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Absorption and emission spectra of a Schwarzschild black hole

Norma Sanchez
Departement d'Astrophysique Fondamentale, Observatoire de Paris 92190, Meudon, France

{Received 8 March 1977)

The absorption spectrum of a Schwarzschild black hole is studied in detail. Accurate and useful

computational methods based on the analytical resolution of the wave equation are developed. In this way

phase shifts and absorption cross sections are obtained for a wide range of energy and angular momentum.

Comparison with the explicit results valid for low and high frequencies is made. The total absorption cross
section of the Mack hole is obtained as a function of the energy. It presents behavior characteristic of a
dig'raction pattern. The constant geometric-optics limit [{27/4)mr, ] is approached in an oscillatory fashion.
The physical interpretation of these results is given and a simple model which describes qualitatively the
absorption of waves by the black hole is presented. From these absorption parameters, the Hawking
emission rates are calculated and their properties discussed.

I. INTRODUCTION

47ikr s
6', (k)=,„„„,for I «kr, »1 (2)

1
1+exp[[(2I + 1)v][1 —27k'r, '/(2l + 1)']3

for 7 »1,
kr, » I (2).

In the context of classical field theory, black
oles absorb waves but they cannot emit theDl.

However, if quantum effects are considered the
energy emitted in each mode of frequency 0 and
angular momentum / is given by Hawking's formu-
la'

dH(k)= ~ '"' ""'kdk
~47I krs

(where r, = 2M, with M the mass of the hole).
Qualitative aspects and rough order-of-magnitude
estimates of Hawking emission have been discussed
by Carter' and many subsequent authors (see, e.g. ,
De%itt' and references contained therein).

We see that the absorption coefficient (P, (k) is an
essential parameter in this emission probability.
The first attempt to calculate analytical absorp-
tion coefficients was made by Starobinsky4 in the
low-energy limit. Numerical calculations have
recently been carried out by Page, ' who calcul3ted
total emission rates for the known massless parti-
cles. However, the absorption spectrum has not
been analyzed in detail up to now.

The present work is a step in the development
of more exact and simpler computational methods
based on the analytical resolution of the v ave equa-
tion. Analytical expressions for the absorption
(and scattering) parameters for high energy have
been reported previously by the present author, '
namely

From these results, it follows that the emission
rates H, (k) can be expressed very simply by

dHg(k) =,„,„—
2

kdk for I«kr, »1 (4)
1 2l+ 1

and by

dH, (k)

(2l+1)kdk
(e'~"s —1}[1+exp[(2l+ 1)w(I- 27k'r, '/(2l+ 1}')]}

for
kr, »1. (5)

In an earli. er paper, ' the formal scattering theory
was extended to the black-hole ease, allowing a
better insight into the theoretical features of the
absorption problem. In the present paper we go on
to calculate the absorption parameters for a mass-
less scalar field in Sehwarzschild geometry,
from the exact analytic solutions of the radial
equa'tion.

Analytical expressions for the radial solutions
defined by power convergent series expansions
about r = r, and asymptotic power series about
r = ~ have been given by Persides. ' However, the
domains of convex gence cover disjoint regions of
the r plane. %e have analytically continued the
power-series expansions away from their conver-
gence circles in ordex to calculate them in a com-
mon domain (see the Appendix).

The scattering parameters for an incident plane
wave have been expressed in terms of the radial
solutions via the Jost functions for our problem
(Sec. II). In this way, phase shifts and partial ab-
sorption amplitudes are obtained for a wide range
of energy and angular momentum. This calcula-
tion allows us to obtain in detail the total absorp-
tion spectrum of the black hole.

In Sec. III, the properties of the imaginary parts
of the phase shifts (Fig. 1}and the partial absorp-
tion cross sections (Fig. 2) are discussed. The
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results found are compared with the analytical
results valid for small' and high' energie

A
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ll partial absorption amplitudes present ab-
solute maxima around the frequency 0 = —,'(v 3/r )
x &I+-",~~, which corresponds to the critical impact

S

parameter given by geometrical optics. '
The zero-frequency behavior is analyzed and

related to the presence of an /-order pole in the
Jost functions at k= O. Summing up the contribu-
tions of all significant partial waves for each value
of the energy, the total absorption cross section
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(o„)is obtained (Fig. 3). The absolute maximum of
each partial absorption cross section produces a
relative maximum in the total spectrum which pre-
sents an oscillatory behavior characteristic of a
diffraction pattern. As the frequency increases,
o„approaches its constant geometric-optics value
(+7 wr, ') in an oscillatory way. The period of the
oscillations is approximately constant and ual
to 0.38o . , whereas the amplitude decreases with

n an equa

the energy as W2/x, .
In a previous paper, ' we have shown that absorp-

tion may be interpreted as taking place only at
the singularity (r= 0) of the Schwarzschild space.
Combining these results with the Fresnel-Kirchoff
diffraction theory, we show in See. III that the os-
cillatory behavior can be approximated by a simple
model in which interference takes place between
rays arriving at the origin by different optical
paths.

In Sec. III, we also discuss the comparison of
the results with the corresponding formulas for
absorption by Rn ordinary material sphexe with R

complex x'efl action index, whose total absorption
cross section is a monotonically increasing func-
tion of frequency (Fig. 4). Comparison with the
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ABSORPTION AND EMISSION SPECTRA OF A. . .
Analytical expressions for the radial solution
R, (x, x,) defined by power-series expansions about
x = x, and x = ~ have been given by Persides. ' In
the neighborhood of x=x„the solution that de-
scribes purely ingoing waves on the horizon' is

ft((xx )=e *s " "s Qds (x» )"
n=0

where d, „satisfies the recurrence relation

(s —2i», )n», d, „+[(n+ l)(n —I —1)+2x,' —(2s —1)ix,]d,„,+ 3x,d,„,+d,„,= 0.
The other linearly independent solution is given by the complex conjugate of E(I. (9).

In the neighborhood of r = ~, two linearly independent solutions are

elf(x~x~ 4)x-x ))&1+1~ & X-(f1+I)
n=O

where r„&,] satisfies the recurrence relation

+2inr„(,) —(I+N)(l n+-1)r(„,)(,)
—{n —I)'x,r(„,)(, ) =0.

(10)

The respective functions F,(,) (6', ( )) describe purely ingoing (outgoing) waves at infinity and are called the
Jost solutions.

In this scattering problem, the physical solution of the wave equation is defined by mixed boundary condi-
tions, one at x = x, and one at » = ~. One imposes that there are no outgoing waves at x= x, {Ref.10) and
one fixes the normalization of the ingoing waves, at x = ~, by

~l+ 1 (2l + 1) 1e'l 6( e )(x+ xs Is) x xsl ) ( I )($ (» )e((x+xs ID )x x J) + 0g~ oo

ft, „~g, (x,)(x —x,) '*s[1+0(x—x,)].

As is mell known, 8, is the partial scattering am-
plitude connected to the asymptotic behavior of the
solution for r —~. It can be shown' that the coef-
ficient g, =—d„connected to the asymptotic be-
havior near the horizon gives the partial absorp-
tion amplitude of waves by the black hole. It is
mathematically more convenient to discuss a solu-
tion that is defined by boundary conditions at a
single point. It is for this reason that one intro-
duces a new radial wave solution q„which differs
from the physical solution in its normalization. It
is purely ingoing for x -x, and it is normalized in
such a way that

(» x ) s[lyO(»» )].

In order to express the scattering arid absorption
parameters in terms of the radial solutions it is
useful to consider the Jost functions" for our
problem.

The solutions F,~, ] being linearly independent,
the solution q, may be written as a linear combin-
ation of them:

y((, »)=xfs( '( )Fx,(s, ( , )x)+xfs,"( )$x' () (x), x,) . (16)

The coefficients f,"'(x,) are called the Jost func-
tions and are given by

f,"'(x,) = (~) . ' a[6:,(„(x,x,), ((),(x, x,)], (17)

where we have used the condition that the %'ron-
skian W[F,(,), P,( )] is e(lual to

It follows from Eqs. (11), (IV) and the reality of
the differential equation that

Pf(,) (», x,) = (-1)"' F((,)(», x,)

Comparison of E(I. (16) with the asymptotic be-
havior of E(I. (13) gives

3 (x )
—e2(6((ss) i ( sf(+)(x )

( s f(-)(x )

Here, the phase shift is 5,(x,) =)),(x,)+ iP, (x,),
where q, is the argument of the Jost function. In
the present case (where absorption is present),
the regular solution is defined by a boundary con-
dition [E(I. (14)]which depends on x,. This fact
spoils many results of standard potential scatter-
ing theory. For example, for real x,

p, (x„x)& ((),(-x„x),
f"(,)~f,( "(,).

This last inequality showers that the 8 matrix is not
uMtary, 1.e. ~
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S,(x,)*~S,(x.) '.
As is easily seen from Eqs. (14) and (16), we
shall have

1+3
&) = f(-)(„)~ (21

Thus, the modulus of f! ) (x,) is related to the ab-
sorption probability via

small x,.
Formula (24) can be derived from the low-fre-

quency limit of the exact radial solution given by
Persides. In this limit, the radial solutions can
be expressed in a closed form in terms of Legend-
re's functions P, (x) and Q, (x):

y, (x, x,) „m,(-1) P, 1 ——g
2x

S

(22)

In terms of the imaginary part of the phase shift
the partial absorption cross section is

i(-1)'(2l)!(2l + 1)! 2x'
I( & s) xz 0 2) —1(I ))3(x )) +1 Ql

It follows from Eq. (17) that

a, (x ) =, (2I+ 1)(1 —e '8)!*J) .x'
8

(23)
( ) (2I)!(2I+1)!f ) x 0 2)+1(I)}3(x))

From Eqs. (23) and (26), we obtain formula (24)
with

III. PARTIAL AND TOTAL ABSORPTION CROSS SECTIONS

P)(x,) = C)x,"". (24)

Here, we found for C, values in agreement with
Starobinsky's formulas, 4 for x, =O and E =0. How-

ever, the Starobinsky approximation is accurate
only in a small neighborhood of x,= 0. For ex-
ample, the ratio

g* '(x.) -C,x,'
gxaet (x )

(25)

varies between 0.15 and 0.5 for 0.05 ~x, ~ 0.1. For
I = 1, the ratio (25) varies between 0.18 and 0.6 for
0.05 ~ x, ~ 0.1. That is, the inaccuracy of Staro-
binsky's approximation increases with / for fixed

In Figs. 1, 2, and 3 we plot our results for the
imaginary part of the phase shifts (P,), the pa.rtial
absorption cross sections (a, ), and the total ab-
sorption cross section (a„)as functions of x„for
different values of angular momentum l. All cross
sections are expressed in units of r,'. These ab-
sorption parameters have been calculated from the
exact radial solutions y„F,{,), and Fg() via the
Jost functions given by Eq. (17). The power series
expansions for the Jost and regular solutions given
by Eqs. (11) and (9) are convergent in disjoit re-
gions of the x plane. Because of this problem we
have analytically continued both power-series ex-
pansions away from their convergence circles.
(See the Appendix for details. )

For all values of I we find that P, (x,) is a mono-
tonically increasing function of x„asone could
expect from the shape of the effective potential
(Fig. 6).

All P, (x,) are zero at x,= 0 and tend to infinity
linearly with x, as x, increases to infinity. It
follows from our results, that for low frequencies
(x,«1) the imaginary part of the phase shifts be-
haves as

The presence of a pole at x, = 0 for l & 1 in the
Jost function means that waves with very small
frequency and nonzero angular momentum are
repelled out of the vicinity of the black hole. For
large values of x, we find a good agreement be-
tween our exact results and the asymptotic formu-
las [P (x,)] derived in Ref. 6, namely

P, (x,) = P)'(x, )+ 0 „', for x,» I,l+ ~

xg

1 x "' v (l+ -')'
p (x )= xx --,' ln2 —

1 x 2v'2 x

P, (2) = 5.79, tI,"(2)= 5.89,

P, (2) = 4.98, P (2) = 4.78.
%'e shall now consider the partial absorption
cross-section [a, (x,)] behavior. At x, = 0, all
a, (x,) are zero except for I = 0. For the S wave,
g =4m.

This zero-frequency behavior is directly rela-
ted to the presence of the singularity at x, = 0 in
the Jost function [Eq. (26)] for /&0. We find that
for aQ l ~ 1 0, and P, are practically zero in an
interval 0~ x, ~ x,')(I) with xo)(I) «V,«(max) (see
Table I), and also that a, (x,) has a pronounced peak
in the interval x',"(I)& x, ~ x~,"(I). One finds that
{xo))'» V„,(max) and that the absolute maxima of
a, lie at a point x",(I) of order [V„,(max)]"'. For
x, & x", , 0, decreases monotonically with x, as
a, = (2l+1)v/x, ' because e ' ) «1 in this region
[see Eq. {23)J.

The values of x", are given in a good approxima-
tion by geometrical optics. In this limit, x", cor-
responds to the critical impact parameter'
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TABLE I. Maxima of the partial absorption cross sec-
tions {0+)for several partial waves. We gives also the
maxima of the effective potential tEq. {8))and the values
of x(~0) {L){see Sec. HI for explanation}.

+(N) {g) eff (max. )

26.512
16.235
'11.488
8.914
7.297
6.182
4.955
4.744

0.24
0.69
1.07
1.45
1.83
2.21
2.58
2.96

0.105
0.397
0.988
1.877
3.062
4.543
6.321
8.395

0
0.03
0.40
0.60
1.05
1.85
2.25
2.65

(l+ -', ) = 0.38(l+ y),

in good agreement with our results (see Table I).
It follows from our results (Fig. 2) that the peaks
of o, (x,) are less pronounced for increasing angu-
lar momentum. For fixed frequency, the partial
absorption cross section o, increases linearly
with I, up to l= (3&3/2)x„ then it falls rapidly to
zero.

This is related to the fact that the number of
partial waves that contributes appreciably to the
total absorption cross section (o„)increases with
the energy. This number is given approximately
by (3&3/2)x, . The behavior of the differential ab-
sorption cross section per unit solid angle dQ can
be easily inferred for high frequencies from its
partial-wave expansion

do„(8) Q (21+ l)g, (x,)P, (cos&)
l =0

(28)

and the properties of g, (x,). For x,»1, o„(8)will
be peaked in the forward direction as follows from
an approximate evaluation of series (28) for small
angle, in terms of the Bessel function 4„

do„(S) 27 x.' ~27
dn ""' 4 6'

8~1

Summing up the contribution of all significant
partial waves we obtain the total absorption cross
section (o'„)(Fig. 3) as a function of the energy.
It presents an oscillatory behavior characteristic
of a diffxaction pattern, which can be interpreted
as a consequence of the superposition of the peaks
of each 0, . The absolute maximum of each partial
wave cross section produces a relative maximum
in 0„.Thus these relative maxima follow a law
similar to Eq. (27). As frequency increases, o„
oscillates around its constant geometric limit
('~' v) with decreasing amplitude and approximately
constant period (~0.38).

Performing this integration (ds stands for the
surface element of the sphere), one finds

R stn2AR SlllkR
kR kR

(29)

where we have choose the constant a in such a
way that o(~) =R'/m. Formula (29) describes
qualitatively the total absorption cross section for
a Schwarzschild black hole with

Ws
R 2"

An improved function that fits accurately the
exact values of o„(x,) is given by

o„(x,)= '~' v- —sinmv27 (x, +B). (3o)

The best fit is obtained for

A =1.41-v 2,
@&10 4.

In Fig. 4, we have plotted the total absorption
cross section corresponding to an ordinary ma-
terial sphere with a complex refraction index. It
is a monotonically increasing function of frequency.
Comparison with the oscillatory black-hole cross
section shows clearly the differences between the
absoxption by a black hole and the absorption de-

We turn now to the physical interpretation of
these results. As we have shown in a previous
papex', ' absorption may be interpreted as taking
place only at the singularity (r = 0) of the Schwarz-
schild space. On the other hand, for large values
of x„onecan expect that Fresnel-Kirchoff dif-
fraction theory will be applicable to our problem.
Thus the absorbed radiation is given by the rays
of the incident plane wave which arrive at r = 0.
The different rays will arrive by different paths,
i.e. , with different phases, and interference
phenomena will take place. We interpret that
this interference produces the oscillatory behavior
Of Q~.

We shall now formulate a simple model which
presents an absorption cross section qualitatively
similar to a Schwarzschild black hole. We suppose
that all ray paths are straight outside a sphere
of radius R, but that xays fall radially inward for
r &A. Of course, this is only a rough model for
a black hole because the curvature of xays in the
vicinity of the horizon has been neglected. The
absorption cross section in this model will be
proportional to the square modulus of the wave
amplitude 4 at the center of the sphere. In the
Kirchoff -Fresnel approximation, "one has

) ~ (2 d ikey(1-0038) 1+cosg
2
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scribed by complex potentials (optical models).
For a black hole, the effective potential that de-
scribes the wave-black-hole interaction is real,
but it is not Hermitian because of its singularity
at the origin. ' The presence of a nonzero absorp-
tion cross section is related to this non-Hermitian
character.

1V. HAWKING EMISSION

In the context of classical field theory, the mass-
less field q obeying the wave equation (7) satisfies
boundary conditions (14) guaranteeing that only
absorption takes place. However, if quantum ef-
fects associated with the field 4 are considered,
the particle emission probability is nonzero and
the spectrum of the emitted radiation is Planckian'
[Eq. (1)J. By using the absorption cross section
discussed in the preceding section we have calcula-
ted the Hawking emission for a wide range of fre-
quency and angular momentum.

In Fig. 5 we plot the total emission spectrum as
a function of x,. We see that it does not show any

of the interference oscillations characteristic of
the total absorption cross section (Fig. 3). This is
related to the fact that the S-wave contribution
predominates in Hawking radiation. The rapid de-
crease of the Planck factor for x, & 1 suppresses
the contribution of the partial waves with l»1.
For example, the maxima of H, (k) for I=O, 1,
and 2 are in the ratio 1:—,', :~.

For angular momenta higher than two, H, (k) is
extremely small. The spectrum of total emission
has only one peak following closely the S-wave ab-
sorption-cross-section behavior. Its maximum
lies at the same point as the o, one (x",= 0.23).

The peaks of o, and o, turn out to have no in-
fluence in H(k). In conclusion, Hawking emission
is only important in the frequency range 0 & k & 1/r,
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APPENDIX

In order to perform the analytic continuation of the radial solutions y, (x, x,) we seek power-series ex-
pansions for them in the neighborhood of an arbitrary point x= b. We write for a radial solution

H(x)=e i*st~* *s~ g C (x
n=o

By replacing (Al) in the radial differential equation (7) one obtains

by'(n+ 1)(n+ 2)C„+,+ y(n+ 1)[y(n+ 1) + b(2n+ 1 —2ix,)]C„,,
+f(b+ 2y)n'+ [y —2ix, (y+ b) Jn+ b(b' —x,2) —y(1+ix,)]C„

(Al)

+ [(n —1)(n —2ix,)+ 3b' —L —x,(i+ x,)]C„,+ 3bC„+C = 0, (A2)

where y=b —x,. This recurrence relation defines all the C„'swith n - 2 in terms of C, and C„i.e. , the
radial function and its derivative at r= b. For the regular solution q, (x, x,) the analytic continuation is
made as follows:

First, from the power-series expansion for y, we obtain y, and y, at x=x„where x, is near the ex-
tremum of the convergence interval (0& x& 2x,). Then, by using the recurrence relation (A2) we calculate
the coefficients of the series expansion for y, that converges in an extended interval

0& x& 2x, ~4x, .
This procedure is repeated iteratively. For the Jost solutions, a similar procedure is used to continue
the function F,i,&

(x, x,) for low x.
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