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This paper presents a quantum-mechanical treatment of photon absorption by a homogeneous electron
plasma in a uniform magnetic field, in the anisotropic limit for which the electron energies are concentrated
in their motion parallel to the field. The results are intended to be appropriate especially for intense fields (in
which quantization effects and highly anisotropic plasmas are to be expected). The electrons are here
specifically assumed to be initially in their lowest orbital states, although their parallel momenta are taken to
be given by a continuous but otherwise arbitrary distribution function. It is found that the kinematical
restrictions on the absorption process lead to interesting selection effects in both frequencies and
polarizations, and that the photon attenuation coefficients (considered as functions of frequency and angle of
incidence) can exhibit discontinuities and singularities as well as continuous features whose form and range
are determined by both the field strength and the electron momentum distribution. Limiting’ cases of small
angles and low frequencies are established, and numerical examples are postulated to illustrate these effects
and suggest their significance in pulsar magnetospheres. The conditions determining the validity of the first-
order approximation derived here are also investigated, and in this context the combined first-order processes
of absorption and subsequent reemission are explicitly related to a corresponding resonance effect in
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Compton scattering.

I. INTRODUCTION

In space which is empty of external fields, ener-
gy-momentum conservation requirements forbid
first-order processes (Feynman diagrams with one
vertex) in quantum electrodynamics. Such pro-
cesses remain forbidden in the presence of matter
or other sources of microscopically varying fields,
since the interactions mediated by these fields are
properly described by perturbation theory as sec-
ond- or higher-order effects (with single vertices
describing finite momentum transfers with the ex-
ternal field).

In space permeated by macroscopically varying
magnetic fields, however, first-order processes
become possible through a continuous exchange of
kinetic momentum between electrons and the ex-
ternal field, which is implicit in the modified wave
functions governing the electron motion. The dia-
grams corresponding to two such effects are shown
in Figs. 1(a), 1(b). The first is just the well-known
process of magnetic bremsstrahlung or synchrotron
radiation,’ which is observable at least in the clas-
sical limit even for very weak fields (~10~° G in
interstellar space, for example). This is in con-
trast to diagram (b), which represents the field-
induced conversion of a single photon into an elec-
tron-positron pair®~* Intrinsically a quantum-
mechanical effect, the latter process requires ex-
tremely high field strengths and photon energies
well above the threshold value 7w, = 2mc® to be ob-
servable (and in fact has not yet been detected in
laboratory experiments).

However, since the discovery of pulsars and
their subsequent interpretation as rotating neutron
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stars with enormously high surface magnetic fields
(10'*~10'* G are often-quoted values in current pul-
sar models), it has been recognized that both mag-
netic bremsstrahlung® ® and magnetic pair produc-
tion”® may be extremely important processes in
the near zones of pulsar magnetospheres. In fact,
these effects may conspire together to generate
electromagnetic cascade showers™® on a scale
large enough to influence the over-all dynamics of
the magnetosphere and play a role in the mecha-
nisms responsible for the radiation observed from
these objects. More recently it has also been rec-
ognized® '° that the low-energy limit of magnetic
bremsstrahlung (cyclotron radiation) may contrib-
ute to the radiation from pulsating x-ray sources,
which are widely believed to be matter-accreting

(a) (b)

FIG. 1. First-order processes involving a single
particle (electron or photon) in the initial state. The
double line for the electron current denotes that the
particle moves through a uniform magnetic field, so
that its wave function satisfies the corresponding bound-
state Dirac equation. Diagram (a) represents magnetic
bremsstrahlung or synchrotron radiation, for which
the emitting particle may be either a positive or nega-
tive electron. Diagram (b) denotes magnetic pair con-
version of a single photon.
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magnetic neutron stars in binary systems. The
very recent observation by Triimper efal.'* of a
53-keV line feature in the pulsed spectrum of Her
X-1 may be a striking example of this emission
mechanism occurring in a strongly quantizing mag-
netic field.*

Thus, the astrophysical significance of these two
processes, which are also the only first-order dia-
grams involving a single particle (electron or pho-
ton) in the initial state, is already apparent. The
object of the present work is to point out the signi-
ficance of the first-order process for which both
an electron and a photon are present in the initial
state, and whereby the photon is absorbed to pro-
duce an electron with a higher transverse energy
[as depicted in Fig. 2(a)]. It will be shown that
this absorption effect may well have a critical role
in the transport of radiation through the highly mag-
netized plasma of a neutron-star (or white dwarf)
magnetosphere.

In contrast to the pair of second-order diagrams
[Figs. 2(b), 2(c)] which involve the same initial
states (and which represent just the Compton scat-
tering mechanism), the first-order absorption pro-
cess is characterized by highly restrictive kine-
matical requirements. In fact, because of the
quantized nature of the electron energy states in a
strong magnetic field, it is in general impossible
for an electron of specified energy to absorb a
photon of given frequency w. However, for that
frequency which supplies just the transition energy
between two electron states (and conserves the
total momentum parallel to the field direction),
first-order absorption is allowed and results in a
very sharp resonance in the Compton scattering
cross section (due to the fact that the intermediate
state in Fig. 2(b) then attains a relatively very long
lifetime as a “real” particle).

At the same time it can be somewhat misleading
to regard the absorption process as a resonance
effect, especially in the context of a plot of the
corresponding photon attenuation coefficients as
functions of frequency. One of the essential points
to be demonstrated in the following is that for a
quasicontinuous distribution of electron momenta
along the field axis, this “resonance” effect can
result in first-order attenuation coefficients which
appear as smeared-out functions of frequencies
and angles of incidence.'®

The goal of the present work is simply to point
out the basic physical characteristics of the ab-
sorption process, and thus no attempt will be made
here to deal with the full problem of radiative
transport through the magnetospheric plasmas sur-
rounding neutron stars. Instead, a more restric-
tive viewpoint will be adopted, in that the distribu-
tion function of a magnetized electron plasma will
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FIG. 2. (a) First-order absorption diagram. (b), (c)
Compton scattering diagrams. When the kinematical
conditions (6) and (7) in the text are satisfied, diagram
(b) becomes equivalent to the sequential pair of dia-
grams 2(a) and 1(a), for which the virtual state approach-
es the mass shell of a real electron. Diagram (b) is
responsible for the absorption resonance shown in Fig. 8
(see also Sec. VI).

be specified at the outset, and a single “test” pho-
ton will be assumed to propagate through the plas-
ma at some angle 6 with respect to the magnetic
field. For present purposes, the plasma may in
fact be treated simply as a gas which is homo-
geneous on a scale comparable with the actual
spatial dimensions of the pulse of radiation here
idealized as a plane-wave photon.

Two additional simplifications will be made in
this initial treatment. First, plasma dispersion
effects will be ignored in describing the photon
wave field, so that &, #" =0 and 4" (x) has the form
of the vacuum radiation field, This assumption
limits the validity of the following results to fre-
quencies well above the plasma frequency w,
= (4me®ny,/m)*/?, but clearly reduces the formalism
to a minimum at a stage where it still remains to
point out the gross features of this process. (At
the same time, it should be noted that the proper
inclusion of dispersive effects may not be at all
straightforward: In applications dealing with the
transfer of radiation between localized bunches of
electrons or propagation through large-scale in-
homogeneities in magnetospheric plasmas, the
normal-mode fields for homogeneous plasmas
would be equally inappropriate. The description of
polarization effects is of course subject to the same
difficulty, so that either linear or circular modes
may be preferable approximations according to the
specific application.) Secondly, the magnetic field
strength is assumed to be sufficiently intense that
it is justifiable to regard all the electrons as oc-
cupying only the lowest Landau energy levels E,,
where in general

E;=(cp?+m?c*+2je?)?, €=

B e
Bcr ’ (1)

7i=0,1,2,... .
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However, the distribution of momenta p parallel
to the field direction is not restricted, and will
here be described by a distribution function 7(p)
whose form is arbitrary. Thus by appropriate
choices for 7(p), the results presented below may
be immediately applied either to pulsar models
(for which highly relativistic momenta may be of
interest) or to the accretion funnels of pulsating
x-ray sources (where mildly relativistic, down-
ward-moving electrons are to be expected).

The following sections will present a derivation
of the photon attenuation coefficient «(w, 6) (inverse
of the mean free path \) against first-order ab-
sorption in the electron plasma described above.
In Sec. V the results will be applied to several dif-
ferent forms of the possible electron spectra,
which should serve to demonstrate essential fea-
tures of the absorption mechanism. Section VI
compares the first-order absorption with the Comp-
ton effect, and finally in Sec. VII some possible ap-
plications to realistic models of pulsars and pul-
sating x-ray sources are discussed.

II. FIRST-ORDER CALCULATION
OF THE ATTENUATION COEFFICIENTS

Since the principal physical application of the
following results is intended for pulsar magnetic
fields which vary in space only over distances com-
parable to a neutron-star radius (~10° cm), itis a
very good approximation to assume a uniform mag-
netic field B=B2. It is further assumed that the
electron gas is itself uniformly distributed over
both the x-y plane and along the z direction. It
may be noted that no assumptions are required
about the ratio of the interparticle spacings paral-
lel and transverse to the field lines. For the cal-
culation presented here, the particles are taken
to be negatively charged electrons, but of course
absorption by positrons satisfying the same dis-
tribution function would give identical results (ex-
cept for reversal of the photon polarizations).

The requirement that all the electrons be in their
lowest transverse energy states implies that their
orbital quantum number 2 =0 and spin quantum
number s=-1, so that the integer j =2n+s+1 ap-
pearing in Eq. (1) for the particle energy van-
ishes.'* The longitudinal momenta p are left arbi-
trary, and may assume both positive and negative
values. )

Thus the distribution function of the electron gas
may be written in the form

fo(Psi, t)="o77(1’) ’ (2)

where 7, is the total number of electrons per unit
volume and the one-dimensional distribution 7(p)

is normalized to unity:

I apntn)-1.

The subscript 0 labeling f and » serves as a re-
minder that j =0 for all particles.

The next step is to introduce a photon of energy
w into the gas, whose wave vector K is inclined at
an angle 6 to the magnetic field. (Here Z=c=1
throughout, and in general the notational conven-
tions used in Bjorken and Drell'® will be adopted.)
Without loss of generality, it is convenient to
choose the coordinate system so that K-%
=k(y sind +z cosf). The photon attenuation coef-
ficient will be calculated for the two cases of linear
polarization defined by the unit vectors

€, =—cos67 +sinfz, (3a)
€y =+2 (3p)

(so that &y, &, , and k form a right-handed
triad), as well as for the two circular-polarization
vectors,

R 1. "
€1)=F ﬁ(ﬁ(l)i“(z)) . (3¢c)

In the perturbation calculation used here, the
“photon” is regarded as a weak classical radiation
field described by the potential

n
€ -ik, x
a“(x) = W e-ityx? , (4)

where €"=(0,¢) and it is assumed that [dx=L°T.
This radiation field is superimposed on the uniform
magnetic field, whose potential may be taken as

A¥x)=(0,3BxT) . ()

Corresponding to the diagram in Fig. 2(a), the
radiation field may scatter an electron of initial
energy E,=(p?+m?)"/?, causing it to undergo a
transition into a state E, = (g +m® + 2j€?)"/? with
j>0. Since this scattering corresponds to the ab-
sorption of the photon of energy w, the kinematical
requirements to be imposed are

q=p+wcosb, (6)
E,=E,+w . )

These conditions will be examined more closely
in Sec. III below, although their formal role in the
calculation of the attenuation coefficients will soon
become apparent in the present discussion.

To describe the electron in its initial and final
states, wave functions discussed in detail by John-
son and Lippmann'* will be used. Thus

1/2
Piniial (%) =<%> uy(p, a;X)e i Eot | (8)
0]
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bina )= (B Mg, 30655, 521, (@)
i
where
~ 0 -~
, Xo(p, a;%)
E,+m\Y?
o= (ﬁ) 0 , (10a)
) -
(p,a;%)
B, +m Xol?,a; )
Xj—1<q, b;%)
0
E,+m\/?
u§? = (—-247-”—> b , (10b)
E +m Xj 1 q! x)
v2j e -
= xs(q,6;%)
LEJ. +m M y
— 0 =\
p X,(q,b;?’()
1/2
u? = <£12+_m> V2T e , (10c)
m E,+m Yim1@> 5 %)
=9 ¥
X;(q,0;%)
LE,--*-m 4 _J
and the scalar y functions are given by
—J
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1 m\Y? /m \V/?2 3 iTeT o+ - -
Sp=ie g (5) (E) 1200 = Eomw)] [ ase ™ 5l g, b 0mus(p, 49
0 H

where I denotes one of the four polarization matrices

Mir,z) = =8 €,

Myy==—a-€g

(linear) ,

(circular) .
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1

1
Xt(P7a§§): (zll!)l 2()\2”)1 1 'Z'

X exp(zL>t2 [iy(x = 2a) = (x - a)?]+ ipz)

XxX—=a
<, (54)
1=0,1,2,3,. (11)

The continuous parameters a and b in the above
expressions are the initial and final x components
of the orbit centers, which are eigenvalues for this
choice of wavefunction. H; in (11) is the jth Hermite
polynomial, and the constant A =¢~! (in natural units).
In terms of these wave functions, the photon at-
tenuation coefficients «, and «, (or «, and k_) cor-
responding to the two choices of linear (or circu-
lar) polarization [Eq. (3)] are each given by expres-
sions of the general form

klw, 0 =n,L* [ dpn(p)

( ZfL ng,mZZiSf:lz) , (12)

where

Sfi =iefd 4x$nna|(x)a“(x)’yp ll'inmal(x) . (13)

The kinematical requirements already noted in
Eqs. (6) and (7) are explicitly given by correspond-
ing 6 functions in the matrix element S;;, which
also contains the polarization dependence. Since
v,a'y,y; = yfd'a,y;, the matrix element may im-
mediately be rewritten in the form

(14)

(15a)
(15b)

Note that 9, =F(1/VZ)ON,,+iIM ), a relation identical to that between the corresponding unit vectors.
The spatial integration in S,; may be carried out using techniques explicitly discussed by Szeg6.'® The
integrals occurring in this problem are special cases of the general form

/d xe't xXz(a,py X)Xm(b’q’x)

il—m

. -b
W [276(p~q +w COS@)][zﬂé(wSHlG— a)\z )]

xfdxH,(x;a>Hm (x—’—b) exp(-—

aalr=a)*+ (=] (16)

The factorization into 6 functions and the one-dimensional integral in the form given above was the object
the restriction of the photon momentum vector K to the y-z plane).
The form of Eq. (16) prompts the definition of the quantity

of the choice of coordinate system (i.e.,

i

n= QTR N

l-m

x—b

f dxH'(%) H"'( Py

) e (= gyzlle= s (e 01 .

(17
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The evaluation of (17) yields the rather compact result®:!®

S1\1/2 . 1/a-b\

Q.= (—i)0'5(5> e~%/27(6-9/216-S(7), S=min(l,m), G=max(l,m), Z= 3 ( 5 > s (18)
from which the symmetry property 2,,=,,; is immediately obvious. It is also apparent that Q;, is in fact
a function of the dimensionless parameter Z. The generalized Laguerre polynomials L$~5(Z), which in the
present problem [S=min(l,m) =0] are identically equal to unity, satisfy the definition and properties given
in Abramowitz and Stegun.'’

The algebra required to find Sy, is straightforward and will not be presented here. The evaluation of
lsﬂlz, involving the squared 6 functions, are handled in the standard fashion as outlined in, for example,
Bjorken and Drell.'* However, careful attention must be given to the relative phases of 2, ,and Q,_, ,.

Integrating ISﬂl2 over the scattered-electron parameters ¢ and 4, and then summing over the final spin
states as indicated in Eq. (12) yields

.[L [Lzﬂ)@(Z ‘Sfl|2> e_o)ZnT (E,- E,- )(Eo_tm_)(lzj___*'m)

E.E,
2 p p+wcosh\? 2j€? ]
X{ 12,0l D‘[(E0+m * E;+m > * (E, +m)2
2 =p 1>+wcose
+ 121, DZ[(E m E,+m > (E +m)2

- 4|Qj,0“91-1,0|

where the three polarization-dependent coefficients D,

D,, D, in the bracketed expression are given for
each case in the table below. Because of the two
6 functions in Eq. (16), the momentum-conserva-
tion Eq. (6) is now enforced and in addition the pa-
rameter Z is henceforth restricted to be

_wsm9_1 w\ By ..,
Z= 32 2 (m ) g Sin 0. (20)
Polarization: (1) (2) ()
D, sin®g 0 sin26/2
D, cos?6 1 (cos6+1)%/2
D, sinfcosé 0  sinfd(cosf£1)/2

From the general form of the attenuation coeffi-
cient [Eq. (12)] and the table, it is already possible
to verify that «, +k,=k, +k_, as expected. Furth-
ermore, for §=0 (photons propagating parallel to
the magnetic field), the relations

klw, 6)= T2 M 1rah' cn

3E+m E+m}

iw)? —ZEZ" i) [E, cos9 —hy,]

(19)

Ky =Ky =3K,
k_=0

are found to hold. These properties will be dis-
cussed at greater length in Sec. IV below.

The remaining § function in Eq. (19), which ex-
presses energy conservation, may now be re-
moved by the integration over the initial electron
momentum distribution 7(p) in the expression for
k [Eq. (12)]. It is at this stage that the kinematics
really enters into the problem, since for each
final-state integer j only the set {p,}, of zeros of
the function f(p) =E, - E, - w can contribute to the
final result. That is, for each physical situation
specified by given values of w, 8, B, and each par-
ticular transition 0 -j, only those electrons having
certain discrete momentum values {p, },=p;, can
absorb the incident photon. In terms of these al-
lowed momenta, it is possible to write the final ex-
pressions for each attenuation coefficient formally
as

1
X(;—' ZID,[EE,~m*c*+ cp ,(cp,,+ Fiw cosb)]

L1
G-D1!

Z!I'D,[EE, ~mPct = cp,(cp ,+HwcosB)]- G

2
_JE!Z"‘/ZD,ecp”). (1)

Here conventional (cgs Gaussian) units have been reinstated for convenience, so that « has the dimension
cm~'. Thus the problem has been reduced to that of finding the discrete allowed momenta p,, for eachj.
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III. KINEMATICAL REQUIREMENTS
AND ALLOWED MOMENTA

The momentum-conservation Eq. (6) may be in-
corporated into Eq. (7) for the energy, and the re-
sult may be squared to give

(p2+m?)?*=pcosb+¢, , (22a)
where

i Bm e

$j—]Bc, w 3 sin®g . (22b)

It is possible to search for solutions of (22) geo-
metrically by plotting the two functions f,(p)

= (p2+m*)"* and f,(p) =pcosb + ¢, and finding their
points of intersection. It is immediately obvious
from this geometrical method that since |cosf| <1,
so solution exists if ¢{,<0. This is an important
observation, since to proceed further it is neces-
sary to square Eq. (22a) a second time, obtaining
the quadratic expression

sin*6p® - 2, cosbp+ (m* - ¢,%) =0 . (23)

The only pitfall in using the latter equation to find
the desired {p,}, is that real solutions are obtained
whenever ¢; 2> m®sin®f, whereas the necessary and
sufficient requirement for solutions of Eq. (22) to
exist is that ¢;>m sin6.

The case ¢, =m sind >0 gives exactly one solution
p, for each j (in the geometrical picture, the two
curves are tangent at this point). However, for the
particular values of w, 6, and B which fulfill this
condition, the absorption coefficients « for all pol-
arizations become singular. This behavior arises
from the vanishing of |d(E, - E,-w)/dp|, which is
contained in the denominator of Eq. (21) for « after
the last integration involving 6(E, - E, - w). For
fixed field strengths, the condition ¢;=m sinf can
be solved to give the discrete frequencies

_ m[(1+2jB/B.)"?-1]
‘A sind

(24)

at which the singularities occur.

If sin6=0, the quadratic equation (23) is reduced
to a linear equation for p. Thus there is again only
one solution, which in this instance is given by

m2 - L 2
_ i
by 2, . (25)
However, in this case there is no singularity in the
attenuation coefficients, since |d(E;—E,—w)/dp|
does not vanish for finite p. For later use it is
worthwhile to make note of the limiting cases

2

Di=o—, §;<K<m
) 2£I )

.é_l.
py~= 2 Ly»>m .

For the remaining possibility, ¢,>m sin6>0,
there are two solutions which are just the roots of
(23), namely,

pie £, cos0+ (¢, % —m® sin®6)/?
j— .

sin®g (26)

It is of particular interest to examine the behavior
of these solutions in the limit {y>»m siné, for

which
4 m?
~S5 _m
b 1-cosf 2¢,° (27a)
_é m2
- 1+cos€+2_'g,' (270)

Under the more restrictive assumption ¢, >m, the
solutions take the especially simple forms

b l—iose ’ (282)
-
~—_—i
P~ 1 coso - (28b)

In the geometrical picture mentioned above, these
last solutions are just the intercepts of the line
f2(p) =pcosf+¢, with the asymptotes a,(p)=+p of
the curve f,(p) = (p2+m?)2,

IV. LIMITING FORMS'
OF THE ATTENUATION COEFFICIENTS

The equations for the allowed momenta derived
in the previous section complete the general solu-
tion (21) for the first-order attenuation coeffici-
ents, which (within the limits of the perturbation
theory approach) is valid for arbitrary values of
w, 6, and B. Unfortunately the latter expression
is in general rather cumbersome, and its form
does not immediately provide much insight about
the properties of each x. However, for the phy-
sically interesting cases of nearly parallel propa-
gation and/or low frequencies, it is possible to
establish several (partially independent) criteria
which may reduce the number of terms appearing
in (21) as follows:

A. Behavior at small angles

(1) If sinf <« (B/B,)"?(m/w), then the parameter
Z [Eq. (20] becomes much less than unity and
exp(-Z) ~1 in Eq. (21). In addition, the jth term
in the summation in (21) is roughly a factor Z/vj
smaller than the preceding term. Hence, it is
possible in the limit of small Z to neglect all but
the first kinetically allowed term, which for field
strengths of the same order as B, or less is al-
waysj =1.

(2) Of the pair of momentum solutions p, for
nonzero 6 in Eq. (26), it is p_ which tends to the
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solution (25) for parallel propagation as 6 -0,
whereas p, goes to infinity in the same limit.
Thus, if n(p) falls off rapidly enough for large
positive p, only the terms involving p_ contribute
to each «.

(3) As 6-0, both the first and third terms with-
in the brackets in (21) go to zero, whereas the
middle term approaches a finite value proportional
to (B/B,)m?. If in addition n(p,)~0, then again
only the p_ contribution remains, for which the fac-
tor in the denominator

B m?

|Eqcos6—p_| ~Ey+|p_|~¢, = B w
For the case 6=0 exactly, all the above conditions

apply and the attenuation coefficients then have the

especially simple forms

2 2 ﬁZCZ
Ky =Ky = %K( +) = R nlepw)], (29a)
(7w)
K.y =0. (29b)

Moreover, itis true in general that each « ap-
proaches the above limiting values continuously as
6-0.

On the other hand, it must be stressed that for
arbitrary choices of w, B, and the momentum dis-
tribution n(p), ¥ may be an extremely sensitive
function of 6 at small but finite angles. In fact,
for a given nonzero 6«1 it may still turn out that
none of the above criteria are fulfilled, and only
the exact form of (21) can give reliable results
[which may differ significantly from the limits (29)
above]. However, it is generally possible to write
simpler expressions for k for nonzero 6 if addi-
tional low-frequency limits may be imposed, as
will be discussed below.

B. Low frequencies

(1) The first criterion mentioned in part A above
is properly viewed either as a limit of small angles
or of low frequencies. Thus if

B\ m
W= (E;) sin6

for arbitrary 6, it is again true that Z « 1 and only
the first allowedj term in (21) need be retained.

(2) If w <« (B/B.m [which for all B< B, is a more
restrictive low-frequency condition than (1) above],
then again only the j =1 term is significant. Furth-
ermore, from Eq. (22b) it is seen that

2
6~ T — >m.
t BCI’
Thus the simple expressions (28) for the allowed
momenta apply for nonzero 6.
It also follows that |g|=[p+w cos8|~|p|>m , so

that g and p have the same sign. This fact and the
use of the approximations

m2
E0~Ip§’(1+ 2P*2> ’

m? +2¢€?
E;~lg.l <1+ —z—q;z—> )

lead to the results

2¢,2
—m? ~ 2. ___°51
EE, —m*+pq ~2p, (1¥ cos6)? ’

EE, -m? —pg~e®= B m
BCI'
for the corresponding factors appearing in (21).
The factors |E,cos6-p,| in the denominators of
(21) present no problems if #(p,) ~0, since then
|E,cos6 —p_| ~&, is the only term which need be
considered. If 7(p,) cannot be neglected, however,
it is then necessary to impose the additional re-
striction 8 »m/p,, ‘so that |E,cos6 —-p,|~¢, also.
In either case, it is then finally possible to com-
bine the above results and reduce (21) to the com-
pact forms

2n’ak®c®n,
Koy~ Ky ™ () Z ’f)(CP*) ) (30a)
+
4,”2 ﬁ2 2
Kisy ™ ———Q((;w)c "0 n(ep,) - (30D)

These expressions are seen to agree with Eq.
(29) for the case 6=0 (and arbitrary w), since p,
tends to infinity and n(p,) necessarily vanishes as
6-0. Moreover, in the present low-frequency
limit, the expressions (30) are valid at all 6 for
which either the condition 6> m/p, is satisfied or
n(p,) effectively vanishes. If neither of these con-
ditions is fulfilled, then the exact form (21) should
again be used instead of (30).

V. APPLICATIONS

In the present section a few specific choices for
the electron momentum distribution n(p) will be
postulated in order to demonstrate several inter-
esting aspects of the first-order absorption pro-
cess. It should be emphasized that the examples
used here are not all equally justifiable on physi-
cal grounds, although at least some of the forms
for 7(p) given below are directly motivated by re-
cent models of the electron plasmas in pulsar mag-
netospheres.

In general, it is true that the first-order ab-
sorption effect becomes significant over a wider
range of frequencies (and incident angles) as 7(p)
spans a greater range of momenta, so that a
broad spectrum of electrons is available to fulfill
the differing kinematical requirements correspond-
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ing to variations in w and 6. (The effects of spatial
variations in B must also be considered in applica-
tions to pulsar magnetospheres, although for pre-
sent purposes it is convenient to maintain the
arbitrary point of view that B is in each case a
fixed parameter.) Both to demonstrate the
“smeared-out” appearance of x(w, 6) which results
from a broad momentum distribution, and to il-
lustrate the occurrence of the singular absorption
lines at the discrete frequencies given by Eq. (24),
the first choice of 77(p) will be the half-Gaussian
form

n(p)=0, p<0
2
=; exp(—pp2> p>0 (31)
TPe c

where p, will be arbitrarily set at 1 GeV for defi-
niteness. This specific choice of p, is not likely to
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FIG. 3. Specific attenuation coefficients k/n, vs photon
energy for 6=m/2, corresponding to the half-Gaussian
electron momentum distribution given by Eq. (31), with
p. =1 GeV. The field strength is here chosen to be 10'2G.
The curves shown are for the two linear polarizations
specified by Eq. (3). The high-energy portion of the
graph displays the lowest critical frequencies at which
singularities occur for both polarizations, while the
smooth rollover at low energies reflects the drop in the
electron spectrum above 1 GeV. The broad portion over
which it is almost inversely proportional to w (corres-
ponding to the flat part of the electron spectrum) satisfies
the approximations (28a) and (30a).

be very reasonable for a thermal or evaporation
spectrum (because of the extremely high implied
temperature, namely, 7~10" K), but it does pro-
vide an especially simple example of a highly
broadened distribution (some more complicated
form of which may conceivably arise on other phy-
sical grounds, such as electrostatic acceleration
with nonlinear space-charge effects).

The specific attenuation coefficients «/n, cor-
responding to the above form of 7(p) and a field
strength B=10"? G are plotted in Fig. 3 as a func-
tion of frequency, at first for 6=7/2 only. (Note
that k/n, has the dimensions of a cross section.)
The exact solution (21) for each « was used to ob-
tain the above graph, although it can immediately
be seen that in the range for which w « (B/B.)m,

k satisfies the approximate Eq. (30). Above this
range the singularities at the lowest critical fre-
quencies w,(6, B) as given by Eq. (24) are clearly
evident, and are separated by a narrowing, step-
wise decreasing sequence of continuous segments.

The influence of the specific form of 7(p) in Fig.
3 is most obvious in the low-frequency range (well
below the first critical frequency). As would be
expected from Eq. (30), « is almost inversely pro-
portional to w over the broad range for which
n(p.) is nearly constant. [The p_ solutions, being
always negative in this example, do not appear for
this form of 7(p).] The low-frequency cutoff in «,
whose location is dependent on field strength as
well as incident angle, corresponds to the event-
ual drop in 7(p,) as p, increases beyond the char-
acteristic value p,.

Variations of the above graph are shown in Figs.
4, 5, and 6, which are intended to illustrate the
dependence of k on the angle of incidence as well
as different choices for the ambient field strenghts
(at fixed angles). Each of these graphs has a num-
ber of points of technical interest, as in the case
of the small-angle behavior in Fig. 5, which is in
part due to the asymmetry of n(p) in this example
and the behavior of the momentum solutions p, as
6~0. Technical features of this type will not be
discussed in detail. However, one point which is
worth noting is the behavior of x as B is reduced,
as shown in Fig. 6. It is apparent that the low-
frequency end of « (the cutoff region) “slides”
backward and upward along a fixed line propor-
tional to w™! as Bis decreased, although for all
nonzero 6 the discrete singularities also move
backward to lower values of w:

w,~j B m as 2 -0

477 B, siné = B, :
In fact, as B goes to zero for any fixed >0, the
entire structure of k is compressed into a line of

infinite height at w =0 (corresponding to an infinite



18 ABSORPTION OF RADIATION BY ELECTRONS IN INTENSE... 1061

10° 90
o
T --30
o~
£
L
#IC 10'23
1524 " o
10'° GAUSS N
\.
L1l Ll ARSI B R E ST Ll
10% 103 102 167 1
hw [MeV]

FIG. 4. The behavior of k/n; vs w at different angles of
incidence for a fixed field strength, here chosen to be
103 G. The assumed electron distribution is identical to
that for Fig. 3. For 90° and 30° only the low-energy
portions of the curves are shown (below the first critical
frequency for 90°), although the upper right-hand corner
indicates the shift of all the singularities toward higher
frequencies as 6 is decreased [see Eq. (24)]. The critical
frequencies for 10° are not shown. However, the latter
curve is extended above 0.1 MeV to include an abrupt in-
crease by a factor of 2, which occurs when both the mo-
mentum solutions (26) become positive and contribute to
the absorption [See Eq. (30a)].

absorption probability for photons of zero fre-
quency). However, this is tantamount to saying
that no absorption is possible for any real photon
of frequency w >0, as expected for field-free
space. The same is of course true for the case
6=0 exactly, since then the allowed momenta [Eq.
(25)] are always infinite for all w >0 even though
there are no finite critical frequencies.

The second example for 7(p) is chosen to illus-
trate the opposite extreme of a sharply peaked dis-
tribution. This case will be of direct relevance
for pulsars if some types of magnetospheric plasma
instabilities can act as bunching mechanisms to
produce localized “clouds” of (positive or negative)
electrons moving with sharply defined energies,
as a number of authors have suggested.”® Coher-
ent radiation from such electron clouds has in fact
been pictured as the source of the observed radio
emission,

For present purposes, the momentum distribu-
tion of a typical electron cloud may be approxi-
mated by the full Gaussian form

__1 (p=by)*
"@)°JFm em{— 5.0 ) ) (32)

where it is postulated that the average momentum
po>p.. Since it appears likely that ultrarelativis-
tic electrons would be required to account for the
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FIG. 5. Continuation of Fig. 4 to smaller angles. The
factor-of-2 increase in k/n; for 10° is also shown here.
This may be compared with the gradual increase for
1° incidence, the difference being that for increasing
frequency, the p, contribution is the first to appear in
the former case and p_ in the latter case. For 6=0
there is only one finite-momentum solution, which is
increasing with photon energy.

pulsar radiation mechanism, the additional condi-
tion p,>m will also be imposed.

In the context of this example, it is convenient
to consider one of the allowed momentum solutions
b, in Eq. (26) as coinciding a priori with a chosen
Py, and then to determine accordingly what fre-
quency range can be absorbed for any given angle
of incidence. Here it will be sufficient to consider
only the simplest cases of physical interest, so it
will be assumed that p, =p, and 6 will be restricted
to finite values such that p,(1 - cos6) >m. Then
from Eq. (28), the range of frequencies subject to
absorption is approximately centered on the value
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FIG. 6. Behavior of k/n, for different field strengths,
at fixed angle of incidence (here 90°). See discussion
in Sec. V.
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2
5 m B (33)

@o B po(1 = cosb) « B,

Figure 7 shows a plot of k vs w for the specific
choices p,=10* MeV, p.=10°> MeV, 6=10° and a
field strength B=10° G (which should be a reason-
able value for the light cylinder region of the Crab
pulsar or the intermediate zones of slower pul-
sars). The choices of p, and 6 were here contrived
to result in absorption around 1 GHz, but appear
sufficiently reasonable to suggest the importance
of first-order absorption at radio frequencies.

This graph also illustrates an important aspect
of the absorption effect which holds whenever the
low-frequency approximation (33) above is valid,
namely, that the relative bandwidth of affected
frequencies 6w/w is roughly as narrow as the ef-
fective width of the electron momentum distribu-
tion 6p/p. This property holds here because
w«p~!, which for large p, remains true for all
6> (m/p)>.

One further remark seems appropriate in con-
nection with the above example: It is interesting
to speculate about the behavior of large numbers
of such localized electron clouds moving along
magnetospheric field lines with various average
momenta p,, in the case for which the cloud di-
mensions and/or densities are sufficient to make
first-order absorption significant. This picture
may well hint at a partial explanation for the ex-
tremely complicated (and variable) radio pulse
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FIG. 7. Absorption at radio frequencies by a relativ-
istic bunch of electrons in a megagauss field. A “typical”
incident angle of 10° is assumed for definiteness. The
postulated electron distribution has a full Gaussian
shape [see Eq. (32)], with p,=9.7 GeV and p, =1.0 GeV,
these values being chosen to result in absorption at
1 GHz.

structure observed from most pulsars. Complex
amplitude-time and amplitude-frequency depen-
dences (often much sharper than might be expected
from incoherent emission mechanisms alone)
would be essential features of the net radiation
pattern from numerous electron clouds, each capa-
ble of both emitting radiation and absorbing multi-
ple frequency bands of the emission spectra from
other clouds. (The observed polarization effects
would demand a more specific picture, but might
be the result either of the emission mechanism,
whether curvature or synchrotron radiation, or of
the simultaneous presence of both positive and
negative electrons in the clouds.)

A third example for n(p), of interest in connec-
tion with pulsating x-ray sources, would be given
by choosing a mildly relativistic, negative value
for p, (typically cp,<300 keV) in the Gaussian form
(32). Here again, depending on the momentum dis-
persion, polarization-dependent absorption fea-
tures roughly similar in appearance to Fig. 7 would
be obtained, except that for B~10'? G, the absorp-
tion would be centered in the hard x-ray regime.
The question of radiative transfer in pulsating x-
ray sources, however, is of sufficient interest in
itself to warrant a more detailed treatment of this
type of example than can be attempted here. For
reasons of space, this task must be reserved for a
separate paper.

VI. COMPARISON OF FIRST-ORDER ABSORPTION
AND COMPTON SCATTERING: VALIDITY
OF THE FIRST-ORDER THEORY

It was already mentioned in the Introduction that
the derivation of the first-order attenuaticn coef-
ficients given above must be revised for the case
of high electron densities or low frequencies, for
which it may become improper to use the vacuum
radiation field satisfying the condition k,#'=0. On
the other hand, the dispersive behavior of the ra-
diation field in dense plasmas is essentially a tech-
nical problem which does not bring into question
the validity of the general first-order perturbation
theory approach outlined above.

The extrapolation to the opposite limit of ex-
tremely low densities, however, requires a funda-
mental change in viewpoint. In fact, the first-or-
der result (21) itself becomes a poor approxima-
tion as soon as the ensemble of electrons which
may interact with the photon can no longer be de-
scribed by a continuous distribution function such
as that used here, f,(p,X, ) =nmn(p). To analyze
this limit, in which the effect of discrete numbers
of electrons becomes apparent, the precise rela-
tion of the (second-order) Compton effect to the
first-order absorption process must be made more
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explicit.

The approach to low densities can be visualized
in qualitative terms as follows: As n,is de-
creased, the momentum distribution n(p) is effect-
ively resolved into a sum of & functions in momen-
tum space (assuming the particle momenta are all
rather sharply defined):

N
p)»—z;lop ).

In second order, each electron can undergo (mag-
netic) Compton scattering as shown in Figs. 2(b),
2(c) with an incident photon of arbitrary energy w
and propagation angle 6, so that the attenuation
coefficient due to the presence of even a single
electron is a continuous, smeared-out function of
these variables (as opposed to the 4-function be-
havior of the first-order approximation). How-
ever, for those pairs of w and 6 which happen to
satisfy the kinematical requirements (6) and (7)
for first-order absorption, the Compton cross
section for one polarization displays an extremely
sharp resonance, which can be shown to arise only
from the “uncrossed” diagram 2(b). In precisely
these cases the electron propagator acquires an
extremely long lifetime and effectively achieves
the status of a “real” particle, which eventually
(i.e., after measurable times) undergoes magnetic
bremsstrahlung. Thus, at the resonance, diagram
2(b) may be viewed as a sequence cf the two inde-
pendent first-order diagrams 2(a) and 1(a).

The finite transition rate for synchrotron emis-
sion is just the mechanism which keeps the Com-
pton resonance finite and determines both its
height and its natural width (in a manner complete-
ly analogous to radiation damping in atomic transi-
tions: see, for example, Sakurai'®). A short de-
rivation of the synchrotron transition rate (inverse
of the mean lifetime 7) for the two cases of princi-
pal interest here, namely,

Ij:l’s=1>-.
ij:1,8=—1>"‘j=0>+77

[7=0)+y,

is presented in the Appendix. For nonrelativistic
electrons (p~0) and B/ B, <« 1, T has the simple
forms

3 n 1

Ts=17 9 o < ) mc® (342)
3 1

To=a1™ g - < ) s KTgey » (34b)

As might be expected, for Lorentz frames in which
p#0 the above values are each increased by the
factor y = (p?+m?+2€2)?/m.

A simple illustration of the damping effect of 7
on the Compton resonance is provided by noting

that the low-energy (Thomson) limit for parallel
propagation (6 =0) derived by Canuto et al.*® should
be modified as follows:

Gl L W (35)
om (WFwy)? (wFw,)*+T%4n
where
81/ & \ %
o= 5 () TF,
and
_€eh,_ B -
ﬁw”_ch_Bc, me

The resonance is obviously associated with o, (the
extraordinary mode), and is evidently extremely
high for all field strength comparable to or less
than B,. The “nonresonant” portion of o, /oy, is
plotted vs frequency in Fig. 8 to suggest the sharp-
ness of the peak (for B< B, the natural width T is
not observable in this graph).

The finite height and width of the resonance
which appear in second order have a direct bear-
ing on the validity of the first-order approximation
derived in this work, as may be inferred immed-
iately from the analogous situation for radiation
damping in atomic transitions.'® In particular, it
is essential that the time in which the photon (in
realistic terms, a radiation pulse of finite dura-
tion) can interact with the electrons must be short
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FIG. 8. Behavior of Thomson scattering cross sections
for the case of parallel propagation. The solid (dashed)
line refers to photons of photons of positive (negative)
helicity. The absorptive resonance for positive-helicity
photons, whose peak is dependent on field strength (see
Appendix), occurs at the cyclotron frequency wy =(B/
B) mc? for electrons at rest.
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compared with the lifetimes of the “excited” elec-
tron states: otherwise, the absorption and re-
emission cannot be treated as two independent
quantum-mechanical processes, and the first-or-
der approximation must break down. However,
the interaction time is related by the uncertainty
principle to the energy resolution of the photon
beam, so that the validity of the first-order ap-
proach in effect requires that

A(fw) >T(B) . (36)

This condition is not unreasonably stringent and
can be satisfied in many physical applications, but
indicates that some caution is necessary at low
(radio) frequencies and high field strengths,

Bs B,

On the other hand, the above criterion (36) is
not sufficient by itself to determine whether the
first-order attenuation coefficient (21) is a good
approximation. This may be seen by a further ex-
amination of the second-order picture, in which
the Compton cross sections due to all the individual
electrons which can scatter the incident photon
must be superimposed to give the resultant attenu-
ation coefficients. But now it must be realized that
the location of each Compton resonance (considered
as a function of frequency and/or angle) depends on
the individual electron momentum p,. Thus, for
example, the cross section for parallel propaga-
tion in Fig. 8 is shifted to higher frequencies for
p>0, so that the resonance occurs at w>wy.
Hence, for an ensemble of electrons, the amount
of overlap in the individual cross sections becomes
a critical question.

In this context it is highly instructive to pursue
the example of parallel propagation somewhat
further, especially since in this case the use of
Lorentz transformations permits the immediate
generalization of (35) to an electron with any non-
zero p. Thus if v=p/E,, y=E,/m, and primed
quantities are understood to refer to the electron
rest frame, then

It follows immediately that

K ’
Mo —(1—1))0 ’

where
, K ’ w 12

_f =0t 7 2. 12/4 °
ny (w'Fwy)*+T%/4
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It is further possible in this case to obtain the
average cross section {o,) for the resonant polari-
zation, and hence the resultant attenuation coef-
ficient {(kx,), for the same distribution of electrons
(2) which was assumed in the derivation of the
first-order attenuation coefficients:

(0= L = [ apn(p) £eld)

0

_ w?(1-2)
_Uzhf dPﬂ(P) [(w,_w”)2+r2/4]

=oy [ dpn(p)- 1 p/B) i
R <
37

Now at this point it must be noted that these last
expressions are supposed to describe the same
physics, to second order, as the corresponding
first-order solution (29a). Whether this is the
case, however, depends not only on whether T is
sufficiently small, but also on the smoothness of
the distribution 7(p) (or equivalently, on the
amount of overlap in the cross sections due to the
individual electrons). The same assumptions im-
plicit in the framework of the first-order approxi-
mation would also imply here that a large number
of the resonance peaks must overlap on a scale
comparable with the natural width of each peak. If
this restriction does not hold, then the final inte-
gration involving the energy 6 function
8(E; - E,— w), which resulted in Eq. (21), is not
generally valid. In other words, the first-order
treatment must break down as the density #, is
lowered to the point at which the individual peaks
move apart from each other and can be separately
resolved.

On the other hand, for the continuum limit in
which 7(p) may be used, the first- and second-or-
der descriptions show good agreement. Thus, if
the main contribution to the integral (34) is con-
fined to the natural width I" of the peak and if 7(p)
does not vary appreciably over this narrow range,
then it is possible to write

?2
K.

con ™ [ do(ple” -
e mg, 2 f do P NG 7T/

~<rmn(12(w,,))4—?9’—1‘“,ﬂ . (38)

But since (in natural units)

_ 81 of
TRl
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and

K, Bmalie’ ) . (39)

The discrepancy between this crude integration

and the first-order result is just 7/2, which should
perhaps be considered somewhat fortunate, Never-
theless, the point of this example, namely, the
requirement of a quasicontinuous electron distribu-
tion, clearly extends to more general cases for
which 6> 0.

A rough test for the smoothness of the electron
distribution is provided in the case of simple forms
of n(p) with effective width 6p by checking for the
inequality

% 1, & (40)

nyd°3x «;ir dw

where 53x is the volume within which the photons
(i.e., pulse of radiation) are confined by the emit-
ting mechanism (so that it is impossible in princi-
ple to determine which of the electrons within 6°x
interacts with any photon). This volume must in
turn be defined according to the realistic energy
and angular resolutions expected for the radiation
pulse.

If both of the criteria (36) and (40) above hold,
then the first-order expression (21) for « is likely
to be a good approximation. In other cases, more
reliable values might be obtained from integral
second-order expressions similar to (37).

VII. DISCUSSION: SUGGESTED
ASTROPHYSICAL APPLICATIONS

The principal conclusion to be drawn from this
work is that the absorption of radiation by elec-
trons in high magnetic fields, which must be con-
sidered one of the simplest elementary processes
allowed in quantum perturbation theory, neverthe-
less, may very well introduce a number of striking
and rather complex features into the physics of ra-
diative transport in neutron-star (or while dwarf)
magnetospheres. It has been demonstrated ex-
plicitly that the absorption process, to an extent
even greater than for Compton scattering’®~2! in
magnetic fields, is characterized by a complicated
selectivity in frequencies and polarizations which
is strongly dependent on both the momentum dis-
tribution and charge composition of the electron
plasma.

At the same time, the present work has been re-
stricted primarily to the general physical aspects
of the absorption process and the validity of its

first-order description. For reasons of space it
must be reserved for separate investigations to
apply the above results in a detailed way to specific
astrophysical applications. However, two cases of
particular interest may be briefly mentioned here
to further emphasize the relevance of this process.

Several authors of recent pulsar models”® have
suggested that two-stream instabilities or other
mechanisms can produce localized bunches of
electrons which stream outward along open mag-
netic field lines between the surface of the neutron
star and the light cylinder. The transport of ra-
diation (which may be emitted initially because of
the curvature of the field lines) through a large
number of electron bunches should involve (in ad-
dition to cascade effects) a repeated sequence of
first-order absorption and re-emission processes
as well as (nonresonant) Compton scattering. The
capability of the emerging radiation in such models
to explain the observed (probably coherent) radio
emission characteristics must be carefully in-
vestigated. In this context, the obvious possibility
of first-order absorption as a pumping mechanism
for maser emission should not be ignored.

Absorption by a distribution of electrons may
alsobe responsible for observed spectral features
in the pulsed x-ray emission from objects such as
Her X-1.""%2.2% Qne previous attempt?* to explain
the remarkably steep cutoff in the Her X -1 spec-
trum between 20-30 keV was based on the assump-
tion that the electrons above the polar cap region
of the star become optically thick at frequencies
well below w, [cf. Eq. (35), and Fig. 8]. However,
it would be interesting to investigate the alterna-
tive possibility that the observed cutoff is a mod-
erately broad-band first-order absorption effect
due to a thermal distribution of electrons. In this
context the re-emerging feature suggestive of an
emission line around 53 keV, which has very re-
cently been reported,'’ may be quite significant.

One further outstanding question of more general
interest should be mentioned in conclusion: It
would be useful to investigate the relation of the
quantum-mechanical treatment of the absorption
process to the well-known classical formulas for
synchrotron reabsorption (see, for example,
Ginzburg and Syrovatskii®®), derived under the
combined assumptions of low field strength, iso-
tropic electron distributions (which imply a quasi-
continuous population of higher orbital states ex-
tending to enormous values of j), and radiative
equilibrium. It seems likely that a more elaborate
quantum treatment, starting from electron distrib-
ution functions which allow the population of many
orbital levels, could provide valuable generaliza-
tions of the classical description of synchrotron
reabsorption.
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APPENDIX: LIFETIMES OF THE FIRST EXCITED STATES
IN A UNIFORM MAGNETIC FIELD

Let E,, q and b denote the initial energy, longi-
tudinal momentum, and x eigenvalue of an electron
in a uniform field B= Bz. The particle may be in
either of the two spin states corresponding to the
quantum number s=x1 (Johnson and Lippmann'?),
and the distinct transition rates from each state to
the lowest orbitalj =0 (for which s=-1) are quite
different. If E,, p, and a are used to describe the
respective final-state parameters, the kinematical
conditions (6) and (7) apply, and S;; for photon
emission is identical to that found for absorption
(Sec. II of the text) up to the following modification
of the photon field:

“ .
(a) for absorption: a"(x)= W emitr’

u
e

(b) for emission: = Qul)? e

f a0sing(S4%E )[1 - (piz Jcosé]

x[(E0+m)(El+m) <E jim Fom
0 1

b q
- ) 2y1/2 _
2(E,+m)(2Z€?) (E0+m E+m

_a " (E-E e ?
Rooi 4fo desma( E\E, >1-(p/Eo)cos6

x[(E +m>252(1+cos 0) + (E,+m)(E, + m)<_1_+ P

E, +m

The differential transition rate for emission into
the solid angle 492 is given by

dr dn 1 2
(dQ)s: f’i < ar f"zmﬁ 1S4l )

(A1)

where the summation (+) is over the photon polari-
zations and

@ L3 2
dw~ (27)°

an

is the density of final states. The total transition
rate (inverse of the lifetime 7) is given by inte-
grating over dQ.

The evaluation of (A1) and the integrations over
volume and photon energy (all of which involve the
same & functions encountered in Sec. II are directly
analogous to the procedure used to find the ab-
sorption coefficients. The results for s=+1 may
be expressed in the integral forms

- —L—> (1+cos?d) +<—E—Qi:—:> 2¢%sin?0 Z

E +

1

)sin@ cose] s (A2)

2
22
E +m E0+m> sin"6 2

- 2(E, +m)(—q—- P ) (2Z€??sing cosﬁ} . (A3)

E +m E,+m

The lifetimes for an electron initially at rest are
obtained by letting ¢ =0 in each case, for which
equations (Al), (A2) reduce (in conventional units)
to

2 a/BY

(R)ew~3 %‘(B—> mc? (A9)
4a/BY

(B, 5 (5 ) me (45)

It is thus seen that for B« B, the emission from
the state s=~1 proceeds much faster than that for
s=+1 (the “spin-flip” case). However, a closer
examination of the derivation of the absorption
coefficients in Sec. II also reveals that the transi-
tions to the s = -1 excited state are the major con-
tributors to the absorption rate. For this reason
it is the faster rate (A3) which determines the nat-
ural width T" of the resonance in the Compton scat-

r

tering cross section (see the discussion in Sec. VI).
For electrons with nonzero initial momentum g,
the lifetimes may either be found explicitly by inte-
grating equations (A2), (A3) over df, or quite sim-
ply obtained from the well-known Lorentz trans-

formation law 7=vy,7,, where
E, _ (q®+m® + 2¢2)1/2

Y= m m

A comparison of the two methods in fact provides
a useful check on the algebraic manipulations (in-
cluding phases) of the first-order derivation, most
of which are identical to those encountered in the
calculation of the attenuation coefficients in the
text.
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(a) (b)

FIG. 1. First-order processes involving a single
particle (electron or photon) in the initial state. The
double line for the electron current denotes that the
particle moves through a uniform magnetic field, so
that its wave function satisfies the corresponding bound-
state Dirac equation. Diagram (a) represents magnetic
bremsstrahlung or synchrotron radiation, for which
the emitting particle may be either a positive or nega-
tive electron. Diagram (b) denotes magnetic pair con-
version of a single photon.



(a) (b) (c)

FIG. 2. (a) First-order absorption diagram. (b), (c)
Compton scattering diagrams. When the kinematical
conditions (6) and (7) in the text are satisfied, diagram
(b) becomes equivalent to the sequential pair of dia-
grams 2(a) and 1(a), for which the virtual state approach-
es the mass shell of a real electron. Diagram (b) is
responsible for the absorption resonance shown in Fig. 8
(see also Sec. VI).
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FIG. 3. Specific attenuation coefficients x/z, vs photon
energy for 6=n/2, corresponding to the half-Gaussian
electron momentum distribution given by Eq. (31), with
p.=1GeV. The field strength is here chosen to be 102G,
The curves shown are for the two linear polarizations
specified by Eq. (3). The high-energy portion of the
graph displays the lowest critical frequencies at which
singularities occur for both polarizations, while the
smooth rollover at low energies reflects the drop in the
electron spectrum above 1 GeV. The broad portion over
which it is almost inversely proportional to w (corres-
ponding to the flat part of the electron spectrum) satisfies
the approximations (28a) and (30a).
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FIG. 4. The behavior of k/n; vs w at different angles of
incidence for a fixed fleld strength, here chosen to be
10'® G. The assumed electron distribution is identical to
that for Fig. 3. For 90° and 30° only the low-energy
portions of the curves are shown (below the first critical
frequency for 90°), although the upper right-hand corner
indicates the shift of all the singularities toward higher
frequencies as 6 is decreased [see Eq. (24)]. The critical
frequencies for 10° are not shown. However, the latter
curve is extended above 0.1 MeV to include an abrupt in-
crease by a factor of 2, which occurs when both the mo-
mentum solutions (26) become positive and contribute to
the absorption [See Eq. (30a)].
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FIG. 5. Continuation of Fig. 4 to smaller angles. The
factor-of-2 increase in k/n, for 10° is also shown here.
This may be compared with the gradual increase for
1° incidence, the difference being that for increasing
frequency, the p, contribution is the first to appear in
the former case and p_ in the latter case. For =0
there is only one finite-momentum solution, which is
increasing with photon energy.
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FIG. 6. Behavior of x/n, for different field strengths,
at fixed angle of incidence (here 90°). See discussion
in Sec. V.
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FIG. 7. Absorption at radio frequencies by a relativ-
istic bunch of electrons in a megagauss field. A ‘“typical”
incident angle of 10° is assumed for definiteness. The
postulated electron distribution has a full Gaussian
shape [see Eq. (32)], with p,=9.7 GeV and p, =1.0 GeV,
these values being chosen to result in absorption at
1 GHz.
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FIG. 8. Behavior of Thomson scattering cross sections
for the case of parallel propagation., The solid (dashed)
line refers to photons of photons of positive (negative)
helicity. The absorptive resonance for positive-helicity
photons, whose peak is dependent on field strength (see
Appendix), occurs at the cyclotron frequency wy=(B/
B_) mc? for electrons at rest.



