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Exact spherically symmetric classical solutions for the fg theory of gravity
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We find a class of exact spherically symmetric solutions to the coupled classical field
equations of f-g theory. The f and g metrics each induce a cosmological constant in the
field equations of the other, and are both of Schwarzschild —plus-de Sitter type.

I. INTRODUCTION

The f-g theory was originally introduced"' as a
gravitational analog of the vector-dominance hy-
pothesis for electromagnetism. It was postulated
that while leptons would couple directly with grav-
itation, hadrons would only do so by virtue of a
mixing between the gravitational field and a mas-
sive spin-2 meson which would couple universally
to all hadronic matter. In the simplest version
of the theory only one such meson is considered
and is denoted by f. The mixing term is chosen
in such a way that in the weak-field limit it is also
responsible for the f-meson mass, having the
Fierz-Pauli form required for the mass term of
a quantized, ghost-free spin-2 field.

Recently the significance in a quantum context
of classical solutions of field theories has been
established, following investigations into the prop-
erties of solitons, pseudoparticles, and related
objects. An important class in a (3+ 1)-dimension-
al theory is that composed of static, spherically
symmetric solutions, and their occurrence in f-g
theory is the subject of this paper. (Solutions with
other symmetries are discussed in Refs. 3-7.)
The possible relevance to strong-interaction phys-
ics is twofold. Firstly, "' the existence of horizons
in f spacetime might be associated with Hawking
radiation, "as for ordinary gravity, perhaps con-
nected in some way with the temperature concept
in hadron physics. " Secondly, it has been sug-
gested" that interpretation of the classical f-field
solutions as potentials may provide an interesting
mechanism for quark confinement.

The coupled f-g equations are highly nonlinear
and it is a nontrivial task to obtain genuine solu-
tions. Various attempts"' were made in the past
to find such spherically symmetric solutions but
concrete progress was only made recently by Sal-
am and Strathdee, "who found an explicit solution
in the approximation that the g metric is that of
Minkowski space.

Although this might seem a physically reasonable
approximation, many important questions cannot
be satisfactorily resolved within this framework.

For example, the role played by coordinate sing-
ularities is difficult to discuss in a situation where
the g metric is not completely known.

The plan of this paper is as follows. In Sec. II
we find a class of exact spherically symmetric
solutions of the coupled f and g field equations.
Part of this derivation, the computation of the
Ricci curvature components, is relegated to the
Appendix. In Sec. III we discuss the nature of
these solutions, noting that there is a subset for
which the g metric is simply that of Minkowski
space, and for which the Salam-Strathdee solu-
tion becomes exact.

We will use the Landau-Lifshitz (1971) "timelike
convention" in which the signature of the metric is
-2 and the curvature components are defined in
terms of the affine connection by

~Qv + Pea (1.2)

In this convention the usual Einstein equations are

II. EXACT SOLUTIONS

The Lagrangian to be considered is

a d'x, (2.1)

where

(2.2)

that is, Einstein Lagrangians for the g and f fields

where z '=8wG (setting c=a= 1). The metric of
Minkowski space will be written in spherical polar
coordinates as

q, „=diag(1, -1, r', r' i s-sn). -
Quantities pertinent to the f and g metrics will be
labeled with superscripts f and g, respectively.

Detl/f„„ll ~f and Detllg„„ll ~g as usual.
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and a generally covariant mixing term chosen to
give a mass to the quantized physical f-meson
field. ~f is the strong analog of the gravitational
coupling constant ~ .

We take a one-parameter family of mixing terms
whose basic structure was first suggested in Ref. 1

(M is the f-meson mass):

The value of the parameter u is left unspecified
for the sake of generality. It will be seen that it
plays an important role in determining the "cos-
mological" (i.e., large-r) behavior of the solu-
tions.

Upon varying f»", the action principle 6L =0
gives the f-field equations

-M (-g)"(-f)"(f"-g")(f"-g "}4K'f

x (g»»gsv g»-s g»~) ~ (2 3)

&»v=&»V 2f»Vtt Kf T»»7
f f & f & f

where

(2.5)

where u and v are arbitrary real numbers such
that

A+V= P y

1 (2.4)

the latter condition ensuring that Zf, is a tensor
density of the correct weight. This mixing term
has the correct Fierz-Pauli form in the limit
g""=q

" and f""='g»"+ KiE»" where E""is inter-
preted as the physical f-meson field and terms of
order higher than bilinear in F""are neglected.

Salam and Strathdee have considered" the case
in which u = —, and v = 0, with the approximation
g„„=g„„. We make no such approximation but ex-
tend their methods to solve the coupled equations
for the f and g fields.

tjlf ~f»»zlzz

Variation of g ""yields the Einstein equations
1

Gt, v=Rt, v &gt vR = V~ Tt vy

where

(2.8)

(2.9}

x (g»»gs~ g»sg»~)

-2(f -g )(g»»gs»-g»sg»»)] ~

(2.6)

A useful way of re-expressing (2.5) is

(2.7)

M V

&„„=4 s g [2(f -g )(g gs -g' sg
Kf g

+ (f -g )(f -g' )("g» g»»gsv —sg»»g »sg ax+'2g'»g gs g'»gs g (2.10)

Qnly the spherically symmetric case will be in-
vestigated. Then, without loss of generality, the
metrics may be written in the form

f dx"dh"= C dt' —2D dtdr-A dr'

Q(des y s jns 8 dPs} (2.11)

g»„dx"dx" =J dt' —Kdr' —r'(d8'+ sin'8 dP'}

(2.12)

with inverses

A ~ 2D C

where A, B, C, D, J, and K are functions of r
only. The theory is invariant under simultaneous
coordinate transformations for both metrics, and
we have used these to optimally simplify the form
of g„„.

The components of the Ricci curvature are now

computed. The details and intermediate results
of the calculation of the components of Rf„„are
given as an appendix. The nonvanishing compon-
ents are

C B'C' C'4'
Rf =—C"+

24 B 2h

——(ass+ sin se 8»'),

b, -=AC+ D') 0,

(2.13)

(2.14)

(2.15)

(2.16)
-B B A BC BD C

+ ——C"+B 2B~ 2h B BA 26

R~~ = san R~~ = — — B +~H f —1 — C „B'C' B'6'
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Then the components of R'„„are simply obtained
by making the replacements

C-J, A-K, D-O, n- JK, B r-'. (2.17)

So the nonvanishing components of R~~„are

C «Tf =-D 'Tf„tt tr

= -A-«Tf„„

Mm ~&9JK " 3v 2JK
(2.25)

JIJ Jr J12 JJK

4JK 4K

J" K' J'K' J'
2J rK 4JK 4J2 ' (2.18)

Tee= sin 8 T~~

M' r' 9JK "' 4vJK
3

2
(JA+KC)4K' 4~

L
3~

(2.26}

1 3rJ' rK'»» E 2JK 2K2

Expressions (2.16) display the simple algebraic
identity

2~= sin '8 T~~~

M2 44 "3u JK
4 2 9JK 4Kf

(2.27)

DRtt + CRty 0 ~

Hence, from the f-field equations (2.7),

DTftt+ CTft„=0,

(2.19)

(2.20)

M2r2 4b, ' uJK 3 3u 9
4x ~ 9JK n + 2n (JA+KC) —

4
—

4f

(2.28)

(
—3)D= 0. (2.21)

which becomes upon substituting the explicit form
of the metrics, (2.11)-(2.15),

(2.29)

Using the field equations, the simple relations
AT„+CT„„=Oand KT„+JT' =0 become

ARftt+CRf =0

KR~tt+ JR~ =0. (2.30)
It transpires that precisely the same result is
obtained from the identity

Tt„=o, (2.22)

which is a consequence of R~t„=O and the Einstein
equations (2.9}. Thus we can consistently set
either

B=-'r'3 (2.23)

or

D=O. (2.24)

The resulting solutions will be labeled type I and

type II, respectively, following Salam. '"
Unfortunately no explicit type-II solution has yet

been found, even in the approximation g„„=q„„.
The large-r asymptotic structure has been investi-
gated in detail by Aragone and Chela Flores, "'"
using this approximation, and has a Yukawa-type
behavior for asymptotically flat solutions.

In this paper we will only consider the type-I
solutions. It is already clear from (2.23) that there
will be no weak-field region, since f'"-g""=0
requires B=r', not -',r'.

At this point it is convenient to display the non-
vanishing components of Tf „and T„„, using the
explicit form of the metrics, (2.11)-(2.15), and
setting B= —,'r':

Now (2.16), (2.18), and (2.23) are used to substi-
tute for R«, etc., and following a fair amount of
algebra it is found that

n' = (JK)' = 0, (2.31)

JA+ J «C = 26+ 33 (2.32)

C=-,'~ 1 r 9

where X is a constant given by

M' 9 "3v 2—+—(1 —v)4 4z 2

(2.33)

(2.34)

and p.f is an integration constant.
The constant X seems very much like a cosmo-

logical constant and in fact, substituting (2.32)
back into Tf„, one finds

2 fKt Tuu = Vuu ~

whence

(2.35)

i.e., 4 and JK are constants of integration. It is
convenient to choose JK=1 by a suitable rescaling
of the time parameter t, this being the last re-
maining degree of freedom in our choice of co-
ordinates.

Using these results, the general solution of the
remaining f-field equations is found:
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CI,'„y,„=0. (2.36)

M2z2 46 "3u 2
A=

4K' 9 2 b
———(1+u)

So we see that the f-field configuration induces a
cosmological constant in the g-field equations and
vlcc vex'8R.

The g -fleM equRtloQs

in the chosen coordinate system have the standard
general spherically symmetric solution

(2.40)

where p is another integration constant. Sum-
marlzlngy

A very similar result is found for T~„. Substi-
tuting JK=1 and (2.32) into (2.27) and (2.26) yields

(2.37)

al form. Since the general eovariance of the theory
refers to s&nultaneous coordinate transformations
of both metrics the functional form of the f metric
is already determined by that of g„„. It is per-
hRps Qot sux'prlslQg tllRt f~p RppeRrs 1Q R fox'm

which, mere it the only metric in the theox'y, would
be I'egRrded Rs being assoclRted %1'th R 1Rth61 uQ-

conventional choice of coordinates. In our case
this "locking together" of the two metrics in the
chosen coordinate system is manifested in Eos.
(2.23) and (2.32) and in the relation between the
two cosmological constants.

Both metrics describe a Schwarzschild (or anti-
Schwarzschild) plus de Sitter (or anti-de Sitter)
spacetime. For a given value of u the cosmologi-
cal constants are not independent, but are related
to each other through their dependence on the
constant of integration 4. On the other hand, the
Sehwarzschild masses p& and p, are completely
1QdepeQdent, . This suggests thRt lt is the cosHlo-
logical structuxe that is the most important as-
pect of the solution, particularly if interpreting
it as being "solitonic. "

An interesting special ease results fxom the
choice

4 1
iI~=0, &=

3
1+—which implies A=O. (3.1)

(2.41)

-2DdtA -A dx

——',I'(d 6'+ sin'8 dp'), (2.42)

(2.43)

Ay 2

x 12pf 2ir'
1 2lg Ar

and A, X are given by, respectively, Eqs. (2.38)
and (2.34). This is the general type-1 solution.

III. DISCUSSION

The f- and g-field equations are in a sense de-
coupled, each set becoming the Kinstej. n equations
with (related) cosmological terms The coordin. ate
system was chosen to simplify the structure of the
g metric by expressing it in a conventional diagon-

Then g@p='g@p Rnd so g spaeetlIQe 18 simply M1Q-

kowski spacetime. (This shows that the Salam-
Strathdee solution happens to be exact for & =4.)
Tile f coslllologlcRl coils'tR11't 18 fixed by (3.1),
taking the value

3M' -
27u

~ ~-o= 16(u+ 1) 16(u+ 1)

It is interesting that the object described by this
special ca.se has no mass in the gx'avitational
sensey since T~p vaxllshes everywhere. This feR-
ture is shared by the Yang-Mills pseudopartieles
of Belavin et a/. ,"whose gravitational energy-rno-
mentum tensor also vanishes. Similarly the "ghost
neutrino" solutions of Davles a d Ray" pxopagate
%'lthout gx'RvltRtloQal mass 1Q R plRne-synlIQetx'lc
spacetime. Massless fermions in a spatially flat
Robertson-Walker universe also possess nontrivial
zero-energy solutions.

It is noteworthy that the function D, defined by
Eq. (2.43), will in general become imaginary for
some range(s) of values of r. This indicates the
presence of coordinate singularities removable by
a suitable coordinate transformation. In the flat
g spacetime ease such coordinate transfox'mations
will produce a g metric representing Minkowski
spRce but 1Q R peculiar cool dlnRte systeIQ which
we prefer to avoid. One particularly simple way
of eIlsllrlIlg that D 18 I'eR1 everywhere (l.e., lll Rll
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of the coordinate chart being used) is to choose
6=4, whence, from (2.43),

D =+n'~'(I -X) .
Gf course we can only have 4 =&9 and flat g space-
time if we postulate u=- —', [cf. Eg. (3.1)]. Then,
from (3.2),

1 /2
ar' =WC dt - dr, aF = — dr,

f„„dx"ch" = (J)' —((o')' —((o')' —((v s)',

(A1)

{A2)

8M 2
x~

~ g~~g= 3/2 243 (3.4) L.e.y

f„-„-= q„-„=diag(1, -1, -1, -1). (A3)
Such a fixing of the parameter X may be of rele-
vance to the physical interpretation of solutions
of the Klein-Gordon equation in f spacetime. ' It
should be emphasized, however, that 6=& is not
the only way of making D real everywhere. Other
more complicated possibilities exist, involving
restrictions on the ranges of values of the para-
meters p, &, p. , and 4.

Vfe conclude with a few remarks on one of the
more unexpected features of our solution, namely
the result that g„„is in general not asymptotically
flat. Since e /a~ is very small one is tempted to
assume that the difference between g spacetime
and Minkowski spacetime can be treated as a small
perturbation. But it can now be seen that while
being locally acceptable (setting y,,=0) such an
approximation will tend to mask the important
global structure described by g„„.

Consideration of the related global structures
for the two metrics leads naturally to the following
question. How can the manifoM on which f„„and
g„„are defined by analytically extended'P One
seeks an analog of the mell-known extensions
found for the standard solutions in general relativ-
ity. This and other questions xemain to be an-
swered, and novel problems are likely to arise
when dealing with two metrics defined on the same
manif old.

A

The connection 1-forms (d"
~ are deduced from the

structure equations

(d CO y

the latter resulting from df„-„=A~~= 0. The non-
vanishing connection 1-forms are

Cr
~ (df ~ e (df

2v'C n

l/2
-(d = QP

e ('d 8
2a

g=gp
gr C I /2

" 28 a M

a cot)(d~» —(d~y— ~4

The curvature 2-forms are computed from t e
defining formula

A

= de "+ (d "A.(dV V df V

In this way, one obtains
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APPENDIX: CURVATURE COMPUTATION

The Ricci curvature components may be con-
veniently computed using the method of curvature
2-forms, "requiring the choice of a local ortho-
normal fx arne of 1-forms. This technique is an
efficient one and is, in addition, a natural choice
if considering the introduction of half-integral
spin.

A suitable orthonormal frame &o" (where P labels
the member of the tetrad of 1-forms) is

8"C B"C B'C' B'a'C

I3r rc gr2C I3rC r @r~r C
r 2~g 4g2~

y(R "=-R "= —— (d A.M4gRg

(AS)
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The nonvanishing Riemann tensor components can
then be read off from the relation

5Pf, B"„-—--~~ A&a (summation over a &P only).

C'~' C"
R

" B'C'
rtr 4g8 2g 8tH pe 4Bg

B"C B"C B'O' B'~'C"'»=~""~=-2a~+4a ~
—~~+ 4a~~

They are as follows, omitting those which are
obtainable from the given components using the
symmetry properties of the Riemann
tensor:

Contracting, using (1.2), to form the Ricci tensor
and converting back to the coordinate frame pro-
duces the results given in (2.16).
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