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The structural and dynamical elements of the Lorentz-Yang-Mills gauge theory of gravity are explained
and analyzed. This theory is a generalized metric theory of gravity which no longer satisfies the principle of
equivalence in any situation, but fits the very general framework of the Yang-Mills gauge theories used to
describe the nongravitational interactions. It adds essentially gravitational self-interaction to general relativity
in an amount which is not measurable in the solar system; the geometry contains stress-energy by itself; this
breaks the validity of the principle of equivalence for strong gravitational fields. Static and spherically
symmetric space-times dispose, in addition to the mass M, of a second parameter 7y, which is a measure for
the stress-energy content of the space-time geometry. We show that for the weak limit v = 1 — e with
€~ M/R; the Schwarzschild black hole (y = 1) is therefore no longer a candidate for the final state of

collapsing matter.

1. WHY BOTHER TO CREATE NEW THEORIES
OF GRAVITY?

The reasons for creating a theory of gravity dif-
ferent from Einstein’s theory have drastically
changed in t he past. The older alternative ap-
proaches were mainly considered as differing in
their laws for the generation of the metric; in
Einstein’s theory of gravity, the curvature of
space-time corresponds linearly to the distribu-
tion of stress-energy on that space-time; in the
Dicke-Brans-Jordan theory, matter and nongravi-
tational fields generate linearly curvature and a
scalar field. Let us call this a reason of local
bearing to create a rival theory of gravity. Since
the global aspects of the space-time geometries
in the class of the solutions of Einstein’s field equa-
tions (and of similar theories) are now mainly
known—the non-quantum-mechanical aspects of
applying the global techniques to Einstein’s theory
are summarized in the book by Hawking and
Ellis’—the justification for building a rival theory
of gravity is now completely on the side of the
global behavior of its solution geometries. In this
sense, an alternative theory of gravity has then a
justification of birth if and only if

(i) it agrees with all experimental tests known
in 1976, or up to 1985, i.e., if its predictions for
the effects measurable in the solar system agree
with the data to within some standard deviations
(and this for the four standard tests as well as
agreement with observations at the Newtonian
level);

(ii) it agrees with observations on the cosmo-
logical level (e.g., it shows an expansion of the
universe);

(iii) it offers a “better issue of the final state
for the collapse;”
(iv) it is of structural simplicity.

The expression “issue of the final state” con-
cerns the question of how collapsing matter termi-
nates. That singularities occur and are very gen-
eral phenomena in theories of gravity of the Ein-
steinian type has been known thanks to theorems
on singularities proved by Penrose, Hawking efal.
Penrose’ showed for the first time that if a star
had once passed inside the Schwarzschild surface
(the event horizon at » =2m) it could not come out
again; in the following this theorem has been gen-
eralized for general collapse types by Hawking and
Penrose® (for a review see Ref. 1). Condition (iii)
would now require that an alternative approach to
gravity is then reasonalbe if it either completely
avoids the occurrence of singularities, or enables
one to specify under what physically reasonable
conditions the total collapse and the formation of
singularities are avoided. Even in Einstein’s the-
ory a corresponding condition exists. However, it
is not physically reasonable; it is part of the as-
sumption necessary to prove the occurrence of
singularities—at each event of space-time the en-
ergy condition E +p, +p, +p,; >0 has to be satisfied,
where E is the total energy density and p; are the
principal pressures of matter. By breaking this
condition we might avoid the total collapse; such
a breaking does not, however, seem quite reason-
able from a physical point of view though there are
attempts to construct cases where negative pres-
sures occur.®®

Attempts to remedy this issue of the final state
go in different directions. (i) It is plausible to
think that the singularities are due to the degree
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of linearity of Einstein’s field equations and that
therefore high nonlinear terms added to Einstein’s
Lagrangian act against the forever-attractive
gravitational forces in regions of high space-time
curvature. These additional terms had to be at
least quadratic in the Ricci tensor and the Ricci
scalar; corresponding Lagrangians are of the

type
£,=(-g)"*[R-2A+y,(R*+y,R,,R™] , (1.1

where v, and y, are additional coupling constants.

In this sense, Einstein’s field equations have
been considered as a first approximation to a
higher nonlinear theory by DeWitt,* Sakharov,’
Ruzmaikina and Ruzmaikin,® Nariai,® Nariai and
Tomita,'® and recently by Michel'! for spherically
symmetric collapse, and by Giesswein and Streer-
uwitz'® for Friedmann-like world models. These
types of modifications used at least one additional
coupling constant of such a small value that it can-
not influence the regions of space-time of low
curvature. If the nonlinear terms are generated
by means of renormalizing the stress-energy ten-
sor this has furthermore the disadvantage of being
inherently nonunique and noncovariant.® (ii) A
second attempt to improve the issue of the final
state is to take into account quantum effects at
least for the matter fields, since a consistent
quantization of the gravitational field—if this is
actually a reasonable way of thinking—is still an
unsolved problem. Hawking'®'!® applied this idea
to spherically symmetric collapse. Similar ideas
had already been considered for the early phase
of the cosmological evolution.*'** (iii) Finally,
quantization of general relativity itself has been
expected to change the issue of the final state; the
covariant quantization has led to an understanding
of classical and essentially quantum effects in
terms of tree and closed-loop diagrams. However,
the recent work by Deser and van Nieuwenhu-
izen'®!° has shown that already at the one-loop
level quantized general relativity is nonrenormal-
izable when coupled to matter fields (scalars,
photons, or Dirac-Einstein system). Now, if one
really believes that general relativity should be
quantized, the nonrenormalizability is a dilemma
and perhaps shows that the strong limit of Ein-
stein’s equations is not viable.

On the experimental side we find a good agree-
ment with the basic principles of general relativity
(such as the principle of equivalence) and the pre-
dictions resulting from Einstein’s field equations
for the class of weak sources of gravity (e.g., a
static source of gravity is called weak if it has a
low mass-to-radius ratio, i.e., M/R<1). The
gravitational red-shift has been found for a wide
range of weak sources (in the Earth’s gravitation-

al field it was originally measured by Pound and
Rebka,? the red-shift in the Sun’s gravitational
field was measured by Snider,* the red-shift for
white dwarfs was measured by Greenstein,?
Greenstein and Trimble®®). All these objects show
a gravitational red-shift z=M/R for light escaping
from the surface of a star in good agreement with
any metric theory of gravity, nonlinear contribu-
tions are not measurable because M/R < 1. Only
for strong sources, M/R = 0.1, do nonlinear terms
become effective; two types of objects are expected
to belong to the class of strong sources: neutron
stars and quasistellar objects. The second part

of our knnowledge about the structure of the gravi-
tational interaction comes from the solar system
data; they show how weak sources of gravity gen-
erate their gravitational field (for a review see
Ref. 24). In 1976 the only object offering a quite
laborious test in the strong region was the close
double system PSR1913 +16,%® consisting of an ob-
served pulsar and a second up-to-now-unknown
companion.’® (The relativistic contributions to
possibly detectable effects have been discussed by
Barker and O’Connell,?” Blandford and Teukolsky,?®
Will,?® Wagoner,*° and Balbus and Brecher.?!) An-
other test in the strong region would be the exist-
ence of black holes in our galaxy if it were possible
to veally identify an x-ray source with a black
hole; so far none of the suspicious objects obtained
a real 100% qualification as a black hole.

All these arguments and facts indicate one thing:
A change in the issue of the final state, known to
be the total collapse in Einstein’s theory, can only
be achieved in a consistent way by generalizing
Einstein’s theory of gravity. At the same time
we have to require the following:

(i) For weak sources of gravity Einstein’s equa-
tions represent a fairly good approximation.

(ii) However, in space-times generated by
strong sources, deviations might occur.

(iii) Gravity is a one-term interaction in the
sense that there is only one coupling constant
giving the coupling of matter to geometry.

Questions concerning the final state in the time
evolution of matter are certainly intrinsically re-
lated to the strong-field behavior of gravity. At
first, we might think that there are various pos-
sibilities offered to connect the weak-field limit
with the strong region. This situation resembles
in some aspects the transition from Newtonian
mechanics to special relativity; after a while it
turned out that there is really only one extension
of Newtonian physics to the region of high veloci-
ties. Here, in the theory of the gravitational inter-
action, we are still grasping, not knowing wheth-
er Einstein’s strong limit is correct, should be
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completely abandoned, or should only be com-
pleted and corrected by including nonlinear ef-
fects. In the following we propose essentially to
follow the third way, i.e., to enlarge and general-
ize Einstein’s theory in a way which satisfies the
three conditions required above; we embed Ein-
stein’s geometries into a wider class of space-
time geometries which might show a quite differ-
ent behavior in the strong limit.

The question is how to generate such an enlarged
set of space-time geometries. There is one point
which might help us. If we consider Einstein’s the-
ory of gravity as an interaction theory and com-
pare it to what we know from electromagnetic,
weak, and strong interactions we observe a real
structure difference: Einstein’s theory fails to be
a real gauge theory. It merely represents the
self-dual limit of a corresponding gauge theory,
of the Lorentz-Yang-Mills gauge theory defined
by the homogeneous Lorentz group as a funda-
mental gauge group.* Therefore, let us consider
gravity to be described by a gauge theory. It
turns out that the dynamical structure of such a
theory is quite uniquely defined (see Secs. II and
III). On the one hand, we gain a physically and
geometrically well-defined and nicely closed dy-
namical structure; on the other hand, we have also to
pay for this generalization in the form of a weak-
ened principle of equivalence, in the sense that
the domain of definition of the usual principle of
equivalence has to be restricted to space-time
regions of weak gravity. The strong form of the
equivalence principle has just been used to de-
fine the class of metric theories which were
thought to be the only viable ones.?® Instead of
“in every and any local Lorentz frame, anywhere
and anytime on space-time, all the nongravita-
tional laws of physics must take on their special-
relativistic forms,**” we require only for the weak
form of the principle of equivalence to be satisfied
that

“in every and any local Lorentz frame defined
on space-time regions with weak gravity, all the
nongravitational laws of physics must take on their
special-relativistic forms.”

The solar system is, e.g., a space-time of weak
gravity (M,/R, =2 x%107%) and therefore the old
principle of equivalence applies unchanged, while
it is no longer exactly valid for the space-time
region surrounding a star in the supernovae-col-
lapse phase.

The idea of breaking the validity of the equiva-
lence principle in space-time regions of strong
gravity is quite compelling. The equivalence prin-
ciple comes from the picture—and it is really a
picture—that a not too widely curved space-time

looks locally quite the same as Minkowski space-
time; this is really true as long as the curvature
is not too high. Nobody would claim that the top
of a cone looks like a plane. Mathematically it
means that for a manifold the tangent space at a
fixed point is a good approximation to the local
neighborhood of that point in the manifold, and
that is what the principle of equivalence is. The
violation of the principle of equivalence is not
ambiguous and arbitrary, but it is intrinsically
dictated by the Lorentz dynamics itself; the total
stress-energy of matter has to be chosen in ac-
cordance with the Lorentz dynamical system. The
space-time geometries carry themselves a geo-
metric energy and stress generated by self-inter-
action and self-generation of the curvature of
space-time, while in Einstein’s vacuum solutions
anything is geometry, e.g., the tidal forces are
explained as completely generated by correspond-
ing 3-space curvature.

T he space-time geometry of the sun has an ex-
tremely weak source, so that these nonlinear ef-
fects are beyond the actual accuracy of measure-
ments. This is shown in Sec. IV, where we de-
scribe the types of exterior solutions in the weak
limit for static and spherically symmetric space-
times. Sections II and III concern the gauge as-
pect of gravity and the consequences of the general
current conservation. What we might expect for a
space-time with a strong source is discussed in
Sec. V.

II. A GENERALIZED METRIC FRAMEWORK OF GRAVITY

Most of the self-consistent theories of gravity
considered so far in the past are melric theories
of gravity in the following sense®*'33:

(A) Any space-time event point is endowed with
local Lorentz systems, which, locally, differ only
through homogeneous Lorentz transformations.
The Lorentz systems are determined by means of
a Lorentz metric g,, (of signature -2); the
(strong) principle of equivalence is part of the
main axioms,

(B) In every and any local Lorentz frame, any-
where and everytime on space-time all the non-
gravitational laws of physics must take on their
special-relativistic forms.

The equivalence principle has a great power and
dictates, e.g., the behavior of matter spread on
the space-time by means of 7% .»=0 on the whole
space-time. Topological structures, such as or-
ientability conditions, causal structure and global
hyperbolicity are not subsumed under axiom (A);
they will further restrict the class of reasonable

space-time models.?
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The dynamical structure of metric theories
covered so far in the literature is based on the
metric as the dynamical field of gravity, i.e., they
all provide a direct coupling of the curvature of
space-time to the stress-energy content

ab(g) KTab ’ (21)

where the metric is determined through the dif-
ferential operator G,(g) (Einstein’s theory,
Brans-Dickeand similar theories are of this type
of coupling). Inspired by the structure of the gen-
eral gauge theories successfully used to cover the
electromagnetic, weak, and strong interactions in
special relativity, we made an attempt to take in-
to account the gauge character of gravity,* and,
therefore, to consider the Lorentz connection I'
associated with the Lorentz systems as the funda-
mental dynamical field (the gauge potential of
gravity). The corresponding gauge group is then
just the Lorentz group O(1,3), and the correspond-
ing field equations are the O(1, 3)-Yang-Mills
equations OLYM(I") =kd, called Lorentz-gauge equa-
tions. They couple the time evolution of the con-
nection I" to a Lorentz current § through the use
of the doubly covariant and hyperbolic differential
operator O . (I'),% which is of second order for the

LYM
]

Preferred frame theories

Generalized
metric theories
of gravity, (A)
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Lorentz connection. It has been shown, further-
more, that Einstein’s field equations may be trans-
formed to the form of the Lorentz gauge equa-
tions.* In this way, Einstein’s field equations
determine a particular current, the Einstein-
Lorentz current §%. However, not any solution of

O (D) = k5 (T %) (2.2)
satisfies at the same time the Einstein system
(2.1), i.e., if T, is a solution of (2.2), G,(T),)
#KkT,, except for a few members of the class of
solutions of (2.2).

In the case of the Lorentz gauge equations (2.2),
without requiring (2.1) at the same time to be sat-
isfied, we cannot deduce in general a relation
T¥ ,=0, where T4 denotes the matter stress-en-
ergy tensor, since the Lorentz current involves
first-order derivatives of T#. This fact distin-
guishes the Lorentz gauge theory from the strictly
metric theories of gravity, where axiom (B) im-
plies T¥.,=0 on the whole space-time. Axiom
(B) has to be weakened in a form which will be
elaborated in the next section; let us call this
weakened axiom (B). Different theories of gravity
appear in this way in a hierarchical order:

Strictly metric theories of the
Einsteinian type, (B);
g is the dynamical variable,

ab(g) KT
structure self-duality
of Lorentz conditions
Lorentz-covariant
connectxon on the
theories
curvature

Loventz gauge theories, (B),

the Lorentz connection is the
dynamical variable, the metric
g is used to define the Lorentz
frame,

For Lorentz gauge theories, the metric just
serves to define the local Lorentz systems (ob-
server frames); they span the base space for the
definition and calculation of connection and curva-
ture, torsion will be neglected.

T he violation of the principle of equivalence in
the form of a violation of the “conservation equa-
tions” T4, =0 depends essentially on the chosen
form of the Lorentz current §(T4). It will turn
out that T¥°,=0 is in general not compatible with

O (D) =kg*(T ) .

r

the current conservation law div(d) =0 which is a
direct geometric consequence of the coupling

0, T) =«g(T3) and of the properties of the LYM
operator.®® This forces us to weaken the equiva-
lence principle in the form that in the Lorentz
frames all the nongravitational laws of physics
must take on their special-relativistic forms up to
corrections which are due to the action of strong
gravitational fields. Consequently, only in regions
with strong gravitational fields (big-band regions
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in cosmological models, at the edge of black
holes) will the strong version of the principle of
equivalence (B) break down. The breaking of the
conservationlaws, T2% , #0, isnotas yet ruled out
experimentally,®*and can never be done on the ground
of solar-system experiments. These experiments
may give an upper bound for the strength of the
“breaking force.” Smalley already considered
modifications of Einstein’s field equations®® and of
the Brans-Dicke theory®® to generate a corre-
sponding breaking force.

The weak version of the equivalence principle
reads in the following way:

(B) In every and any local Lorentz frame, all
the nongravitational laws of physics must take on
their special-relativistic forms up to corrections
generated by strong gravitational fields.

Immediately the question arises of how to deter-
mine these correction terms and whether the for-
mulation of the correction terms is not quite am-
biguous. Furthermore, these corrections should
turn out physically reasonable—without artificial
manipulations—in particular, for space-time re-
gions of weak gravity (e.g., the solar system)
they should be so small that they agree with what
we expect at the Newtonian level.

III. LORENTZ-YANG-MILLS DYNAMICS, CURRENT
CONSERVATION, AND THE WEAK FORM
OF THE EQUIVALENCE PRINCIPLE

The Lorentz gauge dynamics is a generalized
metric theory of gravity modeled according to the
structure of general gauge theories. The real
gauge group of gravity is not the coordinate-trans-
formation group, nor a subgroup of it, but the
homogeneous Lorentz group SO(1, 3), or its cover-
ing group SL(2,C). This turns out by working in
a coordinate-free manner—what we are certainly
forced to do when operating, e.g., in the spin
space defined over space-time. The Newman-Pen-
rose formalism®’*3® is just a reformulation of the
structures used in Einstein’s theory and shows ex-
plicitly the role of SL(2,C) as the gauge group of
gravity. Secondly, Einstein’s field equations com-
pared with the usual dynamical structure of gauge
theories do not fit into a corresponding scheme
(for a discussion of the dynamical structure of
gauge theories in special relativity see Refs. 39
and 40 and for a review of its applications in strong
interaction theory see Ref. 41). In Table I the
structures of a Yang-Mills gauge theory are com-
pared with the corresponding structures of a
metric theory of gravity.

To handle a particular space-time geometry in
the framework of the Lorentz gauge theory of

gravity we need the following elements: first,
choose a suitable tetrad field (X,, X;, X,, X,) on the
space-time V,, adapted, e.g., to the flow lines of
matter on the space-time,* and calculate the
metric Lorentz connection and curvature with re-
spect to this chosen basis. The essential dynami-
cal content of the theory is involved in the Lorentz
gauge equations

(=8) V208, [(-g)?R¥*° |+ [T ,,R**|=kJf , (3.1)

and a suitable expression for the Lorentz current
JP. This current, which is so(1, 3)-valued by
definition of Eq. (3.1), obeys a conservation law,
called thefourth structure equation associated
with the Lorentz connection. This conservation
law

(-8)™20,[(-g) 2T [ | +[T,,JP]=0 (3.2)

is a pure consequence of (3.1) (just as the Bianchi
equations are a consequence of the definition of the
curvature 2-form € in terms of the connection 1-
form ).

At the classical level of the description of mat-
ter there are not too many possibilities to define
this current in terms of the energy-stress tensor
T of matter consistently with the Newtonian limit.
One expression which is in accordance with the
Newtonian limit is the following:

Jape==(Tap;e= Tac;p) +3(MpT o= MacT p) . (3.3)

Equation (3.3) is defined in terms of the tetrad;
therefore the Minkowski metric appears in the sec-
ond expression; the whole description is essential-
ly coordinate-free, and the structures would break
down and become meaningless in terms of coordi-
nates. It is of a strict necessity to distinguish be-
tween the indices (Greek) marking the space-time
character of a geometric quantity (connection is a
1-form, curvature is a 2-form, and J is a 1-form
with respect to the first index) and the indices
(Latin) responsible for the gauge character. The
Ricci tensor R, and the Ricci scalar R are mixed
objects, and therefore not defined in the Lorentz
gauge theory; they are neither Lorentz tensors,
nor Lorentz scalars. Yang*® proposed a set of
generalized vacuum field equations based on the
Ricci tensor; the geometric background for Ricci-
curl-free space-times has partially been dis-
cussed by Kilmister and Newman,*! they have been
used by Lichnerowicz*® in his quantization ap-
proach of the gravitational field and they appear

in Bel’s*®**" investigation of the super-energy-mo-
mentum tensor of radiative gravitational fields.

A justification for proposing the curvature dy-
namical equations (3.1) is, however, possible only
on the background of the gauge aspect of the gravi-
tational interaction.
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TABLE 1. The structure of the Lorentz gauge theory of gravity is just a transcription of the corresponding structures of the
Yang-Mills gauge theories defined on Minkowski space-time. A defines a geometric quantity A (in general a space-time p-form)

which is at the same time an element of the Lie algebra G, of the corresponding gauge group G.

Structures and
their geometric
meaning

Yang-Mills gauge theory
on Minkowski space-time

Generalized metric gravity
for a torsionless and
metric connection

Gauge group G

Gauge bundle

Gauge potentials,
local expressions
of the connection
form of a gauge
bundle

Gauge fields

as the local
expressions of the
curvature of the

connection

First structure
equation

Second structure
equation:
definition of
curvature

Third structure
equation:
Bianchi’s equation.

Gauge equations,
"dual Bianchi
equations”

Fourth structure
equation:
“current
conservation”

u(),su(),sudn, - - -

Set of fields (@}, a=1, . ..

on Minkowski space-time

Connection coefficients
4D given with respect
to a fixed basis of the
Lie algebra G, of the
gauge group, L,
A,=AaPL), 4,€G,.

Curvature components
F'("p’ of the curvature

R
Q =TF“de“AdX“
FMP=AP-H-AM-P+[AP’APH
.1 Lie bracket in G,

SN L ()]
FM]_FM'L’

V=18, +4,
(V00 =0,y

FMP=APV#—A“",+[A“,AJ

Flnp. al +[:4 lu'FWI]I=0

8,740 +LA . Fe¥)= g
equivalent form: 3-form

Flup.ot A Food=a*l,,,

a: coupling constant,
J¥m: Yang-Mills current,

-~ l -
* —_ 2 po
Fuv= 2 €uvpo "

.',uvp = ﬂ;vpa‘lgM
(current 3-form)

8,74m +LA,.08\1=0

0(1,3),50(1,3);:SL(2,€)

Lorentz frame bundle®?
defined by the metric g
and spanned by the set of
tetrads (Xg, . . ., X3l
Spin frame bundle as the
covering bundle of the
Lorentz frame bundle.*?

Connection coefficients

I“f’) (y}‘”) of the Lorentz

connection given with

respect to a basis of

s0(1,3)(s1(2,0)) ;

o= dx*

P =) o

V=S Ki+48,.7J.

Curvature components
) A

(fup- A,) of the

curvature Q

VX =T2X, Ve

R,,=1 pvn_]‘#p+[l

R [up. ol + “-‘(w[épal] =0

(—g)728,((—g)'2RH*) +
[l."“,li“"] =«Jp.

equivalent form: 3-form
*R lup. o) + [F(n’ ‘R
k =87G /cZ: gravitational
coupling constant,

Jf: Lorentz current,

pol

- 1 -
* - — po
R v 2 T'“vpoR °
*J = jo
‘l;wp_ nuvpa‘,l.

(current 3-form).

(=g)7128,((=g)2Jp) +1I,Jf 1 =0

.
=" o
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The form (3.3) of the Lorentz current is not
necessarily correct for space-times containing
electromagnetic fields; the electromagnetic field
is described by another (Abelian) gauge theory,
and the interaction of two gauge fields has not nec-
essarily to be coupled over their stress-energy-
momentum tensor. In case of coexistence of gravi-
ty and electromagnetism (e.g., in a neutron star),
the coupling is still an open problem even in Ein-
stein’s theory.

The fundamental conservation equation of curva-
ture dynamics is the current conservation (3.2), or
in equivalent form,

J%c:a=0 (3.4)
for a general expression of the form
Jabc: _(Tab;c - Tac;b) +B(nabT.c - nacT.b) ’ (35)

where 3 is a real constant, which might be differ-

ent from 5. Let us define then a general vector
field f,
faETab:b ’ (36)

which vanishes if the theory satisfies the strong
version of the principle of equivalence (B). The
current conservation now gives an integrability
condition for the vector field f,, since

Jabc:a: —(Tab:c;a - Tac;b;a)
+B(T)a,,T;ca—T]acT:ba) . (3.7

The second term, proportional to 3, vanishes,
and for the first term we use the property that
T°, transforms under the adjoint transformation
of the Lorentz group, and therefore

Tab:c:a— Tab:a;c:Rafcaij _becaTaf ) (38)
and from this we obtain the relation
I%cia= = (foc=Feo—Rye be + chbe
- Tafbecd+TafRfcba) . (39)

The terms proportional to the Riemann tensor van-
ish because of the symmetries of the Rieman ten-
sor; therefore, the current conservation (3.2) is
equivalent to an integrability condition for the ex-
ternal force field f, coupled to the matter energy-
momentum tensor T4

fb:c—fc:b:RfCTbe_TcA‘lfbe . (3‘10)

It has already been shown by Pagels®® that an
object of the type introduced in (3.3) for Einstein’s
theory satisfies the conservation (3.4). This fol-
lows now immediately from the condition (3.10)
if the Ricci tensor is itself proportional to the
symmetric energy-stress tensor TZ,. A gen-
eralized metric connection satisfying (3.1) and
(3.3) does allow in general not to choose a vanish-

ing divergence for T#; the divergence has to sat-

isfy the condition (3.10). If, e.g., there exists a
Lorentz frame in which both R, and T,, are dia-
gonal and have certain symmetries, we may find
indeed a commuting right-hand side of (3.10),
i.e., f,is then a gradient vector field. This oc-
curs, e.g., in the static and spherically sym-
metric matter distributions or in homogeneous
cosmological models.

For a solution I' of the Egs. (3.1)-(3.3) we may
calculate the Einstein tensor G, (I") and split this
tensor into a part due to Tﬁ‘,, and an additional term
be =VT§b(F7<g)’

G o) =k[T¥ +T5(T,9)] . (3.11)
Then the Einstein contribution to the Ricci tensor
drops out of the relation (3.10), and also the trace
part. We get then a relation of the following type:

Joie=Fepp= K(TETY, = TETE,) . (3.12)
This equation obviously means that the external
geometric force f, is nonconservative in every
case where the interaction between the stress- en-
ergy of matter and the stress-energy content of
the space-time geometry is nontrivial. In analogy
to the special-relativistic situation we might look
for a symmetric tensor Tf,,(l") made up by curva-
ture and similar tensors such that it satisfies the
two conditions:

(3.13)
(3.14)

(i) T:b;b:'fay Wherefa:Tgb:b ’
(i1) fp.c= ferp=Rpe Ty = T'Ryy -

If we had such a geometric object in closed form,
it would enable us to calculate the geometric
stress-energy content of a space-time geometry
which contributes to the stress-energy of matter,
without subtracting the stress-energy of matter
from the total Einstein tensor G, (") as indicated
in Eq. (3.11). My personal view is, however, that
such an object does not exist in closed form be-
cause of the high nonlinearity of the theory; other-
wise the curvature dynamical equations could just
be reduced to Einstein’s form (3.11) with a suitable
geometric tensor Tf,,(l"). This is also a funda-
mental difference between curvature dynamics and
theories based on a changed Einstein Lagrangian
(1.1); in the latter case we have an explicit ex-
pression for 7%(T'), which in general does not
even disturb the principle of equivalence.

It is just Eq. (3.10) which tells us how much the
strong version of the principle of equivalence has
been broken on a solution of Eqs. (3.1)-(3.3). For
space-time geometries with a vanishing right-
hand side of (3.10) we have a breaking by means



18 WEAK AND STRONG SOURCES OF GRAVITY: AN SO(1,3)-... 1075

of a gradient vector field, a case which already
had been proposed by Rastall.’® As a consequence
of the existence of a nonvanishing external force
fa the hydrodynamical equations for matter gen-
erating the gravitational field have to incorporate
this force-field, while test matter moving in that
gravitational field does not feel the influence of
this geometric force (e.g., the plasma in the mag-
netosphere of a pulsar would not directly feel the
existence of stress-energy of the geometry; how-
ever, the plasma would indirectly feel it through
the geometry of the background space-time which
is no longer Einsteinian).

This breaking of the principle of equivalence,
which is a nonlocal effect because of relation
(3.10), is inherently connected with the LYM-dy-
namical system together with the corresponding
structure equations and is therefore quite uniquely
defined whenever we require the field equations to
be of a tensorial form. On 4-dimensional space-
time we have nontrivial 1-, 2-, 3-, and 4-forms;
the 4-formsare proportional to the volume form,
and therefore uninteresting; the relevant forms are
additionally so(1,3)-valued. Starting with the con-
nection 1-form, @, we obtain by applying the co-
variant exterior derivative the curvature 2-form,
Si, which is then covariantly closed (the Bianchi
equations). Consequently, to continue in a non-
trivial way, we have to pass to the dual of the
curvature form, *§, which is also a 2-form be-
cause dim V=4. Applying to this the covariant ex-
terior derivative defines a 3-form, the current 3-
form j, which is now closed too. This means that
the Yang-Mills framework on a 4-dimensional
space-time is completely closed and self-consis-
tent as a consequence of the underlying structures,
and it is the only dynamical framework with this
self-closedness property. The only way that an
external element can enter into the structure is
by means of the form of this current, and this only
freedom is dictated by the Newtonian limit. This
self-closedness of the Lorentz gauge theory may
be represented in the following diagram; D de-
notes the covariant exterior derivative operating
on so(1, 3)-valued forms.*-5°

1-forms @ connection
{D

2-forms =D& **Q curvature
\D | D

3-forms DQ=0 D*Q=J current
{D

4-forms DJ= 0 volume

IV. THE POST-NEWTONIAN LIMIT FOR NONROTATING
WEAK SOURCES

The solar system is described in a first approx-
imation as a static and spherically symmetric
space-time; we describe it in terms of the
Schwarzschild coordinate system

ds?=e**di? - e 2 adr? - v2d? (4.1)

with respect to the static frame of reference
{X,, X,, X,, X,} defined by
X,=e *o,, X,=r"'a,,
coL e 4.2)

X,=¢"3, , X,=(rsin6)ta,.

The metric and torsionless connection has the fol-
lowing components expressed in terms of the con-
nection form:

®=T,0°, 0%X,)=056%, 4.3)
f‘g:aK, s f‘_1_=0,
- .1
'y = % Jy, Ty= - cotfdJ, - %Jz , (4.4)

where a = e *e’(e*)’ describes the 4-acceleration
of the static observer system, and A= e relates
to the geometry of the space-like hypersurface =
defined by {=const. At the same time the curva-
ture 2-form decomposes into

Rab:fgé)Kl*'A(alb)Jz ) (4.5)
with
foxsfg(]:):_( §a«+a2):_QX—pf, )
f=eret) (4.6)
= (2):_é :_.l A=p 4

Je=fe ya 76 f, (4.7
LN
e’ A

A, = (112):-7. , (4.8)
2

AzazAg_a): %2_1_ . (4.9)

In terms of these curvature coordinates, the
linearity of Einstein’s equations shows up,

Kp=-A23—2A12 , (410)
Kpr=2fa0+ B3 (4.11)
KDy = frotfaot B s (4.12)

where p denotes the total energy density, p denotes
the radial pressure, and p, denotes the orthogonal
part to p,. From the above representation of Ein-
stein’s equations we obtain the relation between

€ and *Q*,

fio— Ba3= g(p+2PL-Pr) , (4.13)
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sz“fzo:"g (p+p,) . (4.14)

Q* is the so(1, 3)-adjoint object®® of (4.5) such that
Ri=—ADK, +f3d, . (4.15)

Equations (4.13) and (4.14) give an expression for
the anisotropy in matter,

K(pyL=Dr)=fio= Bag +App = fao -

In this way, Einstein’s equations determine di-
rectly the four curvature components f,,, fio, 4,
and A,; by the equations (4.13) and (4.14) as well

as by

(4.16)

Fro+2foo= 5 (043D, (4.17)

Dy +2A,=~KpP . (4.10)

In the post-Newtonian limit, space-time geometries
described by the two functions a() and A(r) are in
general characterized by the mass M and the two
parametrized post-Newtonian (PPN) parameters

y and 8%

H=1-2 i‘—ﬁzw _y)(-r"f)2+o(w/r)3) . (4.18)

APz =12y 4”; +o((M/P)?) . (4.19)
In addition, the acceleration function f is positive
everywhere on positively oriented 3-space Z for
an attractive interaction

M

f= poc [1—(218—7—1) 1—:1— +O((M/r)2)] . (4.20)

For the usual metric theories of gravity, y and
B are universal parameters in the sense that they
are uniquely determined by the gravitational cou-
pling constants. For general relativity, e.g., we
get the following expressions:

from (4.17)

fr)=M/7r* with M= % fﬁ e* Mp +3pWidr
0

(4.21)
from (4.10)
Az(r)zl—Zyﬁ—l, (4.22)
from (4.14)
ye =1, and therefore Bz=1. (4.23a)

The Brans-Dicke theory, e.g., allows y to depend
on a further coupling constant w>

YBD™ (w+1)/(w+2) and Bgp=1. (4.23b)

The Lorentz gauge equations (3.1), on the other
hand, are by definition differential equations of
second order for the connection coefficients. The
parameter y will therefore remain arbitrary and
appear related to the interior solution. The gauge
field equations split into two groups:

Bianchi’s equations

€ fhot 5 (fromfio) +alfao=8p) =0, (4.24)

e‘A2'3+2—;§(A23-A,2)=0; (4.25)
Loventz gauge equations

e fi0+25 (fro= fao) = ki (4.26)

e Al + 1’%(1:12 = Ayy) +a(A, = fro) =kSP2Z . (4.27)

Here, we introduced the decomposition of the Lor-
entz current J°,

Je=—jeg, 8Py, (4.28)

In terms of the total energy density p and the pres-
sure parts p, and p,, this current is locally given
by (3.3)

P2 =5eMNp’ +2p" +p)) +alp +p,) , (4.29)
S(a)z_: ;A.(p’_[)l)_%ex(p’_p;) . (4.30)

The inhomogeneous equations (4.26), (4.27) are
equivalent to differential equations for f and A%:

Y = 27 = et PN (foux (AT, ) + K5

(4.31)
A =72 (A2 = 1) =ve M fox(a',f) +kS©BR) |

(4.32)
x(a',f)=sA"-a. (4.33)

This form of the field equations shows the curv-
ature-curvature self-interaction which acts as a
source of the gravitational field. In vacuum re-
gions of extremely low curvature, the two equa-
tions decouple, and therefore the two parameters
M and y are arbitrary and characterize the class
of the asymptotically flat solutions of (4.31)-(4.33).
These solutions for ;2 =0=5®% have the fol-
lowing properties:

(i) the geometries are asymptotically flat, i.e.,
Foi=0(@™®) and A;,=0(r"2), i,k=1,2,3;

(ii) the geometries of positively oriented space-
time are characterized by two parameters, the
active gravitational mass M and the parameter vy,
YER;S
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(iii) the asymptotic expansion is given by
(x=M/7)

e?F=1-2x+3(1-y)2®
+ 35 (=3+20y = 1T5)2° + O(x*) , (4.34)
A%=1-2yx+3(1 =P+ EF(1 -2 +0(x") , (4.35)

= S N(x;v) (4.36)

(1 =-Mx+£ (112 =10y - D2 +0(:3) 5 (4.37)

(iv) for y=1 we regain the Schwarzschild solu-
tion, since all the above coefficient polynomials
have a zero at y=1,

e =1-2x, x<3, (4.38)
A% =1-2x, (4.39)

(v) the parameters 8 and A,**'*! which determine
the particle trajectories in the geometry (4.34)-
(4.37) are completely given by 7,

B=B() =33 +y), (4.41)
A= M) =56 +Ty) . (4.42)

Various types of these solutions have been worked
out by Pavelle and Thompson®~* in relation with
Yang’s field equations.*®

In Fig. 1 we compare the surface red-shift

Zs(R)=e *(R)-1 (4.43)

with the corresponding red-shift relation for
Schwarzschild’s geometry. For y< 1 we have a
lower increase of Zg than for y =1; this may indi-

Zg
051 2/,
0.4}

//
0.3t /

/
/
/
/
0.2r //
/
/
/
//
0.1 7
4
4
0 01 0.2 03 MR

FIG. 1. The surface red-shift for the solutions of the
gauge field equations, parametrized by different values
of y and given in the range 0 < M/R <0.3: curvel, vy
=1; curve 2, y=0.8; curve 3, y=0.2; curve 4, y=1.5.

08

06F

0 01 0.2 MIr

FIG. 2. Typical runs for the characteristic function
8=e™ * in the range 0 =M/ =0.3. This function is a
measure of the deviations from the Schwarzschild geo-
metry; it shows that the class of solutions of the gauge
field equations contains three different types of geome-
tries depending on the value of y: curve 1, y=1;
curve 2, y=0.5; curve 3, y=0.2; curve 4, y=-0.5;
curve 5, y=1.5.

cate the existence of stable stellar configurations
having higher mass-to-radius ratios than in Ein-
stein’s theory. The function 6=¢"~* is a measure
for the deviations from t he Schwarzschild geo-
metry (65 =1); its behavior is shown in Fig. 2.
The Lorentz gauge equations have consequently 3
types of solutions in the asymptotic domain: (i)
6=1 for y=1, then we have Schwarzschild; (ii)
6<1, if y>1, and (iii) 6>1, if y<1. In Case (ii)
b seems to be monotonically increasing. A sim-
ilar behavior shows the function u=7f (see Fig. 3).
Depending on the value of v, the self-interaction
contribution to the source of gravity acts there-
fore either in favor of the attractiveness of the
gravitational force or damps its influence on the
geometry.

The parameter y is actually not a free param-

u /1,
0.2 //
Vad ", 3
%
7
01t
0 01 0.2 Mir

FIG. 3. The behavior of the function u (x)=xN(x,v),
where x=M/r, is shown for different values of y. In
the limit y — 1, » approaches continuously the Schwarzs-
child function with Ng =N (x;1)=1: curve 1, y=1; curve
2, y=0.5; curve 3, y=0.2; curve 4, y=1.5.
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eter of this theory; the value of y is related to
the state of the source of gravity. In order to see
this, we calculate the lowest-order correction
terms for Einstein’s interior solutions; a general
solution of the equations (4.26) and (4.27), or
equivalently of (4.31) and (4.32), with interior
sources (4.29) and (4.30) can always be written in
the form

fn D =i [1+f. ], (4.44)

A1) = A2 + A () (4.45)
here f; and Ag® solve Einstein’s equations (4.10),
(4.13), (4.14), and (4.17); they are characterized
by the central density p, and a corresponding equa-

tion of state p =p(p). More suitable quantities to
parametrize the interior solutions are

aa/ay= 15 (e +3p), € (0)=a, , (4.46)

==2/(1+3p./p.) , (4.47)

with =2 < £ <-1 for 0 <p, <p./3. In terms of these
parameters, the interior Schwarzschild solution,
e.g., is given by (p=p,)

Ses=2a,7 , (4.48)
Dps?=1+28%2 2 (4.49)
)

More realistic distributions of energy add higher-
order terms to fgs and Agg’.

By adding together (4.26) and (4.24), (4.27) and
(4.25), respectively, we obtain the following form
for the gauge equations:

e)\(f10+2f20)/ +2a(fo0= A1)
=k[ze’p +3p) +alp+p)] ,
eMBys +240,)" = 2a(foo— Ay)

(4.50)

=—ke'p' +ke’pl . (4.51)

Therefore,
Fro+2f0=2k(p +3p) , (4.52)
By +2A1,=—kpP , (4.53)
fao— Brz=zKk(p +p) (4.54)

solve the gauge equations (4.50) and (4.51) under
the condition of hydrostatic equilibrium

e pl=—=alp+p) . (4.55)

The solutions (4.52)-(4.55) are, however, noth-
ing but Einstein’s equations (4.10), (4.14), and
(4.17), and the corresponding exterior solutions
require y=1. Therefore we get the result that
asymptotically flat space-time geometries satisfy-
ing (4.50) and (4.51) are Schwarzschild (y =1) if
the hydrostatic equilibrium condition (4.55) holds

for massive matter, i.e., in particular if radia-
tion pressure is negligible. These solutions are
asymptotically flat. A general solution of (4.50)
and (4.51) may not be asymptotically flat since

Jr0+2 a0+ Dpy +2A,=—3k(p=3p)+C, CER
(4.56)

is a consequence of the gauge equations under
hydrostatic equilibrium. They correspond to solu-
tions of Einstein’s equations including a nonvanish-
ing cosmological constant.

The gauge dynamics for static and spherically
symmetric space-time geometries allows, in gen-
eral, for a breaking of the hydrostatic equilibrium
in the form of

e*pr==alp+p,) -1, . (4.57)

This follows from the conservation equation (3.10)
and the symmetries of the Ricci tensor and the en-
ergy-momentum tensor for massive matter; the
right-hand side of (3.10) commutes in this case.

f» is an expression for the radiation pressure

working on the matter inside the star or for other
forces exerted on stellar matter (e.g., magneto-
hydrodynamical forces). If f, #0, the gravita-
tional force a(p +p) is in general balanced by the
sum of the hydrostatic pressure and f,. Let us
consider the case where f, dominates over the
hydrostatic pressure (this-situation is realized,
e.g., in the interior of radiation-dominated stars).
Then the last term in (4.51) no longer cancels the
second term, and Einstein’s equations fail to form
a complete solution of (4.50) and (4.51); the low-
est-order corrections for (4.45) are then given by

Ani(y) = % (1-8y*+0(»°) , (4.58)
with 3® = (2,/a,)7® as a dimensionless radius. Since
yrE=M/R, these are small corrections for weak
sources. The interior general-relativistic solu-
tions (4.48) and (4.49), completed by (4.58), then
determine new exterior solutions with

tyg’~-M/R , (4.59)
and the fitting with
Aex2=1—2¥—2(y—1)%4+O((M/'r)2) (4.60)

determines v,

21-¢
2l

y=1 yg° for f,-dominated equilibrium.

(4.61)

For the solutions (4.34)-(4.37) we may calculate
the geometric self-energy-momentum tensor Tf,,
defined by (3.11) and built up by the nonlinearities
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in (4.26) and (4.27); in lowest order we obtain
pC= (k) 51 =N +2(1 =12 +0(xY)] , (4.62)
P =) 2(1 = Nx+ 31 =P+ & (1 =253

+o(xY] , (4.63)
Pl == (k) A =P)x+(1 = P)2 + 31 =y s°
+0(xY] . (4.64)

The stresses are highly anisotropic p¢ #pS. For
the Schwarzschild geometry, y=1, Tf,, vanishes
identically on Z, while a realistic source with
y<1 [see (4.61)] produces a positive energy den-
sity in the exterior region. At the surface of a
neutron star, e.g., p°(R) is of the order of 103
gem™3. For the interior solutions, the nonlineari-
ties expressed in (4.58) generate in lowest order
the following self-energy density:

P (3) ==k 41 = Oy +0(1®)] . (4.65)

It can be shown that in the Newtonian limit
(£=-2), p¢ describes in lowest order exactly the
binding energy density, i.e., pé =p(r)¢y(r), where
¢y is the Newtonian potential; T, is calculated in
the rest frame of matter. The effective source of
gravity i s smaller than the mass-energy distribu-
tion of the source; this difference is due to the
gravitational binding. The SO(1, 3)-gauge theory
of gravity also includes this effect.

V. STRONG LIMIT OF 'STATIC AND SPHERICALLY
SYMMETRIC SPACE-TIMES

The exterior sotutions of the Lorentz gauge
equations are characterized by the “measure func-
tion” 6=¢""*. The tidal components of the curva-
ture, f,, and fy,, given in (4.7) and (4.8), are de-
composable as

foa==0f", (5.1)

fozz",'_é,f~ (5.2)

The function f, given in lowest order in (4.37) is
montonically increasing (see Fig. 3) and has a
nonfinite series expansion for y#1, while 0 is
either increasing, decreasing, or stable (for y
=1). A singularity appearing in f,; is not due to
the coordinate system nor to frame effects since
the first curvature invariant has the form

1 - -~
I=-3 Tr{R, R}

(A% -1)?
ry

2
:62<;2— f? +f’2>+ %AZA’2+ (5.3)

Let the function e”(x) have a zero at x=x, (e.g.,
x$=3%), the behavior of the tidal fields foi now de-

pends critically on the characteristic function
8(x;y). Since d(x;¥=1)=1, vx <3, and f is finite
in the case of Schwarzschild and Reissner-Nord-
strom systems, we obtain the well-known result
that the surface at x=3 is a regular event horizon
for y=1. For y<1, the characteristic function,
and therefore also the tidal forces grow without
limit as x- x,, e*(x,,7)=0; the curves of the sur-
face red-shift already indicated that x,> 3 for

¥<1 (see Fig. 1). In the case y>1, & tends to zero
for x=x,, where ex(x,;y) =0, however, retaining
e’(x,7)>C, C>0. At this point x=x,, where now
x,<3, the Schwarzschild coordinate system breaks
down and the tidal forces vanish for x— x;. There
exists, however, an extension of the coordinate
system, because the curvature remains regular at
x=x,, into a space-time region of opposite tidal
forces. This means that the expansion in (4.34)-
(4.37) is valid only for regions with either x<x,,
e*(x,)=0, for y <1, or x<x,, e’(x,)=0, for y>1.
In this way we may classify the solutions of the
Lorentz gauge equations according to their be-
havior of the tidal fields:

(i) y<1, 8(x)>1, then the tidal fields f,; grow
(without limit) for x - x,, where e*(x,) =0;

(ii) y=1, 0g(x)=1, there exists a regular hor-
izon at x,= 3, tidal fields are finite;

(iii) y>1, &(x)<1, the tidal fields tend to zero
at x,, where ¢"(x,) =0 and e"(x,) >0, and we may
find an extension into a region of space-time with
tidal fields of opposite sign.

This classification shows the exceptional position
of the Schwarzschild geometry in the class of solu-
tions of the Lorentz gauge equations. A (regular)
event horizon does really only then exist if we re-
quire the self-interaction to vanish, i.e., x=0,

2
Moy /

0 05 Mir

FIG. 4. The behavior of the tidal fields f; depends
critically on the characteristic function §, and there-
fore on the values of y. For y=1 (curve 1) a regular
event horizon exists at x=§ (Schwarzschild horizon);
for y<1 (curve 2) the Schwarzschild coordinate system
breaks down for x = x; x >§. For y>1 (curve 3) the
tidal fields evolve a zero at x=xy, x (<3 and then change
sign. The Schwarzschild coordinate system, however,
breaks down for x >x,. In each of the three cases an
analytic extension exists.
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and this requires y=1, i.e., a Schwarzschild geo-
metry. The behavior of the tidal fields is sum-
marized in Fig. 4. In theories of the Einsteinian
type a tidal singularity for this simple geometry
cannot occur without affecting at the same time
the curvature of 3-space, since the tidal compo-
nents are given by 3-space curvature in vacuum
regions [see Egs. (4.13), (4.14)]. The above
evolvement of high tidal fields not generated by
3-space curvature is therefore possible only by
breaking this simple relation to the 3-space-curv-
ature. By breaking Einstein’s field equations,
which essentially means adding self-interaction—
and therefore breaking the principle of equiva-
lence—static and spherically symmetric black-
hole solutions can no longer exist; besides, in
the absence of self-interaction (y=1), fory+#1, a
regular event horizon is not expected to exist.

VI. CONCLUSION

Gravity considered as a gauge theory already of-
fers a wider class of solutions in the case of static
and spherically symmetric space-times; there-
fore, the issue of the final state for collapsing
matter (e.g., matter involved in the supernovae I
phase) might be found to differ ingeneral complete-
ly from the predictions based on Einstein’s field
equations. This justifies, so to speak, the crea-
tion of the Lorentz gauge theory of gravity as an
alternative approach to Einstein’s dynamics. A
nontrivial element is added to general relativity:
gravitational self-interaction.

W hile the Schwarzschild geometry is a fairly
good approximation for the exterior gravitational
field of weak sources, the exterior fields of strong
forces evolve away from Schwarzschild by the
amount of self-interaction, which on the other

hand grows with the strength of the source. As a
consequence, this generalized metric theory of
gravity no longer offers the Schwarzschild black
hole as a final state for the time evolution of the
late phase in the history of matter; what else
then?

This question cannot be settled without investi-
gating the time-dependent collapse equations; how-
ever, since gravitational self-interaction just
dominates in that region of space-time where un-
der Einstein’s dynamics a regular event horizon
evolves, this, together with the breaking of the
principle of equivalence producing a real energy-
momentum exchange between geometry and matter,
forces matter itself to follow a different evolution.

The SO(1, 3)-gauge theory of gravity has for ex-
tremely weak sources of gravity (e.g, for the solar
system) essentially the same post-Newtonian limit
as general relativity. This follows from the fact
that Einstein’s equations represent the linearized
version of the Lorentz gauge theory and that in the
post-Newtonian limit 74° , =0 is satisfied to a high
accuracy. In general, the principle of equivalence
will be broken, i.e., T"l”’:b;’-O, whenever gravita-
tional radiation plays a dominant role; but this
case is just excluded in the post-Newtonian frame-
work. Therefore, in view of the solar-system
data, the Lorentz gauge theory of gravity is as
viable as general relativity. We need strong
sources (such as neutron stars) or stars under
the supernovae collapse to test the nonlinearities
in the theory.
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FIG. 1. The surface red-shift for the solutions of the
gauge field equations, parametrized by different values
of y and given in the range 0 < M/R < 0.3: curvel, y
=1; curve 2, ¥y=0.8; curve 3, y=0.2; curve 4, y=1.5.
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FIG. 2. Typical runs for the characteristic function
5=e* * in the range 0 =M/7=0.3. This function is a
measure of the deviations from the Schwarzschild geo-
metry; it shows that the class of solutions of the gauge
field equations contains three different types of geome-
tries depending on the value of y: curve 1, y=1;
curve 2, ¥=0.5; curve 3, y=0.2; curve 4, y=-0.5;
curve 5, y=1.5.
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FIG. 3. The behavior of the function u (x)=xN(x, ),
where x=M/r, is shown for different values of y. In
the limit y —1, u approaches continuously the Schwarzs-
child function with Ng =N (x;1)=1: curve 1, y=1; curve
2, y=0.5; curve 3, y=0.2; curve 4, y=1.5,
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FIG. 4. The behavior of the tidal fields fy; depends
critically on the characteristic function §, and there-
fore on the values of y. For y=1 (curve 1) a regular
event horizon exists at x=} (Schwarzschild horizon);
for y<1 (curve 2) the Schwarzschild coordinate system
breaks down for x> xy; x¢>4. For y>1 (curve 3) the
tidal fields evolve a zero at x=x, x < and then change
sign. The Schwarzschild coordinate system, however,
breaks down for x >x,. In each of the three cases an
analytic extension exists.



