponding to tmo, free,
stationary particles placed some distance apart
at t =0. The procedure is to obtain the first non-
zero term in the Taylor series solution to this
problem. This is then taken as an approximate
solution which describes the interaction of tmo of
these objects for small times.

The Lagrangian density'mill be given by Eq.
(2.1). If the independent and dependent variables
are I escaled according to

(4.1)

then in terms of the new variables, the Lagrangian
density becomes

(4 2)

The equRtlon of Inotlon will be

0« - Axe 0+- 4'2=o

and this is to be solved subject to the initial con-
ditions

xo +xo

FIG. 2. The field $, as a function of position x, at
tvro times, t = 0 and t= 6, for the case of two extended
objects initiaDy located at x= + x, and x= + x,.

which gives

p„(x,0) =3 sech'
2

' sech' ' . (4.3)

And so for small times p(x, t) will be given ap-
proximately by

P(x t) =sech' ' +sech'

(4.9)
2 2

A plot of P(x, t) is given in Fig. 2. From the
gra, ph it appears that there mill be Rn a,ttractive
force between two of these objects.

If me assume that at large sepaIations the change
in rP(x, t) can be accounted for by a rigid displace-
ment of each of the tmo objects then it is possible
to obtRln RQ approximate expression foI' the foI'ee
between these objects. For the object at x=xo
a rigid displa, cement gives

&gx, 0) = sech' ' + sech'

P,(x, 0) =0. (4.4b)

Nake a Taylor series expansion of P(x, t) about
f = 0 Rnd me obtRln

P(x, I) = P(x, 0) + P, (x, 0) t

+2)„(x,0)t'+.

but me also must have

34 I*,=[0(x, f) —0(x, 0)].,
sech xo.

(4.10)

(4.11)

4(x, f)= 4(x, 0)+ —,'4„(x,0)t', (4.6)

which will be valid at small times. Now P«(x, 0)
may be obtained from the equation of motion, Eq.
(4.3). So

P„(x,0) = P„(x,0) —y(x, 0) + —,'P'(x, 0),

Owing to the initial conditions, the linear term
will be absent. If we retain only the first nonvan-
ishing term, then P(x, t) will be given by

Equating these two expression gives

~x, = —z't'(tanhx, ) '. (4.12)

The distance between the two objects, ~, is equal
to 2xo, and so the force on the particle located at
x=x will be

(4.13)

and the corresponding potential ener gy function will be
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48 ~5
V(r) =+ ——ln sinh—

15 ~' 2
(4.14) (5 5)

For large r these expressions become

24 m'
JP 15&''

48 m'
V =+————ln2

15 x' 2

(4.15a)

(4.15b)

These results indicate that at large separations
the force between two of these classical objects
is attractive and constant. The fact that this force
is attractive suggests the possibility that a bound
state of two particles may exist. If so, it might
be possible that such a state would be stable due
to nonlinear effects even though the individual so-
lutions are not. If such a bound state were to exist
then it would seem that the two particles would be
permanently confined.

V. FUNCTIONAL INTERACTIONS

The field for which P((()) is given by Eq. (1.2b)
will now be considered. The Lagrangian density
in this case will be

~ = a(4 ()'-2 (p,)'

(5 1)

where 4 and B are constants with A'+B' =1.
The motivation for considering this particular

Lagrangian density is that classical solutions are
available' and there is the possibility that due to
the presence of the sine function in the Lagrangian
density the interaction between two of the basic
static solutions may be of some interest.

If we let 4 = cosa and B = sinu then the Lagrangian
density may be written as

m'
,'(p, )' --,'(p-, )' + cos —a —1

A. m

(5.2)

The Hamiltonian density will be

m'
3C = ,'(4),)'+ 2(P,-)' — cos —o —1

m

(5.3)

and the equation of motion is

A. Classical mass

The classical mass of any solution to Eq. (5.4)
may be computed from the Hamiltonian density,

cos —Q —1

Using the transformation, Eq. (5.5), then

(5.7)

(5 5)

which is just the expression for the classical
mass of the corresponding solution to the sine-
Gordon equation.

B. Quantum mass, static solutions

The procedure used to compute the quantum
mass of static solutions to Eq. (5.4) will be the
same as for the A.P' field. The equation for the
normal modes will be

d'u;
+ u;2 —ni2cos —n, u] =0

dx m

but with the transformation, Eq. (5.5), this be-
comes

which is just the familiar sine-Gordon equation.
Because of the existence of the transformation,

Eq. (5.5), it is possible to generate solutions to
the equation of motion„Eq. (5.4), from the well-
known solutions to the sine-Qordon equation. This
procedure may be applied to both static and time-
dependent solutions. For example, static solutions
to the pendulum equation and cosine-Gordon equa-
tion, obtained by Hu using direct integration, may
be obtained from the kink solutions to the sine-
Qordon equation' and the previous transformation,
Eq. (5.5), with the values of a =s and a= —s/2,
respectively.

+ (d- —tB cos Qg =0, (5.10}

If we now introduce a change in the dependent
variable, let

then the equation of motion becomes

This is just the equation for the normal modes
of the sine-Gordon field. ' Therefore, when the
quartum mass of static solutions to Eq. (5.4) is
computed it will be found to be the same value as
t'.&e quantum mass of the corresponding solution
to the sine-Gordon equation.
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C. Bound states

It is not surprising that the static solutions to
Eq. (5.4) have the same mass as the corresponding
sine-Gordon kinks, but how do they interacts
Owing to the px esence of the sine function in the
Lagrangian density it is possible that static so-
lutions to Eq. (5.4) may not interact in the same
manner as the sine-Gordon kinks. If this is so
then the energy spectrum of any solution to Eq.
(5.4) corresponding to a kink-antikink bound state
would not be the same as for the sine-Gordon case.

A solution to Eq. (5.4) representing a kink-anti-
kink bound state may be obtained by a transfor-
mation from the doublet solution of the sine-Gordon
equation. ' The %KB quantization condition in this
case will be'

(5.11)

where 7 is the peiiod of the doublet solution. For
this field m = P„and so the quantization condition
becomes

(5.12)

which will yield the appropriate bound-state spec-
trum. Again apply the transformation, Eq. (5.5),
and the quantization condition becomes

(5.13)

The period of the solution will remain unchanged
by the above transformation and so the %KB
quantization condition will yield the same bound-
state spectrum as obtained for the sine-Gordon
doublet. From these arguments it seems that the
behavior of a field whose Lagrangian density con-

tains a linear combination of sine and cosine
functions will be basically no different from that
of the sine-Gordon field.

Other forms of functional interactions have been
examined by Hu' at the classical level. However,
the solutions to the field equations for these other
cases seem generally to be unbounded and there-
fore have not been considered here.

VI. CONCLUSIONS

The purpose of this work has been to examine
the behavior of two particular fields, each of which
contain odd-power self-interactions. The idea has
been that solutions of the quantum field theory
which are constructed from exact solutions to the
classical field theory might be considered as
model particles.

In the case of the ~Q' field it would seem that
owing to the apparent instabilities in both the vac-
uum and heavy-particle sectors that this field
would not be suitable for constructing model parti-
cles. However, the existence of a separately
conserved quantity could prevent the radiative
collapse of the heavy-particle sector. It is in-
teresting that this field seems to provide a con-
stant, attractive force between two of the heavy
particles at large separations.

For the second case it appears that the behavior
of a field whose Lagrangian density contains an
arbitrary linear combination of sine and cosine
functions is essentially no different from that of
the sine-Gordon field.
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