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%e determine here the off-diagonal metric components (the Lense-Thirring terms) resulting from the
rotation of an oblate ellipsoid of revolution stratified into similar concentric elliptic layers of equal density.
To find the unique function H involved in these off-diagonal components, we use a set of characteristic
properties which may be compared with the mell-known characteristic properties of the Newtonian potentials.
%'e get H in terms of usual functions when the spinning ellipsoid is homogeneous. Applying this result to the
Galaxy, we show that the dragging of inertial frames induced by the galactic rotation is too small to be
presently detected. On the other hand, we perform the multipole expansion of H outside the stratified
ellipsoid. Assuming then the terrestrial spheroid to be layered into similar ellipsoids following Roche's density
law, we calculate the preponderant relativistic multipole term arising in the development of the function H of
the earth. The value of this term agrees with what we have previously obtained from Sullen's model A.

I. INTRODUCTION

In an earlier paper, ' denoted I in the following,
we have determined the mu1. tipole structure of the
off-diagonal metric components g« —the so-ca1.led
I ense-Thirring' terms —arising from the rota-
tion of an axisymmetric massive body. Our aim
was to discuss the influence of the Earth's non-
sphericity on the precession of the spin of a
relativistic gyroscope, so we were mainly con-
cerned with spinning bodies made of nearly spheri-
ca1 layers of equal density. Nevertheless, strong-
ly nonspherieally-symmetric configurations are
relevant in astrophysics and geophysics. For
this reason we study here the field of oblate
spheroids' stratified into similar concentric
layers of uniform density. Thus we are led to
generalize the previous results of Clark~ on the
slightly flattened homogeneous ellipsoids of
revolution.

As has been shown in I the off-diagonal poten-
tials g« involve a unique function P, invariant
under the rotations about the axis of symmetry.
The method used here consists of rigorously de-
termining H from a set of characteristic prop-
erties formulated in Sec. II of the present work
for volume and surface distributions of matter.
These properties may be compared withoirichlet's
characteristic properties of the Newtonian po-
tentials. '

In Sec. III we use this method to find the func-
tion B of an infinitely thin homogeneous shell
bounded by two similar concentric ellipsoids
(i.e., an infinitely thin elliptic homoeoid). Then
in Sec. IV we get by simple integration the field
of a solid spheroid made of similar concentric
1.ayers of equal density. Moreover, we perform
the mul. tipole expansion of 0, and we derive an
explicit relation between the multipole relativistic

terms involved in this development and the
Newtonian 2"-pole moments.

The last section is devoted to specia1. cases in
which the matter is distributed inside the spheroid
(i) with a uniform density and (ii) following Roche's
density law. Assuming the latter distribution
within the terrestrial spheroid we estimate the
preponderant relativistic multipole term in the
function H of the Earth, and we compare its value
with that previously obtained in paper I from
Bullen's model A.

II. CHARACTERISTK PROPERTIES OF H

I.et us consider an isolated axisymmetric body
slowly spinning about its axis of symmetry with
a uniform angular velocity ~. The assumptions
and notations are the same as in Secs. II and III
of paper I. The gravitational field is assumed to
be weak, axisymmetrie, stationary, and related
to a harmonic quasi-Qalilean coordi;. ate system
x', z'=(x, y, z) (i=1,2, 3) compatible with the
symmetries of the space-time. So the compon-
ents of the metric may be written as

and since the potentials are time-independent the
corresponding linearized Einstein equations are

0, outside of the matter,
0 hq, = (1)

2z(T„„——,'Tq„„), inside of the matter,

where T„„is the energy-momentum tensor, T
=g 'T~ and x is the Einstein constant:

z =Bwa/c',

where Q is the Newtonian gravitational constant and
c is the speed of light. As in Iere neglect the pres-
sure and the & terms ln T~p.
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The angular velocity ur is directed along the z
axis. It will be helpful. to use the cylindrical.
coordinate system ($, rp, z) defined by

x=( cosy, y=( sin~y $ &0, 0 «y«2p.

In this coordinate system all the matter and field
variables (density, Newtonian potential, etc.)
depend only upon $ and z.

K
h =h -= ——U, h00 hi 4 y Ol

K(V K(d

2 Byy h02=
2

Hx,
7TQ 'll C

where U is the Newtonian potential and & is a func-
tion of $ and z given by

A. Rotating volume distributions

We consider a rotating axisymmetric solid body
of volume density p. Up to the approximation
order discussed above the nonvanishing indepen-
dent components of the energy-momentum tensor
are, according to the definition of K,

T~ = p, T» = p(&uy/c}, T22 = p(u—x /c) . (2)

We suppose the matter to be confined in a finite
'number of domains S,. bounded by closed Liapunov
surfaces' $,-. In each S, the density p is assumed
to admit a gradient satisfying a uniform Holder
condition. However, p or its first partial deriva-
tives may be discontinuous across the surfaces
$, Under these assumptions it is well known that
the field equations (1) admit one and only one sys-
tem of solutions such that the metric deviations
h„„(a)are continuously differentiable every-
where, (b) have piecewise continuously differenti-
able partial. derivatives of the second order, and

(c) are regular at infinity. It has been shown in I
that the nonvanishing fg„, take on the form

In order to determine the potentials hog of a
given rotating volume distribution it is sufficient
to find a solution of Eq. (5) possessing the follow-
ing properties:

(P,} H is continuously differentiable everywhere.
(P, ) H has piecewise continuously differentiable

partial derivatives of the second order.
(P, ) H vanishes at infinity as r ', and its first-

order derivatives as r '. More precisely, if
r =(x'+y'+z 2}'~2 becomes larger and larger then

lim (r'H) = ,I, —
7~ QQ

where I is the moment of inertia of the body about
its axis of symmetry. This last property is a
trivial consequence of (4) since R '-r ' when

and

Equation (5} and the properties (P,) constitute a
set of characteristic properties of &. In effect
if two distinct solutions of (5) satisfying all the
(P,) s existed, then two distinct solutions of field
equations would exist, which is excluded.

B. Rotating single layers

Let us now consider a spinning single layer dis-
tributed over a closed Liapunov surface S with a
surface density p satisfying a Holder condition. '
We get the energy-momentum tensor components
by replacing p with o5z in (2}, where 5z is the
Dirac distribution of support S. Then Eqs. (1)
must be read as distribution equations of which
the only solutions h& „continuous everywhere,
regular at infinity, and admitting continuous par-
tial derivatives of the second order everywhere
except on $, are the single-l. ayer potentials

gl2 stn2(~ ~f)
H(), z) = p(g', z'), dv. (4) K 0'

hoo=hg) =
4 dSy

m s&

D H=
0, outside of the matter,

-4zp, inside of the matter,
(5)

where D, is the differential operator defined by

&H 3 ~H ~'H
D2H=— 2 + ——+ 2 =V H+-

a$ ( 8$ az' ( 8(

In the above integral D is the union of the do-
mains &„dz is the volume element of the Euclid-
ean 3-space at the point ($', &p', z'), and R =

I r —f'~,
r and r' denoting respectively the position vectors
of ($, cp, z) and (t', y ', z ').

Let us now replace the potentials h„by their
expressions (3) and T„„by (2) in the field equa. —

tions. It is easy to see that & satisfies the equation

D, a=0 (LL)

everywhere except on $, on which the second-or-
der partial derivatives of & are not defined.

The potentials h„- and their first tangential

j Iz» K(d

2zc 3z R
I

where d$ is the surface element at the point
(x', y', z') on S.

A reasoning similar to that applied in I to the
volume distributions shows that the metric devia-
tions p„„are still given by Eqs. (3) where IJ is
now the Newtonian potential of the single layer
and H is a function given by (4) after replacing
pdT with ad $. It is easy to verify that
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derivatives are continuous across $. Therefore
& and its first tangential derivatives are also
continuous across S.

In order to study the normal derivative of &, let
the normal to 8be positively oriented outward@ and,
for any point P,(x„yo,s,) on 8, let (d f/dn )(Po.)
and (df/dn, )(P,) denote the limits —when they
exist —of the normal derivative of a function

f(P) as P approaches p, along the normal on the
negative side and on the positive side, respec-
tively. Following a classica. l result of potential
theory such limits exist for the normal derivative
of A!0~, and 018 discontinuity of ding

o~
/dn at Po ts

P

01 (P ) 01(P ) 01(P )d R g dtl+ d'8

o(Po}yo ~

Replacing h„with -(x&u/2vc) Hy, then dividing
by -(z&o/2vc) y and dropping P„we get the value
of the discontinuity of dH/dn across 9:

HI. INFINITELY THIN HOMOGENEOUS ELLIPTIC

HOMOEOID

Let us now consider an infinitely thin homo-
geneous shell bounded by two concentric similar
spheroids (E) and (E') represented by the equa-
tions

$2 g2(E), + —,=1,
(12)

$2 ~2(E'}, + —,= (1+e }',

where r is a very small dimensionless positive
quantity. %e always assume a&b&0. Following
a terminology introduced by Lord Kelvin and
Tait, such a configuration will be called a thin
elliptic homoeoid of revolution.

It will be helpful to introduce the oblate spher-
oidal coordinates (X, g, y) of a point P(x, y, z),
defined as follows: A. and p. are the greatest and
the smallest roots, respectively, of the equation
with respect to v'.

dH dH dH
-s dn +, —1=0.

u +v 5'+7 (13)

It is the same law as for the Newtonian potential
U of the single layer. Thus to determine the po-
tentials Q„of a given spinning single layer it is
sufficient to find a solution H of Eq. (8) possessing
the following properties:

(P,') H is continuous throughout space.
(P,') The tangential derivatives of H are con-

tinuous across 5 and the normal derivative satis-
fies Eq. (9).

(P,') The partial derivatives of second order of
H are continuous everywhere except on $.

(P,') H is regular at infinity and (7} holds.
Like any massive rotating body, the spinning

single layer induces a dragging of locally iner-
tial frames with respect to the rest frame at
infinity. The angula. r velocity of the rotation of
the inertial axes may be written as [see Eq. (13)
in I]

%e have -5' ~A. & ~ and -a' ~ p, ~ -b2. The A.

surfaces are confocal oblate spheroids and the

g surfaces are confocal hyperboloids of one sheet.
These two families of surfaces are orthogonal.
Evidently the third coordinate y is the longitude
angle.

A straightforward ca.lculation gives the expres-
sion for D,H:

D+ = (9+x-)'~' —(a '+ x)' (f!'+x)'&8 ~H
A, —p. BA. BA.

+ [-(&'+ v)]'
(n'+ V)'[-(&'+ V)]"

A. Integral representations of the potentials U and H

It follows from (9) and (10) that the 3-vector 0
has a discontinuity on passing through S in the
direction of the outward unit normal n,

[Q]s =ac% xn,

where v~ denotes the 3-velocity field of the matter
constituting the single layer.

Let p be the volume density of the homogeneous
homoeoid bounded by (E) and (E'). If terms of the
second order with respect to e are neglected the
homoeoid is equivalent to a single layer of total
ma, ss

distributed over (E) with the surface density
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(0 «A «~). (18)

MU= — {, }{, },», inside (E)

(-b' «Z «0). (17)

A similar reasoning leads to a solution of Eq.
(8) depending only upon X and possessing all the
properties (P,') (see Appendix A):

Afa dT
H =

2
—

(
e }e(be )~»e outside (E) q (18)

Ma' dTH= {, },{, },», inside (E).

Making the substitution v= {b'+7)' ' we can in-
tegrate the above expressions. %e get outside
the ellipsoid (E)

c'
U= {, ,},», arctan

Ma ' I a2-P ~f

2{a'—b') (a' b'}'" b'+X

(19)

(20)

(b'+ x)'»'
(21)a'+ A.

Now introducing the eccentricity of the ellipsoid (E)
(@e b2)l/2

o~g ~j

arctan —

2 = arcsin

we may write U and H inside the surface (E):

M arcsln8
0 8

M arcsine —e (1 —e')'»'H=-
2Q 8

] ~2
+ ~ X ~+e e e

3 2 5

1 x 3 ~ ~ ~ (2n —1) e'"
+ — +. ~ {23)2&« ~ - (2n) 2n+3

If one puts e =0„ the above formula, s give the ex-
pressions of 0' and JI inside an infinitely thin
homogeneous spherical layer of mass M.

The corresponding Newtonian potential of such a,

single layer is well knomn9:

I
outside (E)

Bg b'+A. dH 88' a'+A. dH2( „ 2z

Replacing H(X) in the above expressions by the
right membe»f (18) and substituting the obtained
values in (10}, we g« the components of the
angular velocity 0 outside the homoeoid,

2GMQ
c' (X —p)(s'+ X)(b'+ z)'»' '

a &0 (24)

2'& j. ae (b'+ X)'»'
fle 2 2 arct~(b2 )1»e ~ s

y & 0. (25)

H is consta. nt inside the homoeoid. It follows from
Eqs. (10) that the vector field fl is uniform and
parallel to ~ in this region:

2GM arcsin e —e(l —e')'»'-0 —
p 3 Q)

C 0 8

The lineax' charactex' of the present theox'y im-
plies the uniformity of the field Q in the fx'ee
space enclosed by a thick homogeneous spinning
shell bounded by tmo similar concentric ellipsoids
of revolution about the z axis. It is an interesting
genera1ization of the classical Thirring result"
on the dragging of inertial frames inside a thick
homogeneous spherical shell spinning about one
of its diameters.

C. Multipole expansions of H and 0
In paper I me have performed the multipole ex-

pRQslon of p ln R region of fl ee space fax' enough
from the rotating body for a volume distribution
of matter. A simila. x' reasoning applied to a sin-
gle 1Ryer leRds to the same expRQslon of 8 pro-
vided that pd7 is replaced by odS in the expres-
sions of the x'elativistic multipole coefficients
K„given by Eqs. (19) and (20) in l.

Let us again turn our attention to the homoeoid.
On the part of the z axis outside the homoeoid
and such that z & (a' —b')'»' the value of H may be
developed a,s a power series in the reciprocal of
g:

I ~ (-1}"(n+ l)e'" a '"
28 2K+3 z

where I is the moment of inertia. about the z axis,

8. D~~gging of locally inertial frames

The partial derivatives of H(A) with respect to
( and z are given by

Let (r, 8, y) be the spherical coordinates rela-
tive to the center of the homoeoid. The relation
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(44) established in Appendix A of I enables us to
derive immediately the expansion of H at the point
(s, 8, rp):

( I)n+r an a )an
H= 3 1-32s' g (2n+1)(2n+3) y &

spheroid of semiaxes au and bu, where u is a
parameter going from 0 to 1. We assume the
density p to be a continuous function of u on the
interval 0 &u +1. The mass of the elementary
homoeoid bounded by the surfaces (E„) and.
(E„~„)is thus

x P,'„„(cos8)

where P~„denotes the first derivative of the
Legendre polynomial P,„„.This development is
to be compared with the multipole expansion of
the Newtonian potential outside the homoeoid:

( I )n+lgn a ae
U= —1 —Q Pa„(cos8) .

2%+ 1

(28)

Now we derive the expansions of the components
of 0 from Eris. (21) and (22) in I:

301& ~2fg g 2fI

Qs = » sin8 cos8 — (-1)""
C K 2' + 3

x P a(n+r) (cos 8}

II,=, Scos'8-1-6 (-1)"" '
n=l

xPat„,» (cos8) . (30)

All these series are convergent if r & (a' —b')' '.
This condition is always satisfied in the region
A &0 when b&a/))2. Therefore, the expansions
(27), (28), (29), and (30) represent H, U, and II,
respectively, in the whole space outside of the
homoeoid and on the surface (E}itself provided
the oblateness rs = (a —b)/a is less than (&2 —I)/
W2=0.28288. . . .

EV. SOLID STRATIFIED SPHEROIDS

%e are now in a position to determine by simple
integration the function H of a spinning hetero-
geneous spheroid strati6ed into similar concentric
surfaces of uniform density. The solid ellipsoid
may be in effect decomposed into infinitely thin

homogeneous homoeoids: The function 0 of the
whole body will be obtained by summing the con-
tributions of each elementary homoeoid. A simi-
lar method has been used to find the Newtonian
potential of a solid ellipsoid. "

A. Integral expressions of H snd 5

I.et (E) be the external surface of the rotating
solid spheroid and (E„)be the similar oblate

dM„=4rra'bp(u}u 'du .
If the point P(x, y, z} is outside of the solid

spheroid we obtain the contribution of the ele-
mentary homoeoid to the value of H at P by re-
placing in (18)M, a, b with dM„, au, bu, respec-
tively, and Xwith the greatest root X„ofthe equa-
tion

Qg+7 Qu +7

%e ha,ve thus

1

r( ) rf p(~) &=, (33)

and integrating (32) by parts, the expression for
H at an exterior point becomes (see the computa-
tional details in Appendix 8)

cps
He x b Ku) (aa + s)a(ba + )I/8 (34)

where X is the greatest root of Eq. (13) and u
must be replaced by

(35)

To find H at an interior point let us denote by
uo the parameter of the spheroid of the family of
similar spheroids (E„)passing through this point.
%e get the contribution of the matter inside of
(E„)by integrating (31) on the interval 0 «u «u,
since P is an exterior point for the spheroids
u ~uo. To obtain the whole contribution of the
layers characterized by u &u, we have merely to
replace the lower limit by 0 in (31) and to inte-
grate over uo&u ~1. Making again the substitu-
tion ~ = u'g, we get

dTdH„=2rra bp(u)u, » „, a
—a, r&a du.

(Q Q +Tj (0 u +T)

(31}

Making the substitution T=u s, putting r„=l).„/
u' and integrating with respect to u over the
interval 0 ~u ~1, we obtain the whole H at
(x, y, z):

1 ds
H, =2rra'b p(u)u (, )a(@ )r~a du.

(32)

Putting
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Qo Oo ds
H&

= 27/a b p(u)u
( 2 )2(b2 )2/2 du

ds
H( —wa b $(u)

(
2 )2(b2 )2/2 & (37)

where u is again given by (35).
A similar reasoning leads to the expressions

of the Newtonian potential outside and inside of
the spheroid:

ds
( 2 )(b2 )1/2

ds
0(u)

( 2 )(b2+s)2/2 ~

In order to determine the components of 0 let
us now carry out the calculation of' the deriva-
tives of H. At an exterior point a formal applica-
tion of the Leibniz rule gives

8H, , " 8y(u)
st (a'+s)'(b'+ s)'/'

8X gu(X))
8] (a'+ l )'{b'+X)'" (38)

We have u(X) = 1 because the point I'(x, y, s) lies
on the coordinate X surface. But g(1) =0. So the
second term of the right member vanishes. On
the other hand, the first term is a uniformly con-
vergent integral in the region A. «0. Indeed, we
have

84(u)
8$ a2+s

But s «A, «0 and the definition of A. implies that
$/(a'+s)' ' «l. 80, (/(a'+s) «1/a. Then I8$(u)/
8$

~
is uniformly bounded since p(u) is bounded.

Therefore, the integral in the right member of
(38) is uniformly convergent as the integral giving
H, . As a consequence the application of the
I eibniz rule is justified. A similar reasoning
holds for 8H, /8s, and we have finally

8H, , "
p(u)

( ~,)2(b2„)./2 ds

] OO ls
+ p(u)u

( 2+ )2(b2 )2/2 du ~

8() 0

(36)

Integrating by parts (see Appendix B) we find H
at an mterlor poHlt

l&. & 0. (40)

To find the components of Q at an interior point
we have only to replace II, with H, and A. with 0 in
the above expressions.

8. Mnltipole expansions of H 2nd 5
To find the multipole expansion of d JJ„at a point

far enough from the origin, let us replace in (27)
a with ag and I with the moment of inertia about
the s axis of the homoeoid bounded by (E„) and

(E„.,„):

dl„=
3

a bp(n)u du.

Considered as a function of u, de„ is then re-
presented by a power series in u, convergent in
the interval 0 «u «1 provided r & {a2 —b')'/'. Now,
integrating over the interval 0 ~ g ~1 and per-
muting the summation symbols, we get the fol-
lowing uniformly convergent expansion for B in
the region of the free space such that 2. &(a'

b2)2/2.

g 2'H=, I- g ff,„—I*,'„„(cose), (41)
n= j.

where I is the moment of inertia of the solid
ellipsoid about the z axis

1
I= —a'b p(u)u 'du,

3 0

and the K's are given by

(2n+1)(2n+3) J,'p(u)u'du

(42)

(43)
A similar reasoning leads to the expansion of

the Newtonian potential

U =—I — J,„—P,„cos0
f1= 1

where M is the total mass and the J's are given
by

2n / 2(ff+l)d
M

( I)„8 J p{u)u du
(44)2n+ 1 J,'p(u)u'd u

Comparing (43) and (44) we find an algebraic

Then inserting these expressions in (10), we get
the components of Q:

p(u)0 i 2 K(Oa b$ s
( 2 )2(b2 )2/2 ds

X&0 (39)

p(u)0,—
2 H, —sa b( (, p(2 ),/, ds
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relation between the relativistic coefficients
K,„and the Newtonian multipole moments J',„:

Ma'
2n 2g+ y I 2 2{n+1) ' (45)

r p(u)u'"'~d u c — p(u)u ~d u2n+p+ j 0

It is easy to obtain a bound of the J's and of the
E's when the density is a monotonically de-
creasing function of u. Under this assumption an

integration by parts shows in effect that

for any m~0 and /~0. Putting then P=2 and

P =4 successively, we deduce immediately from
these inequalities

2'

(2n + 1)(2n+ 3)

15e'"
(2n+1)(2n+3)(2n+5) '

(46)

The equalities hold when p does not depend upon
Q.

Following the formula (23) of paper I, the vec-
tor field 0 may be expanded as

2n

g =, , 3cosgu —k — 2m+1 K,„—P,'~„„~ cos0u —P,'„„cos6)k

where u and k denote the unit vectors in the r and in the z directions, respectively.

V. PARTICULAR CASES

%e shall now turn our attention to some special density distributions within the rotating spheroid.

%hen the density p is uniform, we have

$2 z2
0 ( (s)) = p (&- a +8 b +s

A. Homogeneous spheroid

Then, making the substitution w= [(a'- b) (/' e+e)]'~' we can integrate the expressions for H and A.
Thus @re find

(a) outside the spheroid:

mpn b 3 P2 —4z' . a2- b~
8 (e2 bm)3/2 4 g3 b2 g2+ )

bmP/g 1
3 P 4z 1 $ 4z (b + X)
4 a' —b' 2 a'+X b'+X

l
a'+ X

a2 b2 aa b3 & ~2 a2 b2 & I2"

2 c'(a'- b')'" ~ 3 a'+x b'+x " 4+x

are sine —e(1 —ea)' ' — — 1+ (1 —e )' '~ ~ ~ g2 3 ax'c sin8 28
48 8 3 I a

3 ax'c sln8

i5 GIco 3 P —2z' . a' —b'
2 c'(a' —b')'" 2 a' —b' a' + X

b2 Q+ y b2+y +2+ y

where I is the moment of inertia about the s axis: I= (Bw/15)pa'b;
(h) inside the spheroid:

mpab
i 3

(48)

GM e' (1 —e')'"
Q =9 c'a8' 3 8

(d ax'c sm8
ab

GM are sine
( +),&, 3 P —2e' (,)», P 2e'

0a8 8 a 8 a

(50)
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where M is the mass, related to I by the equation
I= 5 Ma .

Suppose now the spheroid to be very flattened
(b«a). At a point on the equatorial plane within
the spheroid, 0, vanishes and 0, becomes

GM m b 3w 4b0, —3 ar ——2 —— ————,(51)c'a 2 a 4 a a

if we neglect the terms of the second order with
respect to b/a

This formula enables us to estimate the dragging
of inertial frames induced by the rotation of the
Galaxy. With a=1.5x10 pc, b=2.5x10' pc, M
= 12 x 10~~ g, ands&=3 x 10 'rad/year, we findat the
place of the Sun in the Galaxy ($ =-, a)"

0=0.3x 10 ' sec of arc/year.

Such a precession is at least 10' times smaller
than what can be actually measured. So the effect
of the rotation of the Galaxy is negligible inthe rel-
ativistic gyroscope experiment presently conducted
by Everitt, Fairbank, and their co-workers. "

B. Roche's density law

Consider a density distribution within the spher-
oid given by Roche's law

p(u) = p, (1—ku2),

where p, is the density at the center and k a con-
stant such that 0 & k&1. The formulas (43) and (44)
give immediately the multipole coefficients

J = -1"" 1 k 1-—k
(2n+ 1)(2n+ 3) 2n+ 5

(52}

VI. CONCLUSION

We have found a set of characteristic properties
of the function H involved in the off-diagonal met-
ric components due to the rotation of an isolated
axisymmetric body. These properties have en-
abled us to determine under a simple integral form
the field and the dragging of inertial frames in-
duced by a spinning solid spheroid stratified into
similar concentric surfaces of uniform density.

The integrals can be expressed in terms of usual
functions when the spheroid is homogeneous. Ap-
plied to the Galaxy, our formulas show that the ro-
tation of the Milky Way gives a contribution to the
spin precession of a gyroscope about 10' times
smaller than the expected experimental error.

We have determined the relativistic multipole
coefficients K„ involved in the expansion of H in
series of spherical functions. These coefficients
are related to the Newtonian multipole terms J„by
a quite simple algebraic equation. This corres-
pondence between the K's and the J's is one of the
most interesting features of the models stratified
into similar ellipsoids.

Such an internal layering may be assumed for the
earth. Using Roche's density law, we have found
a numerical estimate of the preponderant term K,
which agrees with the value that we have previously
obtained from the classical Bullen's model A.
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APPENDIX A: FUNCTION H OF AN INFINITELY THIN

HOMOGENEOUS ELLIPTIC HOMOEOID

15e'"
(2n+ 1)(2n+ 3)(2n+ 5)

x 1 — k 1 ——,'k (53)

Let us see if there is a solution H of Eq. (8}de-
pending only upon ~ and possessing all the prop-
erti s (P,'). If this is the case, the expression (14)
shows that H(X) must satisfy the equation

Let us apply these results to the Earth. If we
take 5.517 g cm ' as the mean density of the Earth
and 2.84 gem ' as the mean density of the crust,
we have k =0.702. With a flattening n = (a —b)/a
1/298.25, we find

J, =1.153 x 10-', K, =0.871 x 10-'.

The other J's and K's are not significant as far
as the precession of the spin of a gyroscope is con-
cerned [see I]. The value found for J2 differs only
by 6.53 per cent from the real value of this quan-
tity [J,= (1082.64 + 0.01) x 10 ']'~ and the above es-
timate of the relativistic coefficient K, agrees with
the result obtained in I from Bullen's realistic mo-
del of the Earth.

(a'+ y)'(b'+ X)' ~' —= 0 .

The general solution of this equation is

H(X) =AH(X) +B,

dg
( } (a2 r)2(b2+ r)1/2

where A and B are arbitrary constants.
The values of A and B in the exterior region X ~ 0

are determined by (P,'). Since the coordinates X

and p are the roots of Eq. (13) we have

X+ p = P+z' —(a'+b')

As p. is bounded, X becomes infinite as r'= $'



ROTATING STRATIFIED ELLIPSOIDS OF REVOLUTION AND. . . 1045

+z . Now, integrating the inequalities

(a'+T) ' '& (a'+T) '(b'+ r) ' ' &(b' +1 ) '~'

over [~, ), we find

—,'(a'+X} 'I'&K(X) & —', (b'+X.) '~',

The first term of the right member vanishes. In
effect, $(l) =0 and the factor of $(0) is null since
Y„becomes infinite as u approaches 0.

It is easy to transform the remaining integral.
By definition, v'„ is the greatest root of the equa, -
tion

so that

lim [r'K(X)] = lim [X'~'K(X)] = —', .
$3

a'+ s b'+ s u

But (P,') requires that

lim (y H) = lim [4'~2H(X)] = ~ I,

with I=—,
' Ma'. Therefore, we must put A =-,'I

= —,
' Ma' and 8 =0 in the exterior region. So (18) is

proved.
Now let us denote by A and 8 the values of con-

stants in the interior region (-b'& X&0). The dis-
continuity of the normal derivative of H across (E)
is given by

For a given ( and z thxs root ~s a monotonic func-
tion of u: v'„decreases from ~to ~ as u increases
from 0 to 1, hence v„may be used as a new vari-
able of integration in place of u. The expression
of H, becomes

dv'
H+ 1Ta b g( ) (y p(bm y

where u is now a function of v'„given by

But

dH dH 8X

de
i (g) «d «(g ) FE

=2ab/v-iJ.
ex
8& ~.0

a'+ v„b'+7'„

This expression for H is exactly the same as the
formula (34}.

Consider now the point (x,y, z} inside the ellip-
soid. The integration by parts of (36) gives im-
mediately

=(~Ma -4 )—dH, dZ
dA, (@) dA,

Therefore

dH M 2A

du (s) a~/, a ~p
Let us replace o by its value (15) in equation (9)

and compare with the above expression. Vfe find
A =0. Hence H(X) =B in the interior region. The
value of the constant 8 is determined by the value
of H on the boundary since H is continuous across
(E). The formula (19) is thus justified.

dS "o
H( ——va b y(u) (@ }2( 2 )g/2

P(u) dr„„
(a'+ r„)'(b'+ r„)'I' du

00 ds
+ gu) (a'+ s)'(b'+ s}'"

But r~ =0 smce (x, y, z) lies on the ellipsoid (E„}.
Therefore

00 dS
(a'+ s)'(b'+ s)' "

APPENDIX 8: FUNCTION 0OF A SOLID STRATIFIED
ELLIPSOID

To integrate (32) by parts let us replace
2p(u)u by dg/du, whe-re g(u} is defined by (33).
We get

00 ds 1

H, =- va'b P(u)

1 dTg
(a'+r )'(b'+r )'" du

O0 ds
(a +s)2(b2+8)'1~

1
ds-" ', (~+s) (b +s) ~

==0.

The remaining integral in the expression of H,
may be transformed by a similar reasoning to that
applied in the exterior case. This leads immed-
iately to (3'f}.
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